1
|
Rahmani-Kukia N, Keshavarzi F, Salehi MS, Bozorg-Ghalati F, Mojtahedi Z, Zamani M, Azarpira N, Mokarram P. The effect of chemotherapeutic agents on epidermal neural crest stem cells. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:167-175. [PMID: 40028474 PMCID: PMC11865930 DOI: 10.22099/mbrc.2024.49755.1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Human Epidermal Neural Crest Stem Cells (hEPI-NCSCs), as a transient population of multipotent migratory stem cells can differentiate into multiple types of neural and non-neural cells and tissues in the body. Here, we tried to determine the role of chemo agents in mediating the stress induced pathways like autophagy and unfolded protein responses (UPR), as well as the migratory potential of NCSCs. hEPI-NCSCs were treated with chemo agents including Dithiothreitol [(DTT) 10µM)], Salinomycin (9mM), Ebselen (10mM), 5-Fluorouracil [(5-FU) 8µM] and Cisplatin (6mM) for 72 hours. The reverse transcription-quantitative polymerase chain reaction (RT- qPCR) and scratch wound healing assays were used to assess the effect of chemo agents on NCSCs function. After treatment with DTT, hEPI-NCSCs upregulated the expression of genes related to autophagy and UPR pathways including LC3, P62 and CHOP. These genes were also overexpressed when NCSCs were treated with Salinomycin. Reverse results were verified by 5-FU, Ebselen and Cisplatin treatment. Salinomycin and Cisplatin upregulated the expression of XBP-1, which down regulated with DTT, 5-FU and Ebselen. Inhibition in migratory capacity of NCSCs was detected following treatment by Salinomycin, 5-FU, Ebselen and Cisplatin. DTT and 5-FU promoted the expression of BDNF, while Salinomycin, Cisplatin and Ebselen treatment reduced its expression. During exposition to DTT, the autophagy pathway was activated, implying that autophagy functions as a survival mechanism for deactivating the inhibitory effects of DTT on the migratory capacity of NCSCs. Chemotherapeutic agents like 5-FU and cisplatin exert cytotoxic effects on NCSCs by suppressing autophagy, UPR pathways, and the migratory potential of NCSCs.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases. Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The first two authors contributed equally to this work
| | - Fatemeh Keshavarzi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- The first two authors contributed equally to this work
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Bozorg-Ghalati
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mojtahedi
- School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
3
|
Haynes J, Joshi A, Larue RC, Eisenmann ED, Govindarajan R. Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport. Pharmaceutics 2024; 16:1592. [PMID: 39771570 PMCID: PMC11677988 DOI: 10.3390/pharmaceutics16121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of highly active antiretroviral therapy (HAART)-the current standard of care for treating human immunodeficiency virus (HIV) infection. Despite their efficacy, NRTIs cause numerous treatment-limiting adverse effects, including a distinct peripheral neuropathy, called antiretroviral toxic neuropathy (ATN). ATN primarily affects the extremities with shock-like tingling pain, a pins-and-needles prickling sensation, and numbness. Despite its negative impact on patient quality of life, ATN remains poorly understood, which limits treatment options and potential interventions for people living with HIV (PLWH). Elucidating the underlying pathophysiology of NRTI-induced ATN will facilitate the development of effective treatment strategies and improved patient outcomes. In this article, we will comprehensively review ATN in the setting of NRTI treatment for HIV infection.
Collapse
Affiliation(s)
- John Haynes
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
| | - Arnav Joshi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
| | - Ross C. Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Shen Y, Li T, Sun C, Cheng X, Chen Z, Wang G, Yang X. Atg7 autophagy-independent role on governing neural stem cell fate could be potentially applied for regenerative medicine. Cell Death Differ 2024; 31:1375-1388. [PMID: 38898232 PMCID: PMC11445561 DOI: 10.1038/s41418-024-01330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
A literature review showed that Atg7 biological role was associated with the development and pathogenesis of nervous system, but very few reports focused on Atg7 role on neurogenesis at the region of spinal cord, so that we are committed to explore the subject. Atg7 expression in neural tube is incrementally increased during neurogenesis. Atg7 neural-specific knockout mice demonstrated the impaired motor function and imbalance of neuronal and glial cell differentiation during neurogenesis, which was similarly confirmed in primary neurosphere culture and reversely verified by Atg7 overexpression in unilateral neural tubes of gastrula chicken embryos. Furthermore, activating autophagy in neural stem cells (NSCs) of neurospheres did not rescue Atg7 deficiency-suppressed neuronal differentiation, but Atg7 overexpression on the basis of autophagy inhibition could reverse Atg7 deficiency-suppressed neuronal differentiation, which provides evidence for the existence of Atg7 role of autophagy-independent function. The underlying mechanism is that Atg7 deficiency directly caused the alteration of cell cycle length of NSCs, which is controlled by Atg7 through specifically binding Mdm2, thereby affecting neuronal differentiation during neurogenesis. Eventually, the effect of overexpressing Atg7-promoting neuronal differentiation was proved in spinal cord injury model as well. Taken together, this study revealed that Atg7 was involved in regulating neurogenesis by a non-autophagic signaling process, and this finding also shed light on the potential application in regenerative medicine.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Tingting Li
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chengyang Sun
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi Chen
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, 510220, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, 511496, China.
| |
Collapse
|
5
|
Işıldar B, Özkan S, Koyutürk M. Preconditioning of Human Umbilical Cord Mesenchymal Stem Cells with a Histone Deacetylase Inhibitor: Valproic Acid. Balkan Med J 2024; 41:369-376. [PMID: 39239940 PMCID: PMC11588919 DOI: 10.4274/balkanmedj.galenos.2024.2024-6-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) play a key role in regenerative medicine due to their capacity to differentiate into multiple cell lines, regulate the immune system, and exert paracrine effects. The therapeutic impact of MSCs is primarily mediated through their secretome. The secretory and therapeutic potential of MSCs can be improved through preconditioning, which entails the application of hypoxic environments, 3-dimensional cell cultures, and pharmacological agents. Valproic acid (VPA) is a histone deacetylase inhibitor that is employed in medical practice for treating epilepsy and bipolar disorder. Hence, preconditioning MSCs with VPA is expected to induce histone acetylation, enhance gene expression, and beneficially modify the cells' secretomes. Aims To assess the effectiveness of VPA in enhancing and regulating the therapeutic potential of cells as well as its impact on MSC secretome profiles and ultrastructural morphologies. Study Design Expiremental study. Methods Human umbilical cord MSCs were preconditioned with 2 mM VPA for 24 and 48 hours; untreated MSCs served as controls. The secretome secreted by the cells was assessed for its total protein content. Subsequently, interferon-gamma (IFN-γ), interleukin-17 (IL-17), IL-10, vascular endothelial growth factor, nerve growth factor (NGF), glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor (BDNF) levels in the secretome were analyzed using the ELISA method. The ultrastructural properties of the cells were studied under transmission electron microscopy. Results Ultrastructural examinations revealed that the chromatin content of VPA-treated cells was reduced. VPA-preconditioned cells exhibited a higher density of rough endoplasmic reticulum, autophagic vesicles, and myelin figures on cytoplasmic structure analysis, which was indicative of increased secretion. Protein secretion was elevated in those cells, with notable increases in NGF and BDNF levels. Furthermore, the cytoskeletal rearrangement and elevated autophagic activity observed in the 48-hour preconditioned cells could indicate the initiation of neuronal differentiation. IL-10, IL-17, and IFN-γ were not detected in the secretome. Conclusion This study indicate that preconditioning with VPA enhances MSC activity and subsequently modifies the secretome content.
Collapse
Affiliation(s)
- Başak Işıldar
- Department of Histology and Embryology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
- Department of Histology and Embryology Balıkesir University Faculty of Medicine, Balıkesir, Türkiye
| | - Serbay Özkan
- Department of Histology and Embryology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
- Department of Histology and Embryology İzmir Katip Çelebi University Faculty of Medicine, İzmir, Türkiye
| | - Meral Koyutürk
- Department of Histology and Embryology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
| |
Collapse
|
6
|
Wei Y, Zheng Z, Zhang Y, Sun J, Xu S, Di X, Ding X, Ding G. Regulation of mesenchymal stem cell differentiation by autophagy. Open Med (Wars) 2024; 19:20240968. [PMID: 38799254 PMCID: PMC11117459 DOI: 10.1515/med-2024-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Autophagy, a process that isolates intracellular components and fuses them with lysosomes for degradation, plays an important cytoprotective role by eliminating harmful intracellular substances and maintaining cellular homeostasis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity for self-renewal that can give rise to a subset of tissues and therefore have potential in regenerative medicine. However, a variety of variables influence the biological activity of MSCs following their proliferation and transplantation in vitro. The regulation of autophagy in MSCs represents a possible mechanism that influences MSC differentiation properties under the right microenvironment, affecting their regenerative and therapeutic potential. However, a deeper understanding of exactly how autophagy is mobilized to function as well as clarifying the mechanisms by which autophagy promotes MSCs differentiation is still needed. Here, we review the current literature on the complex link between MSCs differentiation and autophagy induced by various extracellular or intracellular stimuli and the molecular targets that influence MSCs lineage determination, which may highlight the potential regulation of autophagy on MSCs' therapeutic capacity, and provide a broader perspective on the clinical application of MSCs in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xinsheng Di
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| |
Collapse
|
7
|
Prateeksha P, Naidu P, Das M, Barthels D, Das H. KLF2 Regulates Neural Differentiation of Dental Pulp-derived Stem Cells by Modulating Autophagy and Mitophagy. Stem Cell Rev Rep 2023; 19:2886-2900. [PMID: 37642902 DOI: 10.1007/s12015-023-10607-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC. METHODS We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer. RESULTS Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC's commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC's cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage. CONCLUSION Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.
Collapse
Affiliation(s)
- Prateeksha Prateeksha
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Prathyusha Naidu
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Manjusri Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|
8
|
Szydlak R. Mesenchymal stem cells in ischemic tissue regeneration. World J Stem Cells 2023; 15:16-30. [PMID: 36909782 PMCID: PMC9993139 DOI: 10.4252/wjsc.v15.i2.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/21/2023] Open
Abstract
Diseases caused by ischemia are one of the leading causes of death in the world. Current therapies for treating acute myocardial infarction, ischemic stroke, and critical limb ischemia do not complete recovery. Regenerative therapies opens new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal stem cells (MSCs) are the most promising option in the field of cell-based therapies, due to their secretory and immunomodulatory abilities, that contribute to ease inflammation and promote the regeneration of damaged tissues. This review presents the current knowledge of the mechanisms of action of MSCs and their therapeutic effects in the treatment of ischemic diseases, described on the basis of data from in vitro experiments and preclinical animal studies, and also summarize the effects of using these cells in clinical trial settings. Since the obtained therapeutic benefits are not always satisfactory, approaches aimed at enhancing the effect of MSCs in regenerative therapies are presented at the end.
Collapse
Affiliation(s)
- Renata Szydlak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
9
|
Li Y, Wen H, Yang Y, Zhao Z, Gao H, Li H, Huang M. Potential prognostic markers of retained placenta in dairy cows identified by plasma metabolomics coupled with clinical laboratory indicators. Vet Q 2022; 42:199-212. [DOI: 10.1080/01652176.2022.2145619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuqiong Li
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Huiyu Wen
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yuwei Yang
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zhengwei Zhao
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | | | | | - Meizhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|