1
|
Epstein LH, Apolzan JW, Moore M, Neuwald NV, Faith MS. Using Metabolic Testing to Personalize Behavioral Obesity Treatment. Obes Sci Pract 2025; 11:e70065. [PMID: 40070464 PMCID: PMC11894463 DOI: 10.1002/osp4.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background There are large individual differences in weight loss and maintenance. Metabolic testing can provide phenotypical information that can be used to personalize treatment so that people remain in negative energy balance during weight loss and remain in energy balance during maintenance. Behavioral testing can assess the reinforcing value and change in the temporal window related to the personalized diet and exercise program to motivate people to maintain engagement in healthier eating and activity programs. Objective Provide an expository overview of how metabolic testing can be used to personalize weight control. Ideas about incorporating behavioral economic concepts are also included. Methods A broad overview of how resting metabolic rate, thermic effect of food and respiratory quotient can be used to improve weight control. Also discussed are behavioral economic principles that can maximize adherence to diet and activity protocols. Results Research suggests that measuring metabolic rate can be used to set calorie goals for weight loss and maintenance, thermic effect of food to increase energy expenditure, and respiratory quotient to guide macronutrient composition of the diet and maximize fat loss. Developing programs that foster a strong motivation to eat healthier and be active can maximize treatment success. Conclusion Incorporating metabolic measures can personalize behavioral weight loss programs, and the use of behavioral economic principles can increase the probability of adherence and long-term success in weight control.
Collapse
Affiliation(s)
- Leonard H. Epstein
- Department of PediatricsJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - John W. Apolzan
- Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeLouisianaUSA
| | - Molly Moore
- Department of CounselingSchool and Educational PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Nicholas V. Neuwald
- Department of PediatricsJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - Myles S. Faith
- Department of CounselingSchool and Educational PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
2
|
Rogus S, Lurie P. Personalized nutrition: aligning science, regulation, and marketing. HEALTH AFFAIRS SCHOLAR 2024; 2:qxae107. [PMID: 39253562 PMCID: PMC11382137 DOI: 10.1093/haschl/qxae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Interest in personalized nutrition among researchers and industry has grown rapidly in recent years and shows no signs of abating. In this paper, we discuss the growth of the personalized nutrition market, the evidence for the approach, and the regulatory landscape for personalized nutrition products. We found that regulatory gaps have led to market growth of products with unknown efficacy that are making bold, and possibly unsubstantiated, claims. As personalized nutrition products and related treatments continue to enter the market without regulation, unreliable products may cause consumers financial, psychological, and physical harm. Stronger regulation will help engender trust in these products among consumers and ensure their safety and effectiveness.
Collapse
Affiliation(s)
- Stephanie Rogus
- Center for Science in the Public Interest, Washington, DC 20005, United States
| | - Peter Lurie
- Center for Science in the Public Interest, Washington, DC 20005, United States
| |
Collapse
|
3
|
Çınar MA, Bayramlar K, Erkılıc A, Güneş A, Yakut Y. Effect of three different exercise trainings on functional capacity in early stage severe burn patients: A randomized controlled trial. ULUS TRAVMA ACIL CER 2024; 30:562-270. [PMID: 39092968 PMCID: PMC11372491 DOI: 10.14744/tjtes.2024.59987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND This study investigated the effects of three different exercise protocols on functional capacity in early-stage burn patients. METHODS A total of 25 patients hospitalized in the Burn Center (wards and intensive care unit) were included in the study. The individuals were divided into three groups by covariate adaptive randomization according to burn percentage and type: 1 - standard treatment, 2 - standard treatment + aerobic exercise training, 3 - standard treatment + combined exercise (aerobic and resistance) determined by metabolic status. Individuals were evaluated weekly for six weeks from the first day of hospitalization using the 6-minute walk test, physiological cost index, and Medical Research Council muscle-strength measurements to assess functional capacity. A portable metabolism tracker device measured the metabolic status of all patients. RESULTS Aerobic exercises and combined exercise (aerobic and resistance), when added to standard treatment and determined by metabolic status, were more effective in enhancing functional capacity than standard treatment alone (p<0.05). Patients performing the combined exercise (aerobic and resistance) showed faster improvement in functional capacity determined according to metabolic status than those in the other two groups (p<0.05). CONCLUSION Aerobic exercises, when added to standard treatment and combined with aerobic and resistance exercises based on metabolic status, are more effective at improving functional capacity than standard treatment alone. Further controlled studies are required to explore the potential long-term benefits of this approach.
Collapse
Affiliation(s)
- Murat Ali Çınar
- Department of Physiotherapy and Rehabilitation Hasan Kalyoncu University, Gaziantep-Türkiye
| | - Kezban Bayramlar
- Department of Physiotherapy and Rehabilitation Hasan Kalyoncu University, Gaziantep-Türkiye
| | - Ahmet Erkılıc
- Gaziantep City Hospital, General Surgery, Burn Center, Gaziantep-Türkiye
| | - Ali Güneş
- Gaziantep City Hospital, General Surgery, Burn Center, Gaziantep-Türkiye
| | - Yavuz Yakut
- Department of Physiotherapy and Rehabilitation Hasan Kalyoncu University, Gaziantep-Türkiye
| |
Collapse
|
4
|
Yeshurun S, Cramer T, Souroujon D, Mor M. The Association of Macronutrient Consumption and BMI to Exhaled Carbon Dioxide in Lumen Users: Retrospective Real-World Study. JMIR Mhealth Uhealth 2024; 12:e56083. [PMID: 38439744 PMCID: PMC11019421 DOI: 10.2196/56083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Metabolic flexibility is the ability of the body to rapidly switch between fuel sources based on their accessibility and metabolic requirements. High metabolic flexibility is associated with improved health outcomes and a reduced risk of several metabolic disorders. Metabolic flexibility can be improved through lifestyle changes, such as increasing physical activity and eating a balanced macronutrient diet. Lumen is a small handheld device that measures metabolic fuel usage through exhaled carbon dioxide (CO2), which allows individuals to monitor their metabolic flexibility and make lifestyle changes to enhance it. OBJECTIVE This retrospective study aims to examine the postprandial CO2 response to meals logged by Lumen users and its relationship with macronutrient intake and BMI. METHODS We analyzed deidentified data from 2607 Lumen users who logged their meals and measured their exhaled CO2 before and after those meals between May 1, 2023, and October 18, 2023. A linear mixed model was fitted to test the association between macronutrient consumption, BMI, age, and gender to the postprandial CO2 response, followed by a 2-way ANOVA. RESULTS The model demonstrated significant associations (P<.001) between CO2 response after meals and both BMI and carbohydrate intake (BMI: β=-0.112, 95% CI -0.156 to -0.069; carbohydrates: β=0.046, 95% CI 0.034-0.058). In addition, a 2-way ANOVA revealed that higher carbohydrate intake resulted in a higher CO2 response compared to low carbohydrate intake (F2,2569=24.23; P<.001), and users with high BMI showed modest responses to meals compared with low BMI (F2,2569=5.88; P=.003). CONCLUSIONS In this study, we show that Lumen's CO2 response is influenced both by macronutrient consumption and BMI. The results of this study highlight a distinct pattern of reduced metabolic flexibility in users with obesity, indicating the value of Lumen for assessing postprandial metabolic flexibility.
Collapse
Affiliation(s)
| | | | - Daniel Souroujon
- Metaflow Ltd, Tel-Aviv, Israel
- School of Public Health, Tel Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
5
|
Cramer T, Yeshurun S, Mor M. Changes in Exhaled Carbon Dioxide during the Menstrual Cycle and Menopause. Digit Biomark 2024; 8:102-110. [PMID: 39015514 PMCID: PMC11250560 DOI: 10.1159/000539126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/26/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction The menstrual cycle (MC) reflects multifaceted hormonal changes influencing women's metabolism, making it a key aspect of women's health. Changes in hormonal levels throughout the MC have been demonstrated to influence various physiological parameters, including exhaled carbon dioxide (CO2). Lumen is a small handheld device that measures metabolic fuel usage via exhaled CO2. This study leverages exhaled CO2 patterns measured by the Lumen device to elucidate metabolic variations during the MC, which may hold significance for fertility management. Additionally, CO2 changes are explored in menopausal women with and without hormonal replacement therapy (HRT). Methods This retrospective cohort study analyzed exhaled CO2 data from 3,981 Lumen users, including eumenorrheal women and menopausal women with and without HRT. Linear mixed models assessed both CO2 changes of eumenorrheal women during the MC phases and compared between menopausal women with or without HRT. Results Eumenorrheic women displayed cyclical CO2 patterns during the MC, characterized by elevated levels during the menstrual, estrogenic and ovulation phases and decreased levels during post-ovulation and pre-menstrual phases. Notably, despite variations in cycle length affecting the timing of maximum and minimum CO2 levels within a cycle, the overall pattern remained consistent. Furthermore, CO2 levels in menopausal women without HRT differed significantly from those with HRT, which showed lower levels. Conclusion This study reveals distinct CO2 patterns across MC phases, providing insights into hormonal influences on metabolic activity. Menopausal women exhibit altered CO2 profiles in relation to the use or absence of HRT. CO2 monitoring emerges as a potential tool for tracking the MC and understanding metabolic changes during menopause.
Collapse
|
6
|
Roberts J, Dugdale-Duwell D, Lillis J, Pinto JM, Willmott A, Yeshurun S, Mor M, Souren T. The efficacy of a home-use metabolic device (Lumen) in response to a short-term low and high carbohydrate diet in healthy volunteers. J Int Soc Sports Nutr 2023; 20:2185537. [PMID: 36862060 PMCID: PMC9987730 DOI: 10.1080/15502783.2023.2185537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Based on stoichiometric assumptions, and real-time assessment of expired carbon dioxide (%CO2) and flow rate, the Lumen device provides potential for consumers/athletes to monitor metabolic responses to dietary programs outside of laboratory conditions. However, there is a paucity of research exploring device efficacy. This study aimed to evaluate Lumen device response to: i) a high-carbohydrate meal under laboratory conditions, and ii) a short-term low- or high-carbohydrate diet in healthy volunteers. METHODS Following institutional ethical approval, 12 healthy volunteers (age: 36 ± 4 yrs; body mass: 72.1 ± 3.6 kg; height: 1.71 ± 0.02 m) performed Lumen breath and Douglas bag expired air measures under fasted laboratory conditions and at 30 and 60 min after a high-carbohydrate (2 g·kg-1) meal, along with capilliarized blood glucose assessment. Data were analyzed using a one-way ANOVA, with ordinary least squares regression used to assess the model between Lumen expired carbon dioxide percentage (L%CO2) and respiratory exchange ratio (RER). In a separate phase, 27 recreationally active adults (age: 42 ± 2 yrs; body mass: 71.9 ± 1.9 kg; height: 1.72 ± 0.02 m) completed a 7-day low- (~20% of energy intake [EI]; LOW) or high-carbohydrate diet (~60% of EI; HIGH) in a randomized, cross-over design under free-living conditions. L%CO2 and derived Lumen Index (LI) were recorded daily across morning (fasted and post-breakfast) and evening (pre/post meal, pre-bed) periods. Repeated measures ANOVA were employed for main analyses, with Bonferroni post-hoc assessment applied (P ≤ 0.05). RESULTS Following the carbohydrate test-meal, L%CO2 increased from 4.49 ± 0.05% to 4.80 ± 0.06% by 30 min, remaining elevated at 4.76 ± 0.06% by 60 min post-feeding (P < 0.001, ηp2 = 0.74). Similarly, RER increased by 18.1% from 0.77 ± 0.03 to 0.91 ± 0.02 by 30 min post-meal (P = 0.002). When considering peak data, regression analysis demonstrated a significant model effect between RER and L%CO2 (F = 5.62, P = 0.03, R2 = 0.20). Following main dietary interventions, no significant interactions (diet × day) were found. However, main diet effects were evident across all time-points assessed, highlighting significant differences for both L%CO2 and LI between LOW and HIGH conditions (P < 0.003). For L%CO2, this was particularly noted under fasted (4.35 ± 0.07 vs. 4.46 ± 0.06%, P = 0.001), pre-evening meal (4.35 ± 0.07 vs. 4.50 ± 0.06%, P < 0.001), and pre-bed time-points (4.51 ± 0.08 vs. 4.61 ± 0.06%, P = 0.005). CONCLUSION Our findings demonstrated that a portable, home-use metabolic device (Lumen) detected significantly increased expired %CO2 in response to a high-carbohydrate meal, and may be useful in tracking mean weekly changes to acute dietary carbohydrate modifications. Additional research is warranted to further determine the practical and clinical efficacy of the Lumen device in applied compared to laboratory settings.
Collapse
Affiliation(s)
- Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Dirk Dugdale-Duwell
- Occupational and Environmental Physiology Group, Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Joseph Lillis
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Jorge Marques Pinto
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Ash Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | | | | | - Tjeu Souren
- Utrecht University Medical Center, Utrecht, The Netherlands
- School of Human Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Buch A, Yeshurun S, Cramer T, Baumann A, Sencelsky Y, Zelber Sagi S, Serebro M, Greenman Y, Mor M, Eldor R. The Effects of Metabolism Tracker Device (Lumen) Usage on Metabolic Control in Adults with Prediabetes: Pilot Clinical Trial. Obes Facts 2023; 16:53-61. [PMID: 36195053 PMCID: PMC9889724 DOI: 10.1159/000527227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/05/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Prediabetes is a risk factor for type 2 diabetes mellitus (T2DM). However, it may be reversed via lifestyle changes. Lumen is a novel handheld device that measures exhaled CO2 producing results in agreement with those of indirect calorimetry when assessing metabolic fuel usage. The aim of this study was to examine the effects of following Lumen's personalized, measurement-guided lifestyle intervention program on anthropometric and metabolic variables in adults with prediabetes. METHODS A 12-week single-arm intervention study was conducted in 27 participants. Body composition and blood markers were measured at the start and end of the study. Each participant took a daily morning (fasted) measurement and received feedback on their metabolic state (i.e., their degree of fat vs. carbohydrate oxidation). Participants were then provided with personalized daily guidelines for their carbohydrate, fat, and protein consumption, along with recommended lifestyle changes. RESULTS Intention-to-treat analysis revealed a significant decrease in body weight (5.99 kg, p < 0.001), comprising a significant reduction in percentage body fat (2.93%, p < 0.001) and waist circumference (6.23 cm, p < 0.001). Significant reductions were also observed in glycated hemoglobin A1c (0.27%, p < 0.001), triglycerides (0.45 mg/dL, p < 0.001), and systolic blood pressure (0.5 mm Hg, p < 0.05). CONCLUSION In a 12-week pilot study of participants with prediabetes, Lumen usage significantly improved multiple metabolic parameters, demonstrating its potential to deliver better clinical outcomes for patients with T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Assaf Buch
- Department of Nutritional Sciences, School of Health Sciences, Ariel University, Ariel, Israel
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | | | | | - Yael Sencelsky
- School of Public Health, University of Haifa, Haifa, Israel
| | | | - Merav Serebro
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | - Yona Greenman
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | | | - Roy Eldor
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Kareva I. Understanding Metabolic Alterations in Cancer Cachexia through the Lens of Exercise Physiology. Cells 2022; 11:cells11152317. [PMID: 35954163 PMCID: PMC9367382 DOI: 10.3390/cells11152317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cachexia is one of the leading causes of mortality for late-stage cancer patients. One of its key characteristics is abnormal metabolism and loss of metabolic flexibility, i.e., loss of ability to switch between use of fats and carbohydrates as needed. Here, it is hypothesized that late-stage systemic cancer creates a chronic resource drain on the body that may result in the same metabolic adaptations that occur during intense endurance exercise, activating some of the same mechanisms of nutrient consumption that are supposed to be transient during strenuous physical activity. This hypothesis is evaluated by creating a mathematical model that characterizes the relationships between increased exercise intensity and carbohydrate and fat oxidation. The model is parametrized using published data on these characteristics for a group of professional athletes, moderately active individuals, and individuals with metabolic syndrome. Transitions between different zones of relative nutrient consumption as a function of increased effort are captured through explicitly modeling ventilatory thresholds, particularly VT1 and VT2, where fat is primarily used below VT1, both carbohydrates and fats are used between VT1 and VT2, and where carbohydrates become the primary source of fuel above VT2. A simulation is conducted of projected patterns of nutrient consumption when simulated “effort” remains between VT1 and VT2, or above VT2, and it is proposed that it is the scenario when the simulated effort is maintained primarily above VT2 that most closely resembles metabolic patterns characteristic of cachexia. A discussion of a broader framework for understanding cachectic metabolism using insights from exercise physiology, including potential intervention strategies, concludes this paper.
Collapse
Affiliation(s)
- Irina Kareva
- Department of Biomedical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Corman BHP, Rajupet S, Ye F, Schoenfeld ER. The Role of Unobtrusive Home-Based Continuous Sensing in the Management of Postacute Sequelae of SARS CoV-2. J Med Internet Res 2022; 24:e32713. [PMID: 34932496 PMCID: PMC8989385 DOI: 10.2196/32713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Amid the COVID-19 pandemic, it has been reported that greater than 35% of patients with confirmed or suspected COVID-19 develop postacute sequelae of SARS CoV-2 (PASC). PASC is still a disease for which preliminary medical data are being collected-mostly measurements collected during hospital or clinical visits-and pathophysiological understanding is yet in its infancy. The disease is notable for its prevalence and its variable symptom presentation, and as such, management plans could be more holistically made if health care providers had access to unobtrusive home-based wearable and contactless continuous physiologic and physical sensor data. Such between-hospital or between-clinic data can quantitatively elucidate a majority of the temporal evolution of PASC symptoms. Although not universally of comparable accuracy to gold standard medical devices, home-deployed sensors offer great insights into the development and progression of PASC. Suitable sensors include those providing vital signs and activity measurements that correlate directly or by proxy to documented PASC symptoms. Such continuous, home-based data can give care providers contextualized information from which symptom exacerbation or relieving factors may be classified. Such data can also improve the collective academic understanding of PASC by providing temporally and activity-associated symptom cataloging. In this viewpoint, we make a case for the utilization of home-based continuous sensing that can serve as a foundation from which medical professionals and engineers may develop and pursue long-term mitigation strategies for PASC.
Collapse
Affiliation(s)
- Benjamin Harris Peterson Corman
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Program in Public Health, Stony Brook University, Stony Brook, NY, United States
| | - Sritha Rajupet
- Department of Family, Population & Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Fan Ye
- Department of Electrical and Computer Engineering, College of Engineering and Applied Science, Stony Brook University, Stony Brook, NY, United States
| | - Elinor Randi Schoenfeld
- Department of Family, Population & Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
10
|
Mathews SC, Templeton S, Taylor SK, Harris S, Stewart M, Raja SM. Evaluation of a Digital Handheld Hydrogen Breath Monitor to Diagnose Lactose Malabsorption: Interventional Crossover Study. JMIR Form Res 2021; 5:e33009. [PMID: 34544034 PMCID: PMC8561400 DOI: 10.2196/33009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background Lactose malabsorption is a common condition that affects a broad segment of the population. Clinical diagnosis based on symptom recall can be unreliable and conventional testing can be inconvenient, requiring expensive laboratory-based equipment and conduction of the testing in a clinical setting. Objective The aim of this study is to assess the performance of a digital handheld hydrogen breath monitor (GIMate) in diagnosing lactose malabsorption compared to a US Food and Drug Administration (FDA)–cleared device (H2 Check) for the same indication. Methods An interventional crossover study was performed in adult participants with a prior confirmed diagnosis of lactose malabsorption or a suspected history of lactose intolerance. Results A total of 31 participants (mean age 33.9 years) were enrolled in the study. There was 100% positive percent agreement and 100% negative percent agreement between the GIMate monitor and the H2 Check. Correlation between gastrointestinal symptoms and hydrogen values was positive at 0.82 (P<.001). Conclusions The digital handheld GIMate breath monitor achieved equivalent diagnostic performance to that of an FDA-cleared device in the diagnosis of lactose malabsorption. Trial Registration ClinicalTrials.gov NCT04754724; https://clinicaltrials.gov/ct2/show/NCT04754724
Collapse
Affiliation(s)
| | - Sandy Templeton
- Electronics Program, Penn Foster College, Scottsdale, AZ, United States
| | | | - Sten Harris
- Duke Early Phase Clinical Research Unit, Durham, NC, United States
| | - Margaret Stewart
- Duke Early Phase Clinical Research Unit, Durham, NC, United States
| | - Shruti M Raja
- Duke Early Phase Clinical Research Unit, Durham, NC, United States
| |
Collapse
|