1
|
Wang JY, Mansfield JC, Brasselet S, Vergari C, Meakin JR, Winlove CP. Micro-mechanical damage of needle puncture on bovine annulus fibrosus fibrils studied using polarization-resolved Second Harmonic Generation(P-SHG) microscopy. J Mech Behav Biomed Mater 2021; 118:104458. [PMID: 33761373 DOI: 10.1016/j.jmbbm.2021.104458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
Needle injection has been widely used in spinal therapeutic or diagnostic processes, such as discography. The use of needles has been suspected in causing mild disc degeneration which can lead to long-term back pain. However, the localised microscopic damage caused by needles has not been well studied. The local progressive damage on a microscopic level caused by needle punctures on the surface of bovine annulus fibrosus was investigated. Four different sizes of needle were used for the puncture and twenty-nine bovine intervertebral discs were studied. Polarization-resolved second harmonic generation and fluorescent microscopy were used to study the local microscopic structural changes in collagen and cell nuclei due to needle damage. Repeated 70 cyclic loadings at ±5% of axial strain were applied after the needle puncture in order to assess progressive damage caused by the needle. Puncture damage on annulus fibrosus were observed either collagen fibre bundles being pushed aside, being cut through or combination of both with part being lift or pushed in. The progressive damage was found less relevant to the needle size and more progressive damage was only observed using the larger needle. Two distinct populations of collagen, in which one was relatively more organised than the other population, were observed especially after the puncture from skewed distribution of polarization-SHG analysis. Cell shape was found rounder near the puncture site where collagen fibres were damaged.
Collapse
Affiliation(s)
- J-Y Wang
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK.
| | - J C Mansfield
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK
| | - S Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France
| | - C Vergari
- Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, F-75013, Paris
| | - J R Meakin
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK
| | - C P Winlove
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK
| |
Collapse
|
2
|
D'Este M, Eglin D, Alini M. Lessons to be learned and future directions for intervertebral disc biomaterials. Acta Biomater 2018; 78:13-22. [PMID: 30092378 DOI: 10.1016/j.actbio.2018.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023]
Abstract
Biomaterials science has achieved significant advancements for the replacement, repair and regeneration of intervertebral disc tissues. However, the translation of this research to the clinic presents hurdles. The goal of this paper is to identify strategies to recapitulate the intrinsic complexities of the intervertebral disc, to highlight the unresolved issues in basic knowledge hindering the clinical translation, and finally to report on the emerging technologies in the biomaterials field. On this basis, we identify promising research directions, with the hope of stimulating further debate and advances for resolving clinical problems such as cervical and low back pain using biomaterial-based approaches. STATEMENT OF SIGNIFICANCE Although not life-threatening, intervertebral disc disorders have enormous impact on life quality and disability. Disc function within the human body is mainly mechanical, and therefore the use of biomaterials to rescue disc function and alleviate pain is logical. Despite intensive research, the clinical translation of biomaterial-based therapies is hampered by the intrinsic complexity of this organ. After decades of development, artificial discs or tissue replacements are still niche applications given their issues of integration and displacement with detrimental consequences. The struggles of biological therapies and tissue engineering are therefore understandable. However, recent advances in biomaterial science give new hope. In this paper we identify the most promising new directions for intervertebral disc biomaterials.
Collapse
|
3
|
Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC, Grad S. Critical aspects and challenges for intervertebral disc repair and regeneration-Harnessing advances in tissue engineering. JOR Spine 2018; 1:e1029. [PMID: 30895276 PMCID: PMC6400108 DOI: 10.1002/jsp2.1029] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Low back pain represents the highest burden of musculoskeletal diseases worldwide and intervertebral disc degeneration is frequently associated with this painful condition. Even though it remains challenging to clearly recognize generators of discogenic pain, tissue regeneration has been accepted as an effective treatment option with significant potential. Tissue engineering and regenerative medicine offer a plethora of exploratory pathways for functional repair or prevention of tissue breakdown. However, the intervertebral disc has extraordinary biological and mechanical demands that must be met to assure sustained success. This concise perspective review highlights the role of the disc microenvironment, mechanical and clinical design considerations, function vs mimicry in biomaterial‐based and cell engineering strategies, and potential constraints for clinical translation of regenerative therapies for the intervertebral disc.
Collapse
Affiliation(s)
- Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin Dublin Ireland.,School of Engineering, Trinity College Dublin The University of Dublin Dublin Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin Dublin Ireland
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine University of Manchester Manchester UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway Ireland
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA
| | | |
Collapse
|
4
|
Ehlicke F, Köster N, Salzig D, Czermak P. Non-invasive Raman Spectroscopy and Quantitative Real-Time PCR Distinguish Among Undifferentiated Human Mesenchymal Stem Cells and Redifferentiated Nucleus Pulposus Cells and Chondrocytes In Vitro. Open Biomed Eng J 2017; 11:72-84. [PMID: 28868091 PMCID: PMC5564017 DOI: 10.2174/1874120701711010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 07/01/2017] [Indexed: 12/03/2022] Open
Abstract
Background: The most common cause of lower back pain is the pathological degeneration of the nucleus pulposus (NP). Promising NP regeneration strategies involving human mesenchymal stem cells (hMSCs) would require specific markers to confirm successful differentiation into the NP lineage and to distinguish the articular cartilage (AC). Objective: We sought specific NP mRNA markers that are upregulated in native NP cells but not in dedifferentiated NP cells, undifferentiated hMSCs or chondrocytes. We also considered the suitability of non-invasive Raman spectroscopy to distinguish among these classes of cells. Method: We used quantitative real-time PCR and Raman spectroscopy to analyse undifferentiated hMSCs in monolayers and embedded in hydrogels, and compared the results with dedifferentiated and redifferentiated human NP and AC cells. Results: The redifferentiation of NP cells induced the expression of annexin A3 (ANXA3), collagen type II (COL2) and proteoglycan mRNAs, whereas the redifferentiation of AC cells only induced proteoglycan expression. Redifferentiated NP cells expressed higher levels of ANXA3, COL2, paired box 1 (PAX1) and OCT4 mRNA than redifferentiated AC cells. Redifferentiated NP cells and undifferentiated hMSC-TERT cells expressed similar amount of OCT4 mRNA, indicating that only ANXA3, COL2 and PAX1 are promising markers for redifferentiated NP cells. Raman spectra clearly differed among the three cell types and highlighted their differentiation status. Conclusion: We recommend ANXA3, COL2 and PAX1 as markers to determine the success of hMSC-based differentiation to regenerate NP cells. Raman spectroscopy can be used to determine cell type and differentiation status especially in the context of clinical trials.
Collapse
Affiliation(s)
- Franziska Ehlicke
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Natascha Köster
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.,Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Ludwigstr. 23, 35390 Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstr. 3, 35394 Giessen, Germany
| |
Collapse
|
5
|
Pérez-San Vicente A, Peroglio M, Ernst M, Casuso P, Loinaz I, Grande HJ, Alini M, Eglin D, Dupin D. Self-Healing Dynamic Hydrogel as Injectable Shock-Absorbing Artificial Nucleus Pulposus. Biomacromolecules 2017; 18:2360-2370. [DOI: 10.1021/acs.biomac.7b00566] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Adrián Pérez-San Vicente
- Materials
Division, IK4-CIDETEC Research Centre, Paseo Miramón 196, Donostia-San Sebastián 20014, Spain
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Manuela Ernst
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Pablo Casuso
- Materials
Division, IK4-CIDETEC Research Centre, Paseo Miramón 196, Donostia-San Sebastián 20014, Spain
| | - Iraida Loinaz
- Materials
Division, IK4-CIDETEC Research Centre, Paseo Miramón 196, Donostia-San Sebastián 20014, Spain
| | - Hans-Jürgen Grande
- Materials
Division, IK4-CIDETEC Research Centre, Paseo Miramón 196, Donostia-San Sebastián 20014, Spain
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Damien Dupin
- Materials
Division, IK4-CIDETEC Research Centre, Paseo Miramón 196, Donostia-San Sebastián 20014, Spain
| |
Collapse
|
6
|
Li Z, Kaplan KM, Wertzel A, Peroglio M, Amit B, Alini M, Grad S, Yayon A. Biomimetic fibrin–hyaluronan hydrogels for nucleus pulposus regeneration. Regen Med 2014; 9:309-26. [DOI: 10.2217/rme.14.5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: To develop a biomimetic polymeric injectable hydrogel that can support nucleus pulposus (NP) regeneration. Materials & methods: Natural polymer-based hydrogels were synthesized using fibrinogen (FBG) and hyaluronic acid (HA), conjugated by a novel two-step procedure. Bovine NP cells were cultured in FBG–HA conjugate-based 3D beads in vitro and in a nucleotomized organ culture model. Results: FBG–HA conjugate-based hydrogels prepared with 235 KDa HA at a FBG/HA w/w ratio of 17:1 showed superior gel stability and mechanical properties and markedly increased glycosaminoglycan synthesis compared with a FBG/HA mixture-based hydrogels or fibrin gels. Gene-expression levels of NP markers were maintained in vitro. In organ culture, NP cells seeded in FBG–HA conjugate-based hydrogels showed better integration with native NP tissue compared with fibrin gels. Moreover, FBG–HA conjugate-based hydrogels restored compressive stiffness and disc height after nucleotomy under dynamic load. Conclusion: Specific FBG–HA conjugate-based hydrogels may be suitable as injectable materials for minimally invasive, biological NP regeneration.
Collapse
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Boaz Amit
- ProCore Biomed Ltd, Weizman Science Park, Nes Ziona, Israel
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Avner Yayon
- ProCore Biomed Ltd, Weizman Science Park, Nes Ziona, Israel
| |
Collapse
|
7
|
Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S. Diversity of intervertebral disc cells: phenotype and function. J Anat 2012; 221:480-96. [PMID: 22686699 DOI: 10.1111/j.1469-7580.2012.01521.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intervertebral disc (IVD) is a moderately moving joint that is located between the bony vertebrae and provides flexibility and load transmission throughout the spinal column. The disc is composed of different but interrelated tissues, including the central highly hydrated nucleus pulposus (NP), the surrounding elastic and fibrous annulus fibrosus (AF), and the cartilaginous endplate (CEP), which provides the connection to the vertebral bodies. Each of these tissues has a different function and consists of a specific matrix structure that is maintained by a cell population with distinct phenotype. Although the healthy IVD is able to balance the slow matrix turnover of synthesis and degradation, this balance is often disturbed, leading to degenerative disorders. Successful therapeutic management of IVD degeneration requires a profound understanding of the cellular and molecular characteristics of the functional IVD. Hence, the phenotype of IVD cells has been of significant interest from multiple perspectives, including development, growth, remodelling, degeneration and repair. One major challenge that complicates our understanding of the disc cells is that both the cellular phenotype and the extracellular matrix strongly depend on disc maturity and health and as a consequence are continuously evolving. This review delineates the diversity of the cell types found in the intervertebral disc, with emphasis on human, but with reference to other species. The cells of the NP appear rounded and express a proteoglycan-rich matrix, whereas the more elongated AF cells are embedded in a collagen fibre matrix and the CEPs represent a layer of cartilage. Even though all disc cells have often been referred to as 'intervertebral disc chondrocytes', distinct phenotypical differences in comparison with articular chondrocytes exist and have been reported recently. The availability of more specific markers has also improved our understanding of progenitor cell differentiation towards an IVD cell phenotype. Ultimately, new cell- and tissue-engineering approaches to regenerative therapies will only be successful if the specific characteristics of the individual tissues and their context in the function of the whole organ, are taken into consideration.
Collapse
|
8
|
Lewis G. Nucleus pulposus replacement and regeneration/repair technologies: present status and future prospects. J Biomed Mater Res B Appl Biomater 2012; 100:1702-20. [PMID: 22566484 DOI: 10.1002/jbm.b.32712] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/19/2012] [Accepted: 03/18/2012] [Indexed: 12/28/2022]
Abstract
Degenerative disc disease is implicated in the pathogenesis of many painful conditions of the back, chief among which is low back pain. Acute and/or chronic low back pain (A/CLBP) afflicts a large number of people, thus making it a major healthcare issue with concomitant cost ramifications. When conservative treatments for A/CLBP, such as bed rest, anti-inflammatory medications, and physical therapy, prove to be ineffectual, surgical options are recommended. The most popular of these is discectomy followed by fusion. Although there are many reports of good to excellent outcomes with this method, there are concerns, such as long-term adverse biomechanical consequences to adjacent functional spinal unit(s). A surgical option that has been attracting much attention recently is replacement or regeneration/repair of the nucleus pulposus, an approach that holds the prospect of not compromising either mobility or function and causing no adjacent-level injury. There is a sizeable body of literature highlighting this option, comprising in vitro biomechanical studies, finite element analyses, animal-model studies, and limited clinical evaluations. This work is a review of this body of literature and is organized into four parts, with the focus being on replacement technologies, regeneration/repair technologies, and detailed expositions on 14 areas for future study. This review ends with a summary of the salient points made.
Collapse
Affiliation(s)
- Gladius Lewis
- Department of Mechanical Engineering, The University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
9
|
Peroglio M, Grad S, Mortisen D, Sprecher CM, Illien-Jünger S, Alini M, Eglin D. Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 21 Suppl 6:S839-49. [PMID: 21874295 DOI: 10.1007/s00586-011-1976-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Thermoreversible hydrogels have potential in spine research as they provide easy injectability and mild gelling mechanism (by physical cross-link). The purpose of this study was to assess the potential of thermoreversible hyaluronan-based hydrogels (HA-pNIPAM) (pNIPAM Mn = 10, 20, 35 × 10(3) g mol(-1)) as nucleus pulposus cells (NPC) carrier. MATERIALS AND METHODS Cytocompatibility (WST-1 assay), viability (trypan blue), morphology (toluidine blue), sulphated glycosaminoglycan synthesis (DMMB assay) and gene expression profile (real-time PCR) of bovine NPC cultured in HA-pNIPAM were followed for 1 week and compared to alginate gel bead cultures. The injectability and cell survival in a whole disc organ culture model were assessed up to day 7. RESULTS All HA, HA-pNIPAM and their degradation products were cytocompatible to NPC. HA-pNIPAM hydrogels with no volume change upon gelling maintained NPC viability and characteristic rounded morphology. Glycosaminoglycan synthesis was similar in HA-pNIPAM and alginate gels. Following NPC expansion, both gels induced re-differentiation toward the NPC phenotype. Significant differences between the two gels were found for COLI, COLII, HAS1, HAS2 and ADAMTS4 but not for MMPs and TIMPs. Higher expression of hyaluronan synthases (HAS1, HAS2) and lower expression of COLI and COLII mRNA were noted in cells cultured in HA-pNIPAM (pNIPAM = 20 × 10(3)g mol(-1)). NPC suspension in HA-pNIPAM was injectable through a 22-G needle without loss of cell viability. Ex vivo, NPC viability was maintained in HA-pNIPAM for 1 week. CONCLUSION A HA-pNIPAM composition suitable for nucleus pulposus repair that provides an injectable carrier for NPC, maintains their phenotype and promotes extracellular matrix generation was identified.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | | | | | | | | | | | | |
Collapse
|