1
|
Casimiro-Rosas M, Parra I, Sandoval-Ramírez J, Fernández Herrera MA, Tizabi Y, Martínez-García I, Mendieta L. BSS-4, a diosgenin analogue, reduces carrageenan-induced paw inflammation in rat. Steroids 2025; 217:109602. [PMID: 40122485 DOI: 10.1016/j.steroids.2025.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Inflammation is an adaptive response that ensures the survival of the organism in the face of injuries or trauma primarily via the immune system. However, overactivation of this process can be detrimental to the point of fatality. To overcome this overactivation, immunosuppressant agents such as steroids and non-steroidal anti-inflammatory drugs (NSAIDs) are used. Given the limitations of these drugs, including their side effects, an urgent need for development of potent and safer anti-inflammatory drugs is evident. Diosgenin, a steroidal saponin (a glycoside found in plants) and its analog, BSS-4 are gaining ground in this respect. Our objective in this study was to determine the effectiveness of BSS-4 in an established model of inflammation and provide clues on its mechanism of action. Carrageenan (Carr)-induced paw edema was used to evaluate the effectiveness of two doses of BSS-4 (0.5 and 1 mg/kg administered intraperitoneally) in adult male Wistar rats. Plantar edema was induced by subcutaneous injection of 50 µL of carrageenan (1 %) into the plantar aponeurosis of the right paw. Inflammatory cytokine markers, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) were quantified in this paw region using immunohistochemical assays. BSS-4 at 0.5 mg/kg dose, significantly reduced the paw edema up to three hours after administration. Concomitantly, TNF-α and IL-1β immunostaining were significantly reduced. BSS-4 also preserved the tissue architecture as assessed by hematoxylin and eosin (H&E) staining. These results indicate that BSS-4 can impart potent anti-inflammatory effects as well as reductions in TNF-α and IL-1β in an inflammatory rat model.
Collapse
Affiliation(s)
- Marisol Casimiro-Rosas
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irving Parra
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Jesús Sandoval-Ramírez
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - María A Fernández Herrera
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC 20059, USA
| | - Isabel Martínez-García
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Liliana Mendieta
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| |
Collapse
|
2
|
Kooshki L, Fakhri S, Abbaszadeh F, Kiani A, Farzaei MH, Mohammadi-Noori E, Echeverría J. Pelargonidin improves functional recovery and attenuates neuropathic pain following spinal cord injury in rats: relevance to its neuroprotective, antioxidant, and anti-inflammatory effects. Front Pharmacol 2025; 16:1547187. [PMID: 40196371 PMCID: PMC11973287 DOI: 10.3389/fphar.2025.1547187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background Spinal cord injury (SCI) significantly impairs individuals' sensorimotor functions, hindering daily activities. Current therapeutic options often demonstrate limited efficacy and lead to undesirable side effects. Emerging research highlights the potential of anthocyanins, especially pelargonidin, which possess neuroprotective, anti-inflammatory, and antioxidant properties beneficial for neurological conditions. Purpose This study sought to explore the impact of intrathecal administration of pelargonidin on the recovery of sensory-motor functions and associated disorders in a rat model of SCI through neuroprotective effects and regulating inflammatory/oxidative stress mediators. Materials and methods In total, 35 male Wistar rats were divided into five groups: sham, SCI, and three treatment groups receiving different intrathecal concentrations of pelargonidin (1, 2, and 4 mM) once on day 0 after surgery/injury. Weight changes were assessed and behavioral analyses were done, including hot plate tests, acetone drop tests, von Frey tests, inclined plane tests, as well as Basso, Beattie, and Bresnahan (BBB) scores, weekly up to day 28 post-injury. On day 28, serum levels of nitrite, catalase, and glutathione as well as matrix metalloproteinase (MMP) assays and histological evaluations were done. Results and discussion Pelargonidin significantly attenuated neuropathic pain, improved motor performance, and reduced weight loss in rats with SCI. Biochemical assays demonstrated increased serum catalase/glutathione level, and MMP2 activity, while decreased serum nitrite level and MMP9 activity. Histological analyses showed an enhancement in the number of motor neurons in the ventral horn of the spinal cord after treatment with pelargonidin, highlighting its neuroprotective and neurogenic effects. Conclusion Pelargonidin makes substantial therapeutic benefits following SCI by accelerating sensorimotor recovery. This effect is likely due to its strong antioxidant, anti-inflammatory, and neuroprotective properties.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Regenerative Medicine Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
3
|
Yin W, Hohenhaus DX, Tivay A, Rajamani R, Hahn JO. LMI-Enabled Absolutely Stabilizing PID Control of Pharmacological Systems for Closed-Loop Automated Intravenous Drug Administration. IEEE Trans Biomed Eng 2025; 72:1121-1131. [PMID: 40030244 DOI: 10.1109/tbme.2024.3488715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
OBJECTIVE We developed a linear matrix inequality-enabled absolutely stabilizing proportional-integral-derivative control design approach for pharmacological systems applicable to intravenous drug administration. METHODS We developed a proportional-integral- derivative control design approach that does not require detailed knowledge of the dose-response relationship other than its sector bound. It repetitively solves a set of linear matrix inequalities, which encapsulate the Lyapunov stability conditions against unknown dose-response relationship, over a broad proportional-integral-derivative gain space. The linear matrix inequality-feasible proportional-integral-derivative gains guarantee the absolute stability of the closed-loop control system against unknown yet sector-bounded dose-response relationship. The proof-of-concept of the approach was shown in silico using intravenous propofol anesthesia as a practical case scenario. RESULTS The in silico evaluation results demonstrated the robustness and performance of the proportional-integral- derivative controllers designed with the proposed control design approach against unknown sector-bounded nonlinear dose-response relationship and parametric uncertainty in the plant dynamics. CONCLUSION Pending follow-up development and extensive evaluation in various complex intravenous drug administration problems, the proposed approach may find applications in various closed-loop automated intravenous drug administration problems with complex and highly nonlinear dose-response relationships. SIGNIFICANCE The proposed control design approach provides a systematic way to absolutely stabilize pharmacological systems against unknown, nonlinear, and time- varying dose-response relationship, perhaps for the first time.
Collapse
|
4
|
Bulbul MV, Mermer A, Kolbasi B, Kocabas F, Kalender SM, Kirectepe Aydin KA, Demircan T, Keskin İ. mTOR Pathway Inhibition, Anticancer Activity and In Silico Calculations of Novel Hydrazone Derivatives in Two- and Three-Dimensional Cultured Type 1 Endometrial Cancer Cells. Pharmaceuticals (Basel) 2024; 17:1562. [PMID: 39770404 PMCID: PMC11678851 DOI: 10.3390/ph17121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Endometrial cancer remains a significant health concern, with type 1 endometrial cancer characterized by aberrant expression of estrogen-dependent and mTOR pathway proteins. In this study, we evaluated the effects of two novel hydrazone derivatives against the Ishikawa cell line, a model for endometrial cancer. METHODS Two novel hydrazone derivatives, MVB1 and MVB2, were synthesized and characterized. The anticancer activity of the compounds in both two- and three-dimensional cultured Ishikawa cells was evaluated by MTT assay. The interaction of the compounds with proteins in the PI3K/AKT/mTOR pathway was evaluated by molecular docking studies and in vitro western blot analyses were performed. Additionally, ADME/T calculations were performed to evaluate the drug-like properties of the compounds. RESULTS MVB1 and MVB2 showed promising anticancer activity with IC50 values of 8.3 ± 0.5 µM and 9.0 ± 1.2 µM in 2D cultures, respectively, and 49.9 ± 2 µM and 20.6 ± 1.9 µM in 3D cultures, respectively. Molecular docking studies revealed significant interactions between these compounds and key proteins in the PI3K/AKT/mTOR pathway, with MVB1 exhibiting the highest mean binding score (-10.5 kcal/mol) among PI3K, AKT1, and mTOR proteins. In vitro studies confirmed that MVB1 effectively suppressed PI3K protein expression in both 2D and 3D cultures (p ≤ 0.0001). CONCLUSIONS The findings suggest that MVB1 and MVB2, especially MVB1, are promising candidates for further development as potential therapeutics for endometrial cancer by targeting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Muhammet Volkan Bulbul
- Department of Histology and Embryology, School of Medicine, Agri Ibrahim Cecen University, Agri 04000, Turkey;
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (B.K.); (S.M.K.)
| | - Arif Mermer
- Department of Biotechnology, University of Health Sciences, Istanbul 34668, Turkey
- Experimental Medicine Application and Research Center, University of Health Sciences, Istanbul 34668, Turkey
- Department of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Bircan Kolbasi
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (B.K.); (S.M.K.)
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey;
| | - Semiha Mervenur Kalender
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (B.K.); (S.M.K.)
| | - Kiymet Asli Kirectepe Aydin
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Nisantasi University, Istanbul 34398, Turkey;
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey;
| | - İlknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey; (B.K.); (S.M.K.)
| |
Collapse
|
5
|
Liu C, Vorderbruggen M, Muñoz-Trujillo C, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS, Karpf AR. NB compounds are potent and efficacious FOXM1 inhibitors in high-grade serous ovarian cancer cells. J Ovarian Res 2024; 17:94. [PMID: 38704607 PMCID: PMC11069232 DOI: 10.1186/s13048-024-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Genetic studies implicate the oncogenic transcription factor Forkhead Box M1 (FOXM1) as a potential therapeutic target in high-grade serous ovarian cancer (HGSOC). We evaluated the activity of different FOXM1 inhibitors in HGSOC cell models. RESULTS We treated HGSOC and fallopian tube epithelial (FTE) cells with a panel of previously reported FOXM1 inhibitors. Based on drug potency, efficacy, and selectivity, determined through cell viability assays, we focused on two compounds, NB-73 and NB-115 (NB compounds), for further investigation. NB compounds potently and selectively inhibited FOXM1 with lesser effects on other FOX family members. NB compounds decreased FOXM1 expression via targeting the FOXM1 protein by promoting its proteasome-mediated degradation, and effectively suppressed FOXM1 gene targets at both the protein and mRNA level. At the cellular level, NB compounds promoted apoptotic cell death. Importantly, while inhibition of apoptosis using a pan-caspase inhibitor rescued HGSOC cells from NB compound-induced cell death, it did not rescue FOXM1 protein degradation, supporting that FOXM1 protein loss from NB compound treatment is specific and not a general consequence of cytotoxicity. Drug washout studies indicated that FOXM1 reduction was retained for at least 72 h post-treatment, suggesting that NB compounds exhibit long-lasting effects in HGSOC cells. NB compounds effectively suppressed both two-dimensional and three-dimensional HGSOC cell colony formation at sub-micromolar concentrations. Finally, NB compounds exhibited synergistic activity with carboplatin in HGSOC cells. CONCLUSIONS NB compounds are potent, selective, and efficacious inhibitors of FOXM1 in HGSOC cells and are worthy of further investigation as HGSOC therapeutics.
Collapse
Affiliation(s)
- Cassie Liu
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
| | - Makenzie Vorderbruggen
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
| | - Catalina Muñoz-Trujillo
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Adam R Karpf
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA.
| |
Collapse
|
6
|
Sarkar S, Kar A, Shaw P, DasGupta B, Keithellakpam OS, Mukherjee PK, Bhardwaj PK, Sharma N, Haldar PK, Sinha S. Hydroalcoholic root extracts of Houttuynia cordata (Thunb.) standardized by UPLC-Q-TOF-MS/MS promotes apoptosis in human hepatocarcinoma cell HepG2 via GSK-3β/β-catenin/PDL-1 axis. Fitoterapia 2023; 171:105684. [PMID: 37751799 DOI: 10.1016/j.fitote.2023.105684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Houttuynia cordata (Thunb.), an important medicinal plant of Northeast India, Korea, and China, is used to treat various ailments and for anticancer research. Knowing its traditional practices, we are interested in the mode-of-action of HCT on HepG2 to co-relate the traditional practice with modern drug therapeutics. UPLC-Q-ToF-Ms analysis of HCT reveals identification of 14 metabolites. Network pharmacology analysis of the 14 compounds showed interaction with 232 different targets with their potential involvement in hepatocellular carcinoma. Whole extracts impart cytotoxicity on variety of cell lines including HepG2. There was a significant morphological alteration in treated HepG2 cells due to impairment of cytoskeletal components like β and γ- tubulin. Arrest at G1-S checkpoint was clearly indicated downregulation of Cyclin D1. The root extracts actuated apoptosis in HepG2 as evident from altered mitochondrial membrane potential, Annexin V- FITC, BrdU-PI, AO/EtBr assays, and modulations of apoptotic protein expression but without ROS generation. Whole extracts caused abrogation of epithelial to mesenchymal transition with repression of Snail, N-Cadherin, Vimentin, MMP-9, and upregulation of Pan-Cadherin. Pathway analysis found GSK-3β in Wnt/β-Catenin signaling cascade to be involved through Hepatocellular carcinoma (hsa05225) pathway. The GSK-3β/β-Catenin/PDL-1 signaling was found to be inhibited with the downregulation of pathway components. This was further confirmed by application of EGF, an inducer of the GSK-3β/β-Catenin pathway that neutralized the effect of Houttuynia cordata (Thunb.) root extract on the said pathway. Network pharmacology analysis also confirms the synergy network with botanical-bioactive-target-disease which showed Kaempferol to have the highest degree of association with the said pathway.
Collapse
Affiliation(s)
- Sudipta Sarkar
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab Shaw
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Barun DasGupta
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Ojit Singh Keithellakpam
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India.
| | - Pardeep K Bhardwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Surajit Sinha
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India.
| |
Collapse
|
7
|
Serioli L, Gruzinskyte L, Zappalà G, Hwu ET, Laksafoss TZ, Jensen PL, Demarchi D, Müllertz A, Boisen A, Zór K. Moving perfusion culture and live-cell imaging from lab to disc: proof of concept toxicity assay with AI-based image analysis. LAB ON A CHIP 2023; 23:1603-1612. [PMID: 36790123 DOI: 10.1039/d2lc00984f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vitro, cell-based assays are essential in diagnostics and drug development. There are ongoing efforts to establish new technologies that enable real-time detection of cell-drug interaction during culture under flow conditions. Our compact (10 × 10 × 8.5 cm) cell culture and microscope on disc (CMoD) platform aims to decrease the application barriers of existing lab-on-a-chip (LoC) approaches. For the first time in a centrifugal device, (i) cells were cultured for up to six days while a spindle motor facilitated culture medium perfusion, and (ii) an onboard microscope enabled live bright-field imaging of cells while the data wirelessly transmitted to a computer. The quantification of cells from the acquired images was done using artificial intelligence (AI) software. After optimization, the obtained cell viability data from the AI-based image analysis proved to correlate well with data collected from commonly used image analysis software. The CMoD was also suitable for conducting a proof-of-concept toxicity assay with HeLa cells under continuous flow. The half-maximal inhibitory time (IT50) for various concentrations of doxorubicin (DOX) in the case of HeLa cells in flow, was shown to be lower than the IT50 obtained from a static cytotoxicity assay, indicating a faster onset of cell death in flow. The CMoD proved to be easy to handle, enabled cell culture and monitoring without assistance, and is a promising tool for examining the dynamic processes of cells in real-time assays.
Collapse
Affiliation(s)
- Laura Serioli
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| | - Lina Gruzinskyte
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Giulia Zappalà
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- Department of Electronics and Telecommunications, Politecnico di Torino, Italy
| | - En Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Trygvi Zachariassen Laksafoss
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | | | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, Italy
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Denmark.
- BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
| |
Collapse
|
8
|
Ekinci M, dos Santos CC, Alencar LM, Akbaba H, Santos-Oliveira R, Ilem-Ozdemir D. Atezolizumab-Conjugated Poly(lactic acid)/Poly(vinyl alcohol) Nanoparticles as Pharmaceutical Part Candidates for Radiopharmaceuticals. ACS OMEGA 2022; 7:47956-47966. [PMID: 36591122 PMCID: PMC9798736 DOI: 10.1021/acsomega.2c05834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The necessity of new drugs for lung cancer therapy and imaging is increasing each day. The development of new drugs that are capable of reaching the tumor with specificity and selectivity is required. In this direction, the design of nanoparticles for tumor therapy represents an important alternative. The aim of this study was to develop, characterize, and evaluate target-specific atezolizumab-conjugated poly(lactic acid)/poly(vinyl alcohol) (PLA/PVA) nanoparticles as pharmaceutical fragment candidates for new radiopharmaceuticals. For this purpose, PLA/PVA nanoparticle formulations were prepared by the double emulsification/solvent evaporation method with a high-speed homogenizer. A special focus was oriented to the selection of a suitable method for modification of the nanoparticle surface with a monoclonal antibody. For this purpose, atezolizumab was bound to the nanoparticles during the preparation by solvent evaporation or either by adsorption or covalent binding. PLA/PVA/atezolizumab nanoparticles are characterized by dynamic light scattering, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. An in vitro assay was performed to evaluate the antibody binding efficiency, stability, and cytotoxicity [A549 (lung cancer cell) and L929 (healthy fibroblast cell)]. The results showed that a spherical nanoparticle with a size of 230.6 ± 1.768 nm and a ζ potential of -2.23 ± 0.55 mV was produced. Raman spectroscopy demonstrated that the monoclonal antibody was entrapped in the nanoparticle. The high antibody binding efficiency (80.58%) demonstrated the efficacy of the nanosystem. The cytotoxic assay demonstrated the safety of the nanoparticle in L929 and the effect on A549. In conclusion, PLA/PVA/atezolizumab nanoparticles can be used as drug delivery systems for lung cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Meliha Ekinci
- Faculty of Pharmacy,
Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Turkiye
| | | | | | - Hasan Akbaba
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Bornova, Izmir 35040, Turkiye
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Laboratory of Synthesis
of Novel Radiopharmaceuticals and Nanoradiopharmacy, Brazilian Nuclear Energy Commission, Rio de Janeiro 222901-901, Brazil
- Laboratory of Nanoradiopharmaceuticals
and Radiopharmacy, State University of Rio
de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Derya Ilem-Ozdemir
- Faculty of Pharmacy,
Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Turkiye
| |
Collapse
|
9
|
de Souza SS, Freitas ÍN, Gonçalves SDO, Luz TMD, Araújo APDC, Rajagopal R, Balasubramani G, Rahman MM, Malafaia G. Toxicity induced via ingestion of naturally-aged polystyrene microplastics by a small-sized terrestrial bird and its potential role as vectors for the dispersion of these pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128814. [PMID: 35427965 DOI: 10.1016/j.jhazmat.2022.128814] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In recent years, there has been a growing number of studies on the impact of microplastics (MPs) on biota. However, its effects on birds' health are poorly understood. Thus, we aimed to evaluate the possible effects of ingestion of naturally-aged MPs by Coturnix Coturnix japonica (11 and 22 MP particles/day/bird, once a day, for 9 days), from different toxicity biomarkers. At the end of the experiment, it was found that the ingested MPs in birds showed a significant reduction in body biomass. Also, an increase in malondialdehyde production in the liver, brain, intestine, and gizzard of the birds, as well as a suppressive effect on hepatic nitric oxide production and superoxide dismutase activity in the liver and intestine were observed. Cerebral catalase activity was reduced in birds exposed to MPs and the cholinesterasic effect (marked by increased acetylcholinesterase activity) was observed in the muscle and brain of these animals. Despite these differences, through the main component analysis, hierarchical clustering analysis, and integrated biomarker response assessment, we observed similar toxicological effects in birds exposed to different amounts of MPs. In addition, the size of MPs was reduced, and their shape was altered as they transited through the gastrointestinal system, which probably explains their accumulation in the liver of birds. An expressive number of MPs are released through the feces of the birds throughout the experiment. As far as we know, this is the first report that associates MPs ingestion by small-sized terrestrial birds with biochemical alterations viz., predictive of oxidative stress, redox imbalance, and cholinesterasic effect, in addition to shedding light on the potential role of these birds as vectors for dispersal of MPs in natural environments.
Collapse
Affiliation(s)
- Sindoval Silva de Souza
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Govindasamy Balasubramani
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Sriperambudur, 600124 Tamil Nadu, India
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
10
|
Advanced Glycation End Product Blocker Drugs Have a Great Potential to Prevent Diabetic Cardiomyopathy in an Animal Model of Diabetes Mellitus Type-2. Cardiovasc Ther 2022; 2022:7014680. [PMID: 35414826 PMCID: PMC8977315 DOI: 10.1155/2022/7014680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Sphingosine 1 phosphate (S1P) is a product of the sphingosine kinase 1 (SphK1) enzyme. Increased S1P can lead to tissue fibrosis that is also one of the pathways for developing diabetic cardiomyopathy. Advanced glycation end products (AGEs) increase S1P in cells. The study is aimed at using aminoguanidine (AG) as an AGEs blocker drug to prevent diabetic cardiomyopathy. Materials and methods. 210 rats were enrolled in the study. Diabetes mellitus type-2 was induced, and rats were divided into AG treated diabetic and nondiabetic groups. The heart histology was assessed with Masson's trichrome and hematoxylin-eosin staining. Cardiac function was measured with transthoracic echocardiography. S1P level and SphK1 gene expression were measured by western-blot and RT-qPCR, respectively. Results Results showed that S1P level increases in diabetes, and its augmentation in cardiac tissue with K6PC-5 leads to cardiac fibrosis. 50 and 200 mg/kg of AG prevented cardiac fibrosis, but 100 mg/kg had no significant preventive effect. AG suppressed the SphK1 gene expression and reduced the fibrotic effect of S1P. AG preserved cardiac function by keeping ejection fraction and fractional shortening within the normal range in diabetic rats. Conclusion AG has a suppressor effect on SphK1 gene expression besides its AGEs blocker role. AG is a potential drug to use in diabetic patients for preventing the development of diabetic cardiomyopathy. Other drugs that have AGEs or S1P blocker effects are a good choice for diabetic cardiomyopathy prevention.
Collapse
|
11
|
Molecular Engineering of Peptide–Drug Conjugates for Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14010212. [PMID: 35057106 PMCID: PMC8779610 DOI: 10.3390/pharmaceutics14010212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/28/2023] Open
Abstract
In recent years, hundreds of novel small molecular drugs used for different treatments have been studied in the three phases of clinical trials around the world. However, less than 10% of them are eventually used due to diverse problems. Even some traditional drugs that have been approved by the Food and Drug Administration (FDA) have faced similar dilemmas. For instance, many drugs have poor water solubility, are easily hydrolyzed, or possess undesirable toxicity, while a variety of cancer cells develop drug resistance (DR) or multiple drug resistance (MDR) towards chemotherapeutic agents after long-term therapy. In order to improve the efficacy and efficiency of drugs, research has been directed forward towards the creation of assemblies of peptide–drug conjugates (PDCs) which have proven to possess wide potential for overcoming such complications based on their excellent biocompatibility, controllable biodegradability, site-selective targeting, and comparably low cytotoxicity. In this review, we focus on the recent developments and advances made in the creation of self-assembled nanostructures of PDCs for cancer therapy, on the chemical and physical properties of such drugs and peptides, and how they are arranged together to form diverse supramolecular nanostructures. Additionally, we cover certain mechanisms regarding how peptides or their derivatives enhance the efficiency and efficacy of those selected drugs and provide a brief discussion regarding the perspectives and remaining challenges in this intriguing field.
Collapse
|
12
|
Urakov AL. Thermal pharmacology: history and definition. REVIEWS ON CLINICAL PHARMACOLOGY AND DRUG THERAPY 2021; 19:87-96. [DOI: 10.17816/rcf19187-96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
The literature review shows that temperature pharmacology is a new scientific and practical direction of pharmacology, in which the local effect of drugs on individual tissues, organs or parts of the body is realized at a certain local temperature. This trend was formed in Russia at the end of the 20th century due to the fact that such great surgeons as V.A. Negovsky, E.N. Meshalkin and V.I. Shumakov proved in clinical conditions that hypothermia prolongs the safety of the brain, heart and kidneys in the absence of arterial blood and/or oxygen. Then, under the influence of the successful use of local hypothermia for therapeutic purposes in such areas as resuscitation, transplantology and surgical treatment of heart and major vascular diseases, the study of the mechanism of action of local hypothermia as a medicine began. Intensive research in this area began in 1981 at the Department of Pharmacology of the Izhevsk Medical Institute. In the following years, the features of the local action of local hypothermia, drugs and their combinations on mitochondria, blood, blood vessels, myocardium, intestines and limbs of experimental animals and patients in normal conditions, as well as in hypoxia and ischemia were studied. Very soon, the results of research allowed to reveal the main mechanisms of action of local hypothermia and the laws of temperature dependence of the local action of drugs. This allowed to invent several original methods of pharmaco-cold and pharmaco-warm effects that increase the effectiveness of treatment of arterial obstruction of the extremities, inflammatory processes and parenchymal bleeding. It is indicated, that the main provisions of temperature pharmacology were formulated by 1988. The chronology of resolving the contradictions that arose at that time between the widespread public opinion and new ideas about the role of local temperature in the mechanism of local action of drugs in hypoxia, ischemia, inflammation of organs and tissues, and bleeding is shown. Achievements and prospects of development of temperature pharmacology in medicine, biology, pharmacology and pharmacy are shown.
Collapse
|
13
|
Prajapati N, Karan A, Khezerlou E, DeCoster MA. The Immunomodulatory Potential of Copper and Silver Based Self-Assembled Metal Organic Biohybrids Nanomaterials in Cancer Theranostics. Front Chem 2021; 8:629835. [PMID: 33585405 PMCID: PMC7873042 DOI: 10.3389/fchem.2020.629835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Copper high aspect ratio structures (CuHARS) and silver cystine nanoparticles (AgCysNPs) are two unique micro/nano particles under study here that show extensive anti-cancer effects on a glioma tumor cell line. These micro/nano particles have shown potent toxicity in the presence of inflammatory stimulus (combination of tumor necrosis factor, [TNF] and lipo-polysaccharide, LPS). CuHARS with a concentration of 20 μg/ml uniquely increased the catalytic generation of nitric oxide (NO), an important contributor in the immune system. This NO was generated in a cell culture tumor microenvironment (TME) in the presence of 25 µM S-nitrosothiol (cysteine-NO) and the inflammatory stimulus. CuHARS increased the NO production by 68.75% when compared to untreated glioma cells with CysNO and inflammatory stimulus. The production of NO was significantly higher under similar circumstances in the case of normal primary structural cells like brain microvascular endothelial cells (BMVECs). The production of NO by BMVECs went up by 181.25% compared to glioma cells. This significant increase in the NO concentration could have added up to tumorigenesis but the anti-cancer effect of CuHARS was prominent enough to lower down the viability of glioma cells by approximately 20% and increased the metabolism of structural cells, BMVECs by approximately 200%. The immunomodulatory effect of NO in the TME under these circumstances in the presence of the novel micro/nano material, CuHARS has risen up compared to the effect of inflammatory stimulus alone. The potency and specific nature of these materials toward tumor cells may make them suitable candidates for cancer treatment. Successive treatment of CuHARS to glioma cells also proved to be an effective approach considering the decrease in the total count of cells by 11.84 fold in case of three successive treatments compared to a single dose which only decreased the cell count by 2.45 fold showing the dose-dependent increasing toxicity toward glioma cells. AgCysNPs are another potent nanomaterial which also proved its significant toxic nature toward tumor cell lines as demonstrated here, but their immunomodulatory response is still unclear and needs to be explored further.
Collapse
Affiliation(s)
- Neela Prajapati
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Anik Karan
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Elnaz Khezerlou
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States
| | - Mark A DeCoster
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, United States.,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| |
Collapse
|
14
|
Secretan PH, Antignac M, Yagoubi N, Bernard M, Perier MC, Takombe JL, Balde D, N'Guetta R, Ikama MS, Zabsonre P, Sidi Aly A, Jouven X, Do B. Post hoc study to investigate the potential causes of poor quality of cardiovascular medicines collected in sub-Saharan countries. BMJ Open 2020; 10:e039252. [PMID: 33168557 PMCID: PMC7654128 DOI: 10.1136/bmjopen-2020-039252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES The incidence of cardiovascular diseases is increasing and there is a growing need to provide access to quality cardio drugs in Africa. In the SEVEN study, we analysed 1530 cardiovascular drug samples randomly collected from 10 African countries. By that time, of the seven drugs products analysed, only those containing amlodipine and captopril had very low assay values with active substance contents that could be less than 75% of those expected. In this article we investigate complementary aspects of the amlodipine and captopril samples so to explain the previously observed low assays for these two drugs. DESIGN Post hoc analysis of the captopril and amlodipine drugs samples and their packages collected in the context of the SEVEN study. SETTING 10 countries were concerned: Benin, Burkina Faso, Congo, Democratic Republic of the Congo, Guinea, Côte d'Ivoire, Mauritania, Niger, Senegal and Togo. PARTICIPANTS Local scientists and hospital practitioners collected the drug samples in the 10 African countries. OUTCOME MEASURES The drug amount and the relative amounts of drug impurities, as well as the main compounds of the drugs packaging, were analysed. RESULTS Identification of the blister packaging of the samples led to separate both amlodipine and captopril drug samples in two groups. Mann Whitney's bilateral test showed a significant difference (p<0.0001) between the median value of the captopril dosage when tablets are packaged in blisters providing higher protection to humidity (n=105) as opposed to the tablets packaged in blisters providing lower humidity protection (n=130). CONCLUSION Based on these results, particular attention should be paid to the materials and types of packaging used in order to minimise the lack of control over the exposures and drug circuits present in these different countries.
Collapse
Affiliation(s)
- Philippe-Henri Secretan
- Paris Cardiovascular Research Centre, INSERM U970, Université de Paris, Paris, France
- Laboratoire Matériaux et santé, Université Paris-Saclay, Chatenay-Malabry, France
| | - Marie Antignac
- Paris Cardiovascular Research Centre, INSERM U970, Université de Paris, Paris, France
- Department of Pharmacy, Hospital Saint-Antoine, APHP, Paris, Île-de-France, France
| | - Najet Yagoubi
- Laboratoire Matériaux et santé, Université Paris-Saclay, Chatenay-Malabry, France
| | - Mélisande Bernard
- Department of Laboratories, Agence Générale des Equipements et Produits de Sante, AP-HP, Paris, Île-de-France, France
| | - Marie Cécile Perier
- Paris Cardiovascular Research Centre, INSERM U970, Université de Paris, Paris, France
| | - Jean Laurent Takombe
- Department of Internal Medicine of la Gombe (CMCG), Ngaliema Clinic, Kinshasa, The Democratic Republic of the Congo
| | - Dadhi Balde
- Department of Cardiology, University Hospital of Conakry, Conakry, Guinea
| | - Roland N'Guetta
- Department of Cardiology, Institute of Cardiology of Abidjan, Abidjan, Lagunes, Côte d'Ivoire
| | - Méo Stéphane Ikama
- Department of Cardiology, National University Hospital of Brazzaville, University of Marien NGOUABI, Brazzaville, Congo
| | - Patrice Zabsonre
- Department of Cardiology, National Sanou Souro de Bobo-Dioulasso Hospital, Ouagadougou, Burkina Faso
| | | | - Xavier Jouven
- Paris Cardiovascular Research Centre, INSERM U970, Université de Paris, Paris, France
- Department of Cardiology, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Bernard Do
- Laboratoire Matériaux et santé, Université Paris-Saclay, Chatenay-Malabry, France
- Department of Pharmacy, Henri Mondor Hospital, APHP, Creteil, France
| |
Collapse
|
15
|
Enhancement of the Anti-inflammatory Effect of Bromelain by Its Immobilization on Probiotic Spore of Bacillus cereus. Probiotics Antimicrob Proteins 2020; 13:847-861. [PMID: 33156496 DOI: 10.1007/s12602-020-09714-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
Abstract
The therapeutic application of bromelain is limited due to its sensitivity to operating conditions such as high acidity, gastric proteases in the stomach juice, chemicals, organic solvents and elevated temperature. We hypothesized that bromelain immobilized on probiotic bacterial spores would show enhanced therapeutic activity through possible synergistic or additive effects. In this study, the oedema inhibition potential of bromelain immobilized on probiotic Bacillus spores was compared to the free enzyme using the carrageenan paw oedema model with Wistar rats. In batch A rats (carrageenan-induced inflammation 30 min after receiving oral treatments), group 7 rats treated with a lower dose of spore-immobilized bromelain suspension showed the highest oedema inhibition, 89.20 ± 15.30%, while group 4 treated with a lower dose of free bromelain had oedema inhibition of 60.25 ± 13.00%. For batch B rats (carrageenan-induced inflammation after receiving oral treatment for three days), group 7 rats treated with a lower dose of spore-immobilized bromelain suspension showed higher inhibition percentage (81.94 ± 8.86) than group 4 treated with a lower dose of free bromelain (78.45 ± 4.46) after 24 h. Our results showed that used alone, the enzyme and the spores produced oedema inhibition and improved the motility of the rats. The spore-immobilized bromelain formulation performed approximately 0.9-fold better than the free bromelain and the free spores at the lower evaluated dose.
Collapse
|
16
|
Eskandari R, Asoodeh A, Behnam-Rassouli F. The Therapeutic Effects of an Antimicrobial Peptide Protonectin (IL-12) on A549 Cancer Cell Line. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10116-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Chapuis J, Siu-Paredes F, Pavageau C, Amador G, Rude N, Denis F. Anticholinergic Drugs and Oral Health-related Quality of Life in Patients with Schizophrenia: A Pilot Study. Transl Neurosci 2020; 11:10-16. [PMID: 32104590 PMCID: PMC7029653 DOI: 10.1515/tnsci-2020-0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The aim of this study was to explore, in a sample population of people with schizophrenia (PWS), the role of the anticholinergic burden on the perception of oral health-related quality of life (OHrQoL) in France. METHODS A pilot study was performed between March 2014 and January 2016. PWS were recruited from a population in Côte d'Or department in France. Dental status was investigated using the Decayed, Missing, or Filled Teeth (DMFT) index, the Xerostomia Index (XI), and the Global Oral Health Assessment Index (GOHAI) for OHrQoL. The anticholinergic impregnation score was recorded using the anticholinergic impregnation scale (AIS). RESULTS A sample of 62 people was selected. The DMFT score was 16.5± 8.7, the XI score was 22.9±7.8, the GOHAI score was 43.0±8.8, and the AIS score was 3.1±2.8. In total, 169 drugs were prescribed to the people of our sample, and 114 different anticholinergic drugs were observed. The most frequently used anticholinergic drugs (51.40%), in the study had a low antimuscarinic potency (1 point according to AIS scale). The multiple linear regression model showed that the OHrQoL scores were significantly lower when the DMFT scores, XI score, and anticholinergic scores were high. CONCLUSIONS This pilot study highlighted the potential role of the anticholinergic burden on the OHrQoL of PWS. A study with a validated specific scale for the OHrQoL and a standard anticholinergic burden scale should be conducted to clarify the role of anticholinergic drugs on the OHrQoL for PWS.
Collapse
Affiliation(s)
- Justine Chapuis
- University Hospital of Tours ,Odontology Department, 37170Chambray-lès-Tours, France
| | - Francesca Siu-Paredes
- EA 481 Integrative Neurosciences and Clinical. University Hospital of Besançon, 25000Besançon, France
- Université Champagne Ardenne. Faculté d’odontologie de Reims, 51100Reims, France
| | - Claire Pavageau
- University Hospital of Tours. Service d’odontologie du CHU de Tours, 37170Chambray-lès-Tours, France
| | - Gilles Amador
- Université de Nantes, Faculté d'Odontologie de Nantes, 44000Nantes, France
| | - Nathalie Rude
- EA 481 Integrative Neurosciences and Clinical. University Hospital of Besançon, 25000Besançon, France
| | - Frédéric Denis
- University Hospital of Tours ,Odontology Department, 37170Chambray-lès-Tours, France
- Université de Nantes, Faculté d'Odontologie de Nantes, 44000Nantes, France
- EA 75-05 Education, Ethique, Santé. Université de Tours, Faculté de Médecine, 37032Tours, France
| |
Collapse
|
18
|
Abstract
This paper examines how cognitive processes in living beings become conscious. Consciousness is often assumed to be a human quality only. While the basis of this paper is that consciousness is as much present in animals as it is in humans, the human form is shown to be fundamentally different. Animal consciousness expresses itself in sensory images, while human consciousness is largely verbal. Because spoken language is not an individual quality - thoughts are shared with others via communication - consciousness in humans is complex and difficult to understand. The theory proposed postulates that consciousness is an inseparable part of the body's adaptation mechanism. In adaptation to a new environmental disturbance, the outcome of the neural cognitive process - a possible solution to the problem posed by the disturbance - is transformed into a sensory image. Sensory images are essentially conscious as they are the way living creatures experience new environmental information. Through the conversion of neural cognitive activity - thoughts - about the state of the outside world into the way that world is experienced through the senses, the thoughts gain the reality that sensory images have. The translation of thoughts into sensory images makes them real and understandable which is experienced as consciousness. The theory proposed in this paper is corroborated by functional block diagrams of the processes involved in the complex regulated mechanism of adaptation and consciousness during an environmental disturbance. All functions in this mechanism and their interrelations are discussed in detail.
Collapse
Affiliation(s)
- Abraham Peper
- Department of Biomedical Engineering & Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Sudirman S, Chen CK, Long BT, Chang HW, Tsou D, Kong ZL. Vitellaria paradoxa Nut Triterpene-Rich Extract Ameliorates Symptoms of Inflammation on Post-Traumatic Osteoarthritis in Obese Rats. J Pain Res 2020; 13:261-271. [PMID: 32099450 PMCID: PMC6997037 DOI: 10.2147/jpr.s228766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose To investigate the ameliorative effects of Vitellaria paradoxa (VP) nut extract for an anterior cruciate ligament transection with medial meniscectomy (ACLT+MMx)-induced osteoarthritis (OA) in high-fat diet (HFD)-induced obese rats. Methods The rats were fed by HFD for 5 weeks before surgery-induced OA. Rats were treated orally with three different doses of VP nut extract (111.6, 223.2, and 446.4 mg/kg) for 8 weeks. Results The VP nut triterpene-rich extract decreased the level of triglycerides and increased high-density lipoprotein-cholesterol. The level of nitric oxide, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α decreased after treatment with VP nut triterpene-rich extract, especially in high-doses. The VP nut triterpene-rich extracts also alleviated swelling in the knee OA, weight-bearing difference, and suppressed cartilage degradation. Conclusion The Vitellaria paradoxa nut triterpene-rich extract suppressed proinflammatory mediators and attenuated the cartilage degradation and pain in osteoarthritis with an obesity rat model. As such, Vitellaria paradoxa nut triterpene-rich extract can be used as an alternative for osteoarthritis treatment.
Collapse
Affiliation(s)
- Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chun-Kai Chen
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Bing-Ting Long
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Heng-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - David Tsou
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
20
|
Effects of Sucralose Ingestion versus Sucralose Taste on Metabolic Responses to an Oral Glucose Tolerance Test in Participants with Normal Weight and Obesity: A Randomized Crossover Trial. Nutrients 2019; 12:nu12010029. [PMID: 31877631 PMCID: PMC7019725 DOI: 10.3390/nu12010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Here, we tested the hypothesis that sucralose differentially affects metabolic responses to labeled oral glucose tolerance tests (OGTTs) in participants with normal weight and obesity. Participants (10 with normal weight and 11 with obesity) without diabetes underwent three dual-tracer OGTTs preceded, in a randomized order, by consuming sucralose or water, or by tasting and expectorating sucralose (e.g., sham-fed; sweetness control). Indices of β-cell function and insulin sensitivity (SI) were estimated using oral minimal models of glucose, insulin, and C-peptide kinetics. Compared with water, sucralose ingested (but not sham-fed) resulted in a 30 ± 10% increased glucose area under the curve in both weight groups. In contrast, the insulin response to sucralose ingestion differed depending on the presence of obesity: decreased within 20–40 min of the OGTT in normal-weight participants but increased within 90–120 min in participants with obesity. Sham-fed sucralose similarly decreased insulin concentrations within 60 min of the OGTT in both weight groups. Sucralose ingested (but not sham-fed) increased SI in normal-weight participants by 52 ± 20% but did not affect SI in participants with obesity. Sucralose did not affect glucose rates of appearance or β-cell function in either weight group. Our data underscore a physiological role for taste perception in postprandial glucose responses, suggesting sweeteners should be consumed in moderation.
Collapse
|
21
|
Effects of pomegranate aril juice and its punicalagin on some key regulators of insulin resistance and oxidative liver injury in streptozotocin-nicotinamide type 2 diabetic rats. Mol Biol Rep 2019; 46:3701-3711. [DOI: 10.1007/s11033-019-04813-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
|
22
|
Renaud J, Martinoli MG. Considerations for the Use of Polyphenols as Therapies in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:E1883. [PMID: 30995776 PMCID: PMC6514961 DOI: 10.3390/ijms20081883] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last two decades, the increase in the incidence of neurodegenerative diseases due to the increasingly ageing population has resulted in a major social and economic burden. At present, a large body of literature supports the potential use of functional nutrients, which exhibit potential neuroprotective properties to mitigate these diseases. Among the most studied dietary molecules, polyphenols stand out because of their multiple and often overlapping reported modes of action. However, ambiguity still exists as to the significance of their influence on human health. This review discusses the characteristics and functions of polyphenols that shape their potential therapeutic actions in neurodegenerative diseases while the less-explored gaps in knowledge of these nutrients will also be highlighted.
Collapse
Affiliation(s)
- Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, Québec, QC G9A5H7, Canada.
- Department of Psychiatry & Neuroscience, Université Laval and CHU Research Center, Ste-Foy, QC G1V 4G2, Canada.
| |
Collapse
|
23
|
Jonnalagadda VG, Char HP, Ankana PK. Effect of Anagliptin and Sitagliptin in Type 2 Diabetic Patients with Dyslipidemia and Cardiovascular Risk: What Is the Real REASON Behind It? Cardiovasc Drugs Ther 2018. [PMID: 29516206 DOI: 10.1007/s10557-018-6779-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Venu Gopal Jonnalagadda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, C/O NETES Institute of Technology & Science, NH-37, Shantipur, Parli Part, Mirza, Assam, 781125, India.
| | - Harish Prabhanna Char
- National Institute of Management Studies, 201 Nirman Estate, Link Road, Malad West, Mumbai, Maharashtra, 400064, India
| | | |
Collapse
|
24
|
Dei A. Hormesis and Homeopathy: Toward a New Self-Consciousness. Dose Response 2017; 15:1559325817744451. [PMID: 29225559 PMCID: PMC5714091 DOI: 10.1177/1559325817744451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Andrea Dei
- Department of Chemistry, INSTM Research Unit, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Ramaiah L, Hinrichs MJ, Skuba EV, Iverson WO, Ennulat D. Interpreting and Integrating Clinical and Anatomic Pathology Results. Toxicol Pathol 2016; 45:223-237. [DOI: 10.1177/0192623316677068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The continuing education course on integrating clinical and anatomical pathology data was designed to communicate the importance of using a weight of evidence approach to interpret safety findings in toxicology studies. This approach is necessary, as neither clinical nor anatomic pathology data can be relied upon in isolation to fully understand the relationship between study findings and the test article. Basic principles for correlating anatomic pathology and clinical pathology findings and for integrating these with other study end points were reviewed. To highlight these relationships, a series of case examples, presented jointly by a clinical pathologist and an anatomic pathologist, were used to illustrate the collaborative effort required between clinical and anatomical pathologists. In addition, the diagnostic utility of traditional liver biomarkers was discussed using results from a meta-analysis of rat hepatobiliary marker and histopathology data. This discussion also included examples of traditional and novel liver and renal biomarker data implementation in nonclinical toxicology studies to illustrate the relationship between discrete changes in biochemistry and tissue morphology.
Collapse
Affiliation(s)
- Lila Ramaiah
- Envigo, East Millstone, New Jersey, USA
- Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | | | - Elizabeth V. Skuba
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- SV Jargin
- Peoples’ Friendship University of Russia, Moscow, Russian Federation
| |
Collapse
|
27
|
Jargin SV. Hormesis and homeopathy: The artificial twins. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2014; 4:74-7. [PMID: 26401389 PMCID: PMC4566758 DOI: 10.5455/jice.20140929114417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
Homeopathy claims a curative reaction from small doses of a substance, high doses of which cause symptoms similar to those the patient is suffering from. Hormesis is a concept of biphasic dose-response to different pharmacological and toxicological agents. According to this concept, a small dose of a noxious agent can exert a beneficial action. A hypothesis is defended here that hormesis as a general principle can be assumed only for the factors present in the natural environment thus having induced adaptation of living organisms. Generalizations of the hormesis phenomenon used in support of homeopathy are unfounded. Low-dose impacts may be associated with a higher risk in a state of organ sub-compensation or failure especially in the elderly patients. Practical recommendations should be based neither on the hormesis as a default approach nor on the postulates of homeopathy. All clinically relevant effects, hormetic or not, should be tested by the methods of evidence-based medicine.
Collapse
Affiliation(s)
- Sergei V Jargin
- Department of Public Health, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|