1
|
Salans M, Houri J, Karunamuni R, Hopper A, Delfanti R, Seibert TM, Bahrami N, Sharifzadeh Y, McDonald C, Dale A, Moiseenko V, Farid N, Hattangadi-Gluth JA. The relationship between radiation dose and bevacizumab-related imaging abnormality in patients with brain tumors: A voxel-wise normal tissue complication probability (NTCP) analysis. PLoS One 2023; 18:e0279812. [PMID: 36800342 PMCID: PMC9937457 DOI: 10.1371/journal.pone.0279812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Bevacizumab-related imaging abnormality (BRIA), appearing as areas of restricted diffusion on magnetic resonance imaging (MRI) and representing atypical coagulative necrosis pathologically, has been observed in patients with brain tumors receiving radiotherapy and bevacizumab. We investigated the role of cumulative radiation dose in BRIA development in a voxel-wise analysis. METHODS Patients (n = 18) with BRIA were identified. All had high-grade gliomas or brain metastases treated with radiotherapy and bevacizumab. Areas of BRIA were segmented semi-automatically on diffusion-weighted MRI with apparent diffusion coefficient (ADC) images. To avoid confounding by possible tumor, hypoperfusion was confirmed with perfusion imaging. ADC images and radiation dose maps were co-registered to a high-resolution T1-weighted MRI and registration accuracy was verified. Voxel-wise normal tissue complication probability analyses were performed using a logistic model analyzing the relationship between cumulative voxel equivalent total dose in 2 Gy fractions (EQD2) and BRIA development at each voxel. Confidence intervals for regression model predictions were estimated with bootstrapping. RESULTS Among 18 patients, 39 brain tumors were treated. Patients received a median of 4.5 cycles of bevacizumab and 1-4 radiation courses prior to BRIA appearance. Most (64%) treated tumors overlapped with areas of BRIA. The median proportion of each BRIA region of interest volume overlapping with tumor was 98%. We found a dose-dependent association between cumulative voxel EQD2 and the relative probability of BRIA (β0 = -5.1, β1 = 0.03 Gy-1, γ = 1.3). CONCLUSIONS BRIA is likely a radiation dose-dependent phenomenon in patients with brain tumors receiving bevacizumab and radiotherapy. The combination of radiation effects and tumor microenvironmental factors in potentiating BRIA in this population should be further investigated.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jordan Houri
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina, United States of America
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Austin Hopper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Rachel Delfanti
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Tyler M. Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Naeim Bahrami
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yasamin Sharifzadeh
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Jona A. Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
2
|
Gu CY, Dai B, Zhu Y, Lin GW, Wang HK, Ye DW, Qin XJ. The novel transcriptomic signature of angiogenesis predicts clinical outcome, tumor microenvironment and treatment response for prostate adenocarcinoma. Mol Med 2022; 28:78. [PMID: 35836112 PMCID: PMC9284787 DOI: 10.1186/s10020-022-00504-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis plays the critical roles in promoting tumor progression, aggressiveness, and metastasis. Although few studies have revealed some angiogenesis-related genes (ARGs) could serve as prognosis-related biomarkers for the prostate cancer (PCa), the integrated role of ARGs has not been systematically studied. The RNA-sequencing data and clinical information of prostate adenocarcinoma (PRAD) were downloaded from The Cancer Genome Atlas (TCGA) as discovery dataset. Twenty-three ARGs in total were identified to be correlated with prognosis of PRAD by the univariate Cox regression analysis, and a 19-ARG signature was further developed with significant correlation with the disease-free survival (DFS) of PRAD by the least absolute shrinkage and selection operator (LASSO) Cox regression with tenfold cross-validation. The signature stratified PRAD patients into high- and low-ARGs signature score groups, and those with high ARGs signature score were associated with significantly poorer outcomes (median DFS: 62.71 months vs unreached, p < 0.0001). The predicting ability of ARGs signature was subsequently validated in two independent cohorts of GSE40272 & PRAD_MSKCC. Notably, the 19-ARG signature outperformed the typical clinical features or each involved ARG in predicting the DFS of PRAD. Furthermore, a prognostic nomogram was constructed with three independent prognostic factors, including the ARGs signature, T stage and Gleason score. The predicted results from the nomogram (C-index = 0.799, 95%CI = 0.744-0.854) matched well with the observed outcomes, which was verified by the calibration curves. The values of area under receiver operating characteristic curve (AUC) for DFS at 1-, 3-, 5-year for the nomogram were 0.82, 0.83, and 0.83, respectively, indicating the performance of nomogram model is of reasonably high accuracy and robustness. Moreover, functional enrichment analysis demonstrated the potential targets of E2F targets, G2M checkpoint pathways, and cell cycle pathways to suppress the PRAD progression. Of note, the high-risk PRAD patients were more sensitive to immune therapies, but Treg might hinder benefits from immunotherapies. Additionally, this established tool also could predict response to neoadjuvant androgen deprivation therapy (ADT) and some chemotherapy drugs, such as cisplatin, paclitaxel, and docetaxel, etc. The novel ARGs signature, with prognostic significance, can further promote the application of targeted therapies in different stratifications of PCa patients.
Collapse
Affiliation(s)
- Cheng-Yuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Guo-Wen Lin
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Xiao-Jian Qin
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
Abstract
Based on the analysis of published data, the review provides information on the role and mechanisms of angiogenesis in the development of eye diseases. It has been shown that the developing inflammatory process associated with infections or damage to the organ of vision almost always leads to the appearance of newly formed vessels in the avascular cornea. The progression, in particular, of age-related macular degeneration is associated with the immune-mediated development of angiogenesis processes. A key inducer of angiogenesis is vascular endothelial growth factor (VEGF), whose activity can be enhanced by a number of pro-inflammatory cytokines (tumor necrosis factor alpha, TNF-), growth (fibroblast growth factor, FGF) and transforming factors (transforming growth factor beta, TGF- ). In addition, VEGF overproduction is mediated by an imbalance of pro-angiogenic (angiogenin) and anti-angiogenic (angiostatin, vasostatin, endostatin; tissue inhibitors of matrix metalloproteinases) factors. Antiangiogenic activity based on inhibition of vascular endothelial growth factor (VEGF) has been successfully used in the treatment of a number of eye diseases, such as exudative age-related macular degeneration and diabetic macular edema, the pathogenesis of which is based on the growth of newly formed vessels. The review presents information on the main anti-angiogenic drugs for intravitreal administration, used in ophthalmology.
Collapse
|
4
|
Chamani R, Soleimanjahi H, Asghari SM, Karimi H, Kianmehr Z, Ardestani SK. Re-engineering of the Immunosuppressive Tumor Microenvironment by Antiangiogenic Therapy. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09860-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ronci M, Leporini L, Felaco P, Sirolli V, Pieroni L, Greco V, Aceto A, Urbani A, Bonomini M. Proteomic Characterization of a New asymmetric Cellulose Triacetate Membrane for Hemodialysis. Proteomics Clin Appl 2018; 12:e1700140. [PMID: 29808585 DOI: 10.1002/prca.201700140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/27/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE The artificial membrane inside the haemodialyzer is the main determinant of the quality and success of haemodialysis therapy. The performances of haemodialysis membranes are highly influenced by the interactions with plasma proteins, which in turn are related to the physical and chemical characteristics of the membrane material. The present cross-over study is aimed to analyse the haemodialysis performance of a newly developed asymmetric cellulose triacetate membrane (ATA) in comparison to the conventional parent symmetric polymer (CTA). EXPERIMENTAL DESIGN In four chronic non diabetic haemodialysis patients, the protein constituents of the adsorbed material from the filters after the haemodialysis session, and the proteins recovered in the ultrafiltrate during the session, are identified using a bottom-up shotgun proteomics approach. RESULTS The ATA membrane shows a lower protein adsorption rate and a lower mass distribution pattern of the proteinaceous material. CONCLUSIONS AND CLINICAL RELEVANCE By highlighting the differences between the two haemodialysis filters in terms of adsorbed proteins and flow through, it is demonstrated the higher biocompatibility of the novel ATA membrane, that fulfils the indications for the development of more performant membranes and may represent a step forward for the treatment of patients on chronic haemodialysis.
Collapse
Affiliation(s)
- Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.,IRCCS-Santa Lucia Foundation, Rome 00144, Italy
| | - Lidia Leporini
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Paolo Felaco
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Vittorio Sirolli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | | | | | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Andrea Urbani
- IRCCS-Santa Lucia Foundation, Rome 00144, Italy.,Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Rome 00144, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
6
|
Bogen KT. Biphasic hCAR Inhibition-Activation by Two Aminoazo Liver Carcinogens. NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.11131/2018/101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Analogs of the hepatocyte growth factor and macrophage-stimulating protein hinge regions act as Met and Ron dual inhibitors in pancreatic cancer cells. Anticancer Drugs 2017; 27:766-79. [PMID: 27314431 DOI: 10.1097/cad.0000000000000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is among the leading causes of cancer death in the USA, with limited effective treatment options. A major contributor toward the formation and persistence of pancreatic cancer is the dysregulation of the hepatocyte growth factor (HGF)/Met (HGF receptor) and the macrophage-stimulating protein (MSP)/Ron (MSP receptor) systems. These systems normally mediate a variety of cellular behaviors including proliferation, survival, and migration, but are often overactivated in pancreatic cancer and contribute toward cancer progression. Previous studies have shown that HGF must dimerize to activate Met. Small-molecule antagonists with homology to a 'hinge' region within the putative dimerization domain of HGF have been developed that bind to HGF and block dimerization, therefore inhibiting Met signaling. Because of the structural and sequence homology between MSP and HGF, we hypothesized that the inhibition of HGF by the hinge analogs may extend to MSP. The primary aim of this 'proof-of-concept' study was to determine whether hinge analogs could inhibit cellular responses to both HGF and MSP in pancreatic cancer cells. Our results showed that these compounds inhibited HGF and MSP activity. Hinge analog treatment resulted in decreased Met and Ron activation, and suppressed malignant cell behaviors including proliferation, migration, and invasion in pancreatic cancer cells in vitro. These results suggest that the hinge analogs represent a novel group of molecules that may offer a therapeutic approach for the treatment of pancreatic cancer and warrant further development and optimization.
Collapse
|
8
|
The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017. [PMID: 28635679 DOI: 10.3390/biomedicines5020034]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A number of anti-angiogenesis drugs have been FDA-approved and are being used in cancer treatment, and a number of other agents are in different stages of clinical development or in preclinical evaluation. However, pharmacologic anti-angiogenesis strategies that arrest tumor progression might not be enough to eradicate tumors. Decreased anti-angiogenesis activity in single mechanism-based anti-angiogenic strategies is due to the redundancy, multiplicity, and development of compensatory mechanism by which blood vessels are remodeled. Improving anti-angiogenesis drug efficacy will require identification of broad-spectrum anti-angiogenesis targets. These strategies may have novel features, such as increased porosity, and are the result of complex interactions among endothelial cells, extracellular matrix proteins, growth factors, pericyte, and smooth muscle cells. Thus, combinations of anti-angiogenic drugs and other anticancer strategies such as chemotherapy appear essential for optimal outcome in cancer patients. This review will focus on the role of anti-angiogenesis strategies in cancer treatment.
Collapse
|
9
|
Abstract
A number of anti-angiogenesis drugs have been FDA-approved and are being used in cancer treatment, and a number of other agents are in different stages of clinical development or in preclinical evaluation. However, pharmacologic anti-angiogenesis strategies that arrest tumor progression might not be enough to eradicate tumors. Decreased anti-angiogenesis activity in single mechanism-based anti-angiogenic strategies is due to the redundancy, multiplicity, and development of compensatory mechanism by which blood vessels are remodeled. Improving anti-angiogenesis drug efficacy will require identification of broad-spectrum anti-angiogenesis targets. These strategies may have novel features, such as increased porosity, and are the result of complex interactions among endothelial cells, extracellular matrix proteins, growth factors, pericyte, and smooth muscle cells. Thus, combinations of anti-angiogenic drugs and other anticancer strategies such as chemotherapy appear essential for optimal outcome in cancer patients. This review will focus on the role of anti-angiogenesis strategies in cancer treatment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| |
Collapse
|
10
|
Rajabi M, Mousa SA. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017; 5:E34. [PMID: 28635679 PMCID: PMC5489820 DOI: 10.3390/biomedicines5020034] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/09/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
A number of anti-angiogenesis drugs have been FDA-approved and are being used in cancer treatment, and a number of other agents are in different stages of clinical development or in preclinical evaluation. However, pharmacologic anti-angiogenesis strategies that arrest tumor progression might not be enough to eradicate tumors. Decreased anti-angiogenesis activity in single mechanism-based anti-angiogenic strategies is due to the redundancy, multiplicity, and development of compensatory mechanism by which blood vessels are remodeled. Improving anti-angiogenesis drug efficacy will require identification of broad-spectrum anti-angiogenesis targets. These strategies may have novel features, such as increased porosity, and are the result of complex interactions among endothelial cells, extracellular matrix proteins, growth factors, pericyte, and smooth muscle cells. Thus, combinations of anti-angiogenic drugs and other anticancer strategies such as chemotherapy appear essential for optimal outcome in cancer patients. This review will focus on the role of anti-angiogenesis strategies in cancer treatment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| |
Collapse
|
11
|
Endostatin is protective against monocrotaline-induced right heart disease through the inhibition of T-type Ca(2+) channel. Pflugers Arch 2016; 468:1259-1270. [PMID: 27023352 DOI: 10.1007/s00424-016-1810-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022]
Abstract
Endostatin (ES), a C-terminal fragment of collagen XVIIIα1, has a potent anti-angiogenic effect. ES prevents tumor proliferation through inhibiting T-type Ca(2+) channel. T-type Ca(2+) channel is re-expressed during heart diseases including monocrotaline (MCT)-induced right heart failure. The present study aimed to clarify the effects of ES on T-type Ca(2+) channel and pathogenesis of MCT-induced right ventricular disease. MCT or saline was injected intraperitoneally to rats. After cardiomyocytes were isolated from right ventricles (RVs), T-type Ca(2+) channel current (I CaT) was measured by a patch-clamp method. After ES small interfering RNA (siRNA) or control siRNA (20 μg) was administrated for 1 week via the right jugular vein 1 week after MCT injection, echocardiography and histological analysis were done. I CaT was significantly increased in RV from MCT-injected rats, and ES significantly inhibited it. The survival rate of ES siRNA-administrated MCT rats (MCT ES si group) was decreased. In echocardiography, although ES siRNA did not affect pulmonary arterial pressure, RV systolic function was impaired in MCT ES si group compared with control siRNA-administrated MCT rats (MCT cont si group). In the histological analysis of RV, ES expression was increased in MCT cont si group, and ES siRNA inhibited it. Furthermore, although MCT cont si group showed only cardiomyocyte hypertrophy, MCT ES si group showed notable enlargement of intercellular spaces. The present study for the first time revealed that ES inhibits T-type Ca(2+) channel activity in RV from MCT-injected rats. ES gene knockdown deteriorates MCT-induced right heart disease. ES is thus cardioprotective possibly through inhibiting T-type Ca(2+) channel activity.
Collapse
|
12
|
Ricard-Blum S, Vallet SD. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells. Front Pharmacol 2016; 7:11. [PMID: 26869928 PMCID: PMC4740388 DOI: 10.3389/fphar.2016.00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| | - Sylvain D Vallet
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| |
Collapse
|
13
|
Parris GE. A Hypothesis Concerning the Biphasic Dose-response of Tumors to Angiostatin and Endostatin. Dose Response 2015; 13:10.2203_dose-response.14-020.Parris. [PMID: 26675544 PMCID: PMC4674172 DOI: 10.2203/dose-response.14-020.parris] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This manuscript proposes a hypothesis to explain the U-shaped dose-response observed for angiostatin and other high-molecular-weight drugs in various anti-cancer bio-assays. The dose-response curves for angiostatin and endostatin (measured as suppression of tumor growth) go through an optimum (i.e., minimum tumor growth) and then becomes less effective at higher doses. The literature suggests that at lower doses the primary action of these high-molecular-weight drugs is to counteract the angiogenic effects of vascular endothelial growth factor (VEGF). To do this, the drugs must pass out of the blood vessel and enter the extra-cellular matrix (ECM) where VEGF induces the growth and fusion of tip cells. Ironically, VEGF actually facilitates access of the drugs to the ECM by making the vascular endothelium leaky. At higher doses, the high-molecular-weight drugs seem to reverse VEGF-induced permeability of the endothelium. Thus, at high dose rates, it is hypothesized that the drugs are not able to enter the ECM and block the angiogenic effects of VEGF there. As a result, high doses of the drugs do not suppress vascularization of the tumor or tumor growth. Moreover, if the permeability of the vessels is suppressed, the VEGF released by the stroma is concentrated in the ECM where it amplifies the angiogenic activity around the tumor.
Collapse
Affiliation(s)
- George E Parris
- Montgomery College, Department of Chemistry, Rockville, MD, USA
| |
Collapse
|
14
|
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:2422-38. [PMID: 26367079 PMCID: PMC4624607 DOI: 10.1016/j.bbagen.2015.09.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiogenesis is the process of neovascularization from pre-existing vasculature and is involved in various physiological and pathological processes. Inhibitors of angiogenesis, administered either as individual drugs or in combination with other chemotherapy, have been shown to benefit patients with various cancers. Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one of the most potent inhibitors of angiogenesis. SCOPE OF REVIEW We discuss the biology behind endostatin in the context of its endogenous production, the various receptors to which it binds, and the mechanisms by which it acts. We focus on its inhibitory role in angiogenesis, lymphangiogenesis, and cancer metastasis. We also present emerging clinical applications for endostatin and its potential as a therapeutic agent in the form a short peptide. MAJOR CONCLUSIONS The delicate balance between pro- and anti-angiogenic factors can be modulated to result in physiological wound healing or pathological tumor metastasis. Research in the last decade has emphasized an emerging clinical potential for endostatin as a biomarker and as a therapeutic short peptide. Moreover, elevated or depressed endostatin levels in diseased states may help explain the pathophysiological mechanisms of the particular disease. GENERAL SIGNIFICANCE Endostatin was once sought after as the 'be all and end all' for cancer treatment; however, research throughout the last decade has made it apparent that endostatin's effects are complex and involve multiple mechanisms. A better understanding of newly discovered mechanisms and clinical applications still has the potential to lead to future advances in the use of endostatin in the clinic.
Collapse
Affiliation(s)
- Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Inhibition of Corneal Neovascularization by Subconjunctival Injection of Fc-Endostatin, a Novel Inhibitor of Angiogenesis. J Ophthalmol 2015; 2015:137136. [PMID: 26491546 PMCID: PMC4600943 DOI: 10.1155/2015/137136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 02/08/2023] Open
Abstract
We assessed the antiangiogenic effects of subconjunctival injection of Fc-endostatin (FcE) using a human vascular endothelial growth factor-induced rabbit corneal neovascularization model. Angiogenesis was induced in rabbit corneas through intrastromal implantations of VEGF polymer implanted 2 mm from the limbus. NZW rabbits were separated into groups receiving twice weekly subconjunctival injections of either saline; 25 mg/mL bevacizumab; 2 mg/mL FcE; or 20 mg/mL FcE. Corneas were digitally imaged at 5 time points. An angiogenesis index (AI) was calculated (vessel length (mm) × vessel number score) for each observation. All treatment groups showed a significant decrease in the vessel length and AI compared to saline on all observation days (P < 0.001). By day 15, FcE 2 inhibited angiogenesis significantly better than FcE 20 (P < 0.01). There was no significant difference between FcE 2 and BV, although the values trended towards significantly increased inhibition by BV. BV was a significantly better inhibitor than FcE 20 by day 8 (P < 0.01). FcE was safe and significantly inhibited new vessel growth in a rabbit corneal neovascularization model. Lower concentration FcE 2 exhibited better inhibition than FcE 20, consistent with previous FcE studies referencing a biphasic dose-response curve. Additional studies are necessary to further elucidate the efficacy and clinical potential of this novel angiogenesis inhibitor.
Collapse
|
16
|
Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie 2015; 122:300-13. [PMID: 26382969 DOI: 10.1016/j.biochi.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Sylvain D Vallet
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
17
|
Inhibitory effect of endostar on specific angiogenesis induced by human hepatocellular carcinoma. Gastroenterol Res Pract 2015; 2015:957574. [PMID: 25983751 PMCID: PMC4423035 DOI: 10.1155/2015/957574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
To investigate the effect of endostar on specific angiogenesis induced by human hepatocellular carcinoma, this research systematically elucidated the inhibitory effect on HepG2-induced angiogenesis by endostar from 50 ng/mL to 50000 ng/mL. We employed fluorescence quantitative Boyden chamber analysis, wound-healing assay, flow cytometry examination using a coculture system, quantitative analysis of tube formation, and in vivo Matrigel plug assay induced by HCC conditioned media (HCM) and HepG2 compared with normal hepatocyte conditioned media (NCM) and L02. Then, we found that endostar as a tumor angiogenesis inhibitor could potently inhibit human umbilical vein endothelial cell (HUVEC) migration in response to HCM after four- to six-hour action, inhibit HCM-induced HUVEC migration to the lesion part in a dose-dependent manner between 50 ng/mL and 5000 ng/mL at 24 hours, and reduce HUVEC proliferation in a dose-dependent fashion. Endostar inhibited HepG2-induced tube formation of HUVECs which peaked at 50 ng/mL. In vivo Matrigel plug formation was also significantly reduced by endostar in HepG2 inducing system rather than in L02 inducing system. It could be concluded that, at cell level, endostar inhibited the angiogenesis-related biological behaviors of HUVEC in response to HCC, including migration, adhesion proliferation, and tube formation. At animal level, endostar inhibited the angiogenesis in response to HCC in Matrigel matrix.
Collapse
|
18
|
Ricard-Blum S, Salza R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol 2014; 23:457-63. [DOI: 10.1111/exd.12435] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS; Université Lyon 1; Lyon Cedex 07 France
| | - Romain Salza
- Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS; Université Lyon 1; Lyon Cedex 07 France
| |
Collapse
|
19
|
Melo PM, Bagnaresi P, Paschoalin T, Hirata IY, Gazarini ML, Carmona AK. Plasmodium falciparum proteases hydrolyze plasminogen, generating angiostatin-like fragments. Mol Biochem Parasitol 2014; 193:45-54. [DOI: 10.1016/j.molbiopara.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 12/27/2022]
|
20
|
Shi S, Wang R, Chen Y, Song H, Chen L, Huang G. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models. PLoS One 2013; 8:e65757. [PMID: 23799045 PMCID: PMC3683034 DOI: 10.1371/journal.pone.0065757] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/29/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction Cytokine-induced killer cells (CIK cells) are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment. Methods We combined recombinant human endostatin (rh-endostatin) and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells. Results Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments. Conclusions Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells therapy against lung carcinomas and unmask the mechanisms of the synergistic antitumor efficacy, providing a new rationale for combining antiangiogenesis therapy with immunotherapy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Shujing Shi
- Medical Oncology Department of Jinling Hospital, Medical school of Nanjing University, Nanjing, People’s Republic of China
| | - Rui Wang
- Medical Oncology Department of Jinling Hospital, Medical school of Nanjing University, Nanjing, People’s Republic of China
| | - Yitian Chen
- Medical Oncology Department of Jinling Hospital, Medical school of Nanjing University, Nanjing, People’s Republic of China
| | - Haizhu Song
- Medical Oncology Department of Jinling Hospital, Medical school of Nanjing University, Nanjing, People’s Republic of China
| | - Longbang Chen
- Medical Oncology Department of Jinling Hospital, Medical school of Nanjing University, Nanjing, People’s Republic of China
- * E-mail: (GCH); (LBC)
| | - Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical school of Nanjing University, Nanjing, People’s Republic of China
- * E-mail: (GCH); (LBC)
| |
Collapse
|
21
|
Lim J, Duong T, Lee G, Seong BL, El-Rifai W, Ruley HE, Jo D. The effect of intracellular protein delivery on the anti-tumor activity of recombinant human endostatin. Biomaterials 2013; 34:6261-71. [PMID: 23714245 DOI: 10.1016/j.biomaterials.2013.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022]
Abstract
Endostatin (ES), a 20 kDa protein derived from the carboxy-terminus of collagen XVIII is a potent angiogenesis inhibitor, but clinical development has been hindered by poor clinical efficacy and insufficient functional information from which to design agents with improved activity. The present study investigated protein uptake by cells as a determinant of ES activity. We developed a cell-permeable ES protein (HM73ES) with enhanced capacity to enter cells by adding a macromolecule transduction domain (MTD). HM73ES inhibited angiogenesis-associated phenotypes in cultured endothelial cells [as assessed by tube formation, wound-healing, cell proliferation and survival assays]. These effects were accompanied by reductions in MAPK signaling (ERK phosphorylation), and in β-Catenin, c-Myc, STAT3, and VEGF protein expression. The cell-permeable ES displayed greater tissue penetration in mice and suppressed the growth of human tumor xenografts to a significantly greater extent than ES protein without the MTD sequence. Our results suggest that anti-angiogenic activities of native ES are limited at the level of protein uptake and/or subcellular localization, and that much of the activity of ES against tumors depends on one or more intracellular functions. This study will inform future efforts to understand ES function(s) and suggest strategies for improving ES-based cancer therapeutics.
Collapse
Affiliation(s)
- Junghee Lim
- ProCell R&D Institute, ProCell Therapeutics, Inc., Seoul 151-050, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|