1
|
Barcellini A, Fodor A, Charalampopoulou A, Cassani C, Locati LD, Cioffi R, Bergamini A, Pignata S, Orlandi E, Mangili G. Radiation Therapy for Gestational Trophoblastic Neoplasia: Forward-Looking Lessons Learnt. Cancers (Basel) 2023; 15:4817. [PMID: 37835511 PMCID: PMC10571950 DOI: 10.3390/cancers15194817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Gestational trophoblastic neoplasia (GTN) includes several rare malignant diseases occurring after pregnancy: invasive moles, choriocarcinoma, placental site trophoblastic tumours, and epithelioid trophoblastic tumours. Multidisciplinary protocols including multi-agent chemotherapy, surgery, and occasionally radiotherapy achieve good outcomes for some high-risk metastatic patients. In this narrative review of the published studies on the topic, we have tried to identify the role of radiotherapy. The available studies are mainly small, old, and retrospective, with incomplete data regarding radiotherapy protocols delivering low doses (which can make this disease appear radioresistant in some cases despite high response rates with palliative doses) to wide fields (whole-brain, whole-liver, etc.), which can increase toxicity. Studies considering modern techniques are needed to overcome these limitations and determine the full potential of radiotherapy beyond its antihemorrhagic and palliative roles.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy;
| | - Andrei Fodor
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Alexandra Charalampopoulou
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
- Hadron Academy PhD Course, Istituto Universitario di STUDI Superiori (IUSS), 27100 Pavia, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Obstetrics and Gynecology, IRCCS, Fondazione Policlinico San Matteo, 27100 Pavia, Italy
| | - Laura Deborah Locati
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy;
- Translational Oncology Unit, Maugeri Clinical Research Institutes IRCCS, 27100 Pavia, Italy
| | - Raffaella Cioffi
- Unit of Gynaecology and Obstetrics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (R.C.); (A.B.); (G.M.)
| | - Alice Bergamini
- Unit of Gynaecology and Obstetrics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (R.C.); (A.B.); (G.M.)
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori, IRCCS-Fondazione G. Pascale Napoli, 80131 Naples, Italy;
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Giorgia Mangili
- Unit of Gynaecology and Obstetrics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (R.C.); (A.B.); (G.M.)
| |
Collapse
|
2
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
3
|
Hanson I, Pitman KE, Edin NFJ. The Role of TGF-β3 in Radiation Response. Int J Mol Sci 2023; 24:ijms24087614. [PMID: 37108775 PMCID: PMC10141893 DOI: 10.3390/ijms24087614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Transforming growth factor-beta 3 (TGF-β3) is a ubiquitously expressed multifunctional cytokine involved in a range of physiological and pathological conditions, including embryogenesis, cell cycle regulation, immunoregulation, and fibrogenesis. The cytotoxic effects of ionizing radiation are employed in cancer radiotherapy, but its actions also influence cellular signaling pathways, including that of TGF-β3. Furthermore, the cell cycle regulating and anti-fibrotic effects of TGF-β3 have identified it as a potential mitigator of radiation- and chemotherapy-induced toxicity in healthy tissue. This review discusses the radiobiology of TGF-β3, its induction in tissue by ionizing radiation, and its potential radioprotective and anti-fibrotic effects.
Collapse
Affiliation(s)
- Ingunn Hanson
- Department of Physics, University of Oslo, 0371 Oslo, Norway
| | | | - Nina F J Edin
- Department of Physics, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
4
|
Hanson I, Pitman KE, Altanerova U, Altaner Č, Malinen E, Edin NFJ. Low-Dose-Rate Radiation-Induced Secretion of TGF-β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding. Int J Mol Sci 2022; 23:ijms23158147. [PMID: 35897723 PMCID: PMC9332371 DOI: 10.3390/ijms23158147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Hyper-radiosensitivity (HRS) is the increased sensitivity to low doses of ionizing radiation observed in most cell lines. We previously demonstrated that HRS is permanently abolished in cells irradiated at a low dose rate (LDR), in a mechanism dependent on transforming growth factor β3 (TGF-β3). In this study, we aimed to elucidate the activation and receptor binding of TGF-β3 in this mechanism. T-47D cells were pretreated with inhibitors of potential receptors and activators of TGF-β3, along with addition of small extracellular vesicles (sEVs) from LDR primed cells, before their radiosensitivity was assessed by the clonogenic assay. The protein content of sEVs from LDR primed cells was analyzed with mass spectrometry. Our results show that sEVs contain TGF-β3 regardless of priming status, but only sEVs from LDR primed cells remove HRS in reporter cells. Inhibition of the matrix metalloproteinase (MMP) family prevents removal of HRS, suggesting an MMP-dependent activation of TGF-β3 in the LDR primed cells. We demonstrate a functional interaction between TGF-β3 and activin receptor like kinase 1 (ALK1) by showing that TGF-β3 removes HRS through ALK1 binding, independent of ALK5 and TGF-βRII. These results are an important contribution to a more comprehensive understanding of the mechanism behind TGF-β3 mediated removal of HRS.
Collapse
Affiliation(s)
- Ingunn Hanson
- Department of Physics, University of Oslo, 0371 Oslo, Norway; (K.E.P.); (E.M.); (N.F.J.E.)
- Correspondence:
| | - Kathinka E. Pitman
- Department of Physics, University of Oslo, 0371 Oslo, Norway; (K.E.P.); (E.M.); (N.F.J.E.)
| | - Ursula Altanerova
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia; (U.A.); (Č.A.)
| | - Čestmír Altaner
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia; (U.A.); (Č.A.)
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, 94505 Bratislava, Slovakia
| | - Eirik Malinen
- Department of Physics, University of Oslo, 0371 Oslo, Norway; (K.E.P.); (E.M.); (N.F.J.E.)
- Department of Medical Physics, Oslo University Hospital, 0379 Oslo, Norway
| | - Nina F. J. Edin
- Department of Physics, University of Oslo, 0371 Oslo, Norway; (K.E.P.); (E.M.); (N.F.J.E.)
| |
Collapse
|
5
|
Differential miRNA expression profiling reveals miR-205-3p to be a potential radiosensitizer for low- dose ionizing radiation in DLD-1 cells. Oncotarget 2018; 9:26387-26405. [PMID: 29899866 PMCID: PMC5995186 DOI: 10.18632/oncotarget.25405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.
Collapse
|
6
|
Edin NFJ, Altaner Č, Altanerova V, Ebbesen P, Pettersen EO. Low-Dose-Rate Irradiation for 1 Hour Induces Protection Against Lethal Radiation Doses but Does Not Affect Life Span of DBA/2 Mice. Dose Response 2016; 14:1559325816673901. [PMID: 27867323 PMCID: PMC5102071 DOI: 10.1177/1559325816673901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prior findings showed that serum from DBA/2 mice that had been given whole-body irradiation for 1 hour at a low dose rate (LDR) of 30 cGy/h induced protection against radiation in reporter cells by a mechanism depending on transforming growth factor β3 and inducible nitric oxide synthase activity. In the present study, the effect of the 1 hour of LDR irradiation on the response of the preirradiated mice to a subsequent lethal dose and on the life span is examined. These DBA/2 mice were prime irradiated for 1 hour at 30 cGy/h. Two experiments with 9 and 9.5 Gy challenge doses given 6 weeks after priming showed increased survival in primed mice compared to unprimed mice followed up to 225 and 81 days after challenge irradiation, respectively. There was no overall significant difference in life span between primed and unprimed mice when no challenge irradiation was given. The males seemed to have a slight increase in lifespan after priming while the opposite was seen for the females.
Collapse
Affiliation(s)
| | - Čestmír Altaner
- Cancer Research Institute, Laboratory of Molecular Oncology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Altanerova
- Cancer Research Institute, Laboratory of Molecular Oncology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Ebbesen
- Department of Physics, University of Oslo, Oslo, Norway; Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|