1
|
Zahedi E, Naseri FM, Zamani E, Nikbakhtzadeh M, Rastegar T, Sanaeirad A, Sadr SS. Ginger Extract Improves Cognitive Dysfunction via Modulation of Gut Microbiota-Derived Short-Chain Fatty Acids in D-Galactose/Ovariectomy-Induced Alzheimer-Like Disease. Mol Neurobiol 2025; 62:5095-5108. [PMID: 39505806 DOI: 10.1007/s12035-024-04583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with complex causes and limited treatment options. Recent research has suggested a connection between the progression of AD and the activity of gut microbiota. Ginger, a plant known for its anti-inflammatory, antioxidant, and neuroprotective properties, has gained attention as a potential treatment for alleviating AD symptoms. In this study, we induced an AD model in female rats through ovariectomy and D-galactose injection and then investigated the protective effects of oral administration of ginger ethanolic extract. We assessed changes in short-chain fatty acids (SCFAs), learning and memory abilities, neuroinflammatory markers in plasma, and the hippocampus, as well as histological changes in the intestine and hippocampus in sham-operated, diseased, and treatment groups. Oral administration of ginger ethanolic extract improved gut microbiota activity, increased SCFA levels, and enhanced the expression of tight junction proteins. Additionally, ginger extract reduced the concentrations of TNF-α and IL-1β in both plasma and the hippocampus. Furthermore, it significantly reduced cell death and amyloid plaque deposition in the hippocampal tissue. These physiological changes resulted in improved performance in learning and memory tasks in rats treated with ginger compared with the disease group. These findings provide compelling evidence for the beneficial effects of ginger on the gut-brain axis, leading to improvements in learning and memory through the reduction of neuroinflammation.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Mokhtari Naseri
- Physiology Department and Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Zamani
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Sanaeirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
De Paoli LF, Kirkcaldie MTK, King AE, Collins JM. Neurofilament heavy phosphorylated epitopes as biomarkers in ageing and neurodegenerative disease. J Neurochem 2025; 169:e16261. [PMID: 39556118 DOI: 10.1111/jnc.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
From the day we are born, the nervous system is subject to insult, disease and degeneration. Aberrant phosphorylation states in neurofilaments, the major intermediate filaments of the neuronal cytoskeleton, accompany and mediate many pathological processes in degenerative disease. Neuronal damage, degeneration and death can release these internal components to the extracellular space and eventually the cerebrospinal fluid and blood. Sophisticated assay techniques are increasingly able to detect their presence and phosphorylation states at very low levels, increasing their utility as biomarkers and providing insights and differential diagnosis for the earliest stages of disease. Although a variety of studies focus on single or small clusters of neurofilament phosphorylated epitopes, this review offers a wider perspective of the phosphorylation landscape of the neurofilament heavy subunit, a major intermediate filament component in both ageing and disease.
Collapse
Affiliation(s)
- Laura F De Paoli
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Wurtz LI, Knyazhanskaya E, Sohaei D, Prassas I, Pittock S, Willrich MAV, Saadeh R, Gupta R, Atkinson HJ, Grill D, Stengelin M, Thebault S, Freedman MS, Diamandis EP, Scarisbrick IA. Identification of brain-enriched proteins in CSF as biomarkers of relapsing remitting multiple sclerosis. Clin Proteomics 2024; 21:42. [PMID: 38880880 PMCID: PMC11181608 DOI: 10.1186/s12014-024-09494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically and biologically heterogenous disease with currently unpredictable progression and relapse. After the development and success of neurofilament as a cerebrospinal fluid (CSF) biomarker, there is reinvigorated interest in identifying other markers of or contributors to disease. The objective of this study is to probe the predictive potential of a panel of brain-enriched proteins on MS disease progression and subtype. METHODS This study includes 40 individuals with MS and 14 headache controls. The MS cohort consists of 20 relapsing remitting (RR) and 20 primary progressive (PP) patients. The CSF of all individuals was analyzed for 63 brain enriched proteins using a method of liquid-chromatography tandem mass spectrometry. Wilcoxon rank sum test, Kruskal-Wallis one-way ANOVA, logistic regression, and Pearson correlation were used to refine the list of candidates by comparing relative protein concentrations as well as relation to known imaging and molecular biomarkers. RESULTS We report 30 proteins with some relevance to disease, clinical subtype, or severity. Strikingly, we observed widespread protein depletion in the disease CSF as compared to control. We identified numerous markers of relapsing disease, including KLK6 (kallikrein 6, OR = 0.367, p < 0.05), which may be driven by active disease as defined by MRI enhancing lesions. Other oligodendrocyte-enriched proteins also appeared at reduced levels in relapsing disease, namely CNDP1 (carnosine dipeptidase 1), LINGO1 (leucine rich repeat and Immunoglobin-like domain-containing protein 1), MAG (myelin associated glycoprotein), and MOG (myelin oligodendrocyte glycoprotein). Finally, we identified three proteins-CNDP1, APLP1 (amyloid beta precursor like protein 1), and OLFM1 (olfactomedin 1)-that were statistically different in relapsing vs. progressive disease raising the potential for use as an early biomarker to discriminate clinical subtype. CONCLUSIONS We illustrate the utility of targeted mass spectrometry in generating potential targets for future biomarker studies and highlight reductions in brain-enriched proteins as markers of the relapsing remitting disease stage.
Collapse
Affiliation(s)
- Lincoln I Wurtz
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Mount Sinai Hospital, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Sean Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Ruba Saadeh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ruchi Gupta
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Hunter J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Diane Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Simon Thebault
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
- Division of Multiple Sclerosis, Department of Neurology, The University of Pennsylvania, Philadelphia, USA
| | - Mark S Freedman
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
| | | | - Isobel A Scarisbrick
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Marín-Prida J, Pavón-Fuentes N, Lagumersindez-Denis N, Camacho-Rodríguez H, García-Soca AM, Sarduy-Chávez RDLC, Vieira ÉLM, Carvalho-Tavares J, Falcón-Cama V, Fernández-Massó JR, Hernández-González I, Martínez-Donato G, Guillén-Nieto G, Pentón-Arias E, Teixeira MM, Pentón-Rol G. Anti-inflammatory mechanisms and pharmacological actions of phycocyanobilin in a mouse model of experimental autoimmune encephalomyelitis: A therapeutic promise for multiple sclerosis. Front Immunol 2022; 13:1036200. [PMID: 36405721 PMCID: PMC9669316 DOI: 10.3389/fimmu.2022.1036200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokines, demyelination and neuroaxonal degeneration in the central nervous system are pivotal elements implicated in the pathogenesis of multiple sclerosis (MS) and its nonclinical model of experimental autoimmune encephalomyelitis (EAE). Phycocyanobilin (PCB), a chromophore of the biliprotein C-Phycocyanin (C-PC) from Spirulina platensis, has antioxidant, immunoregulatory and anti-inflammatory effects in this disease, and it could complement the effect of other Disease Modifying Treatments (DMT), such as Interferon-β (IFN-β). Here, our main goal was to evaluate the potential PCB benefits and its mechanisms of action to counteract the chronic EAE in mice. MOG35-55-induced EAE was implemented in C57BL/6 female mice. Clinical signs, pro-inflammatory cytokines levels by ELISA, qPCR in the brain and immunohistochemistry using precursor/mature oligodendrocytes cells antibodies in the spinal cord, were assessed. PCB enhanced the neurological condition, and waned the brain concentrations of IL-17A and IL-6, pro-inflammatory cytokines, in a dose-dependent manner. A down- or up-regulating activity of PCB at 1 mg/kg was identified in the brain on three (LINGO1, NOTCH1, and TNF-α), and five genes (MAL, CXCL12, MOG, OLIG1, and NKX2-2), respectively. Interestingly, a reduction of demyelination, active microglia/macrophages density, and axonal damage was detected along with an increase in oligodendrocyte precursor cells and mature oligodendrocytes, when assessed the spinal cords of EAE mice that took up PCB. The studies in vitro in rodent encephalitogenic T cells and in vivo in the EAE mouse model with the PCB/IFN-β combination, showed an enhanced positive effect of this combined therapy. Overall, these results demonstrate the anti-inflammatory activity and the protective properties of PCB on the myelin and support its use with IFN-β as an improved DMT combination for MS.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Nancy Pavón-Fuentes
- Immunochemical Department, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | | | | | - Ana Margarita García-Soca
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | | | - Érica Leandro Marciano Vieira
- Translational Psychoneuroimmunology Group, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Carvalho-Tavares
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Viviana Falcón-Cama
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
| | | | | | - Gillian Martínez-Donato
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
| | - Eduardo Pentón-Arias
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Pentón-Rol
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
- *Correspondence: Giselle Pentón-Rol,
| |
Collapse
|