1
|
Soltan Dallal MM, Nasser A, Karimaei S. Characterization of Virulence Genotypes, Antimicrobial Resistance Patterns, and Biofilm Synthesis in Salmonella spp Isolated from Foodborne Outbreaks. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:4805228. [PMID: 39346023 PMCID: PMC11436275 DOI: 10.1155/2024/4805228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Salmonella is the main bacterial pathogen that causes foodborne disease, particularly in developing countries. Nontyphoidal Salmonella (NTS) include Enteritidis and Typhimurium as the most prevalent strains which are one of the significant causes of acute gastroenteritis in children. Therefore, identifying the most predominant serovars, types of common contaminated food, and paying attention to their antibiotic resistance are the main factors in the prevention and control strategy of salmonellosis. This study was undertaken to evaluate the prevalence rate of serovars, the biofilm formation, antimicrobial resistance (AMR) status, and phenotypic virulence factors of Salmonella strains isolated from diarrhea samples in some cities of Iran. A total of 40 (10.41%) Salmonella isolates were recovered from 384 diarrhea samples processed and the most common serovar was Salmonella serovar Typhimurium (82.5). Also, all isolates belonging to serovar Typhimurium showed more virulence factors compared to other serovars. The isolates showed a high resistance rate to ampicillin (95%) and nalidixic acid (87.5%), while a low resistance rate was found for chloramphenicol (2.5%). Moreover, significant variances in the capacity of biofilm formation were found between different Salmonella serotypes. The resistance of NTS to extant choice drugs is a potential public health problem. Constant monitoring of AMR pattern and virulence profile of NTS serovars is suggested for the prevention of salmonellosis in humans.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Food Microbiology Research CenterTehran University of Medical Sciences, Tehran, Iran
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| | - Samira Karimaei
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Peng S, Xiong H, Lu J, Luo F, Liu C, Zhou H, Tong W, Xia Z, Liu D. Epidemiological and Whole Genome Sequencing Analysis of Restaurant Salmonella Enteritidis Outbreak Associated with an Infected Food Handler in Jiangxi Province, China, 2023. Foodborne Pathog Dis 2024; 21:316-322. [PMID: 38354216 DOI: 10.1089/fpd.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
In China, Salmonella is one of the most frequent causes of bacterial gastroenteritis, and food handlers in restaurants as an important contaminated source were rarely reported. In May 2023, an outbreak of Salmonella enterica serovar Enteritidis infection in a restaurant in Jiangxi Province, China, was investigated. Cases were interviewed. Stool samples from cases, anal swabs from restaurant employees, suspicious raw food materials, and semifinished food were collected and examined. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed to determine the relatedness of the pathogen isolates. Antimicrobial resistance genes and virulence genes of isolates were analyzed by WGS. The antimicrobial profile of the isolates was detected by broth microdilution, which involved 20 different antibiotics. Among the 31 patrons, 26 showed gastrointestinal symptoms. Five Salmonella Enteritidis strains were isolated from patients (2), semifinished food (2), and food handler (1). The results of PFGE and single-nucleotide polymorphism showed that these five isolates were identical clones. These findings demonstrated that this outbreak was a restaurant Salmonella Enteritidis outbreak associated with an infected food handler. The rates of resistance to nalidixic acid and colistin and intermediate resistance to ciprofloxacin were 100%, 80%, and 100%, respectively. These outbreak isolates harbored point mutation gyrA p.D87G. The cause of inconsistency between the genotype and phenotype of resistance was deeply discussed. A total of 107 virulence genes were found in each isolate, with many being associated with Salmonella pathogenicity island (SPI)-1 and SPI-2. As an overlooked contamination source, infected food handlers can easily cause large-scale outbreaks. This outbreak highlighted that the government should enhance the training and supervision of food hygiene and safety for food handlers to prevent foodborne outbreaks.
Collapse
Affiliation(s)
- Silu Peng
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Huomei Xiong
- Jiujiang Center for Disease Control and Prevention, Jiujiang, China
| | - Jun Lu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Fei Luo
- Jiujiang Center for Disease Control and Prevention, Jiujiang, China
| | - Chengwei Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Houde Zhou
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Wei Tong
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Zhilu Xia
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Daofeng Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
3
|
Mlangeni LN, Ramatla T, Lekota KE, Price C, Thekisoe O, Weldon C. Occurrence, Antimicrobial Resistance, and Virulence Profiles of Salmonella Serovars Isolated from Wild Reptiles in South Africa. Int J Microbiol 2024; 2024:5213895. [PMID: 38222969 PMCID: PMC10787053 DOI: 10.1155/2024/5213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024] Open
Abstract
Reptiles are carriers of an array of microorganisms, including significant zoonotic bacteria of the genus Salmonella, which cause a disease referred to as salmonellosis that affects both animals and humans. This study investigated the occurrence of Salmonella serovars in wild reptiles at Timbavati Private Game Reserve in Limpopo Province, South Africa, and examined their virulence and antimicrobial resistance gene profiles. A total of 19 wild reptiles were sampled, which resulted in 30 presumptive Salmonella isolates. The isolates were identified using polymerase chain reaction (PCR) by amplifying the invA gene and were further confirmed by 16S rRNA gene sequencing. Salmonella serovars were detected in chameleons (36.8%), lizards (31.6%), snakes (15.8%), and tortoises (15.8%). The use of 16S rRNA gene sequencing revealed that Salmonella enterica subsp. enterica serovar Salamae (30%), S. enterica subsp. enterica (16.7%), S. enterica subsp. enterica serovar Typhimurium (13.3%), and S. enterica subsp. enterica serovar Indiana (13.3%) were the four most common subspecies among the investigated 30 isolates. Detected virulence genes included pagN (100%), hilA (96.7%), ssrB (96.7%), prgH (86.7%), and marT (86.7%). The isolates exhibited resistance to nalidixic acid (43.3%) and kanamycin (43.3%), followed by streptomycin (16.7%) and ciprofloxacin (3.3%). Antibiotic-resistant genes were detected as follows: strA, strB, qnrA, qnrS, parC, aadA, aac(6')-Ib, and aac(6')-Ib-cr at 33.3%, 6.7%, 16.7, 13.3%, 10%, 23.3%, 6.7%, and 10%, respectively. The findings highlight the necessity of educational initiatives aimed at reducing reptile-related infections. Effective antibiotic treatment appears promising for infection, given the minimal drug resistance observed in reptile Salmonella serovars in the current study.
Collapse
Affiliation(s)
- Lungile N. Mlangeni
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Gastrointestinal Research Unit, Department of Surgery, School of Clinical Medicine, University of the Free State, Bloemfontein 9300, South Africa
| | - Kgaugelo E. Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Cormac Price
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Che Weldon
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
4
|
Xu B, Hou Z, Liu L, Yan R, Zhang J, Wei J, Du M, Xuan Y, Fan L, Li Z. The Resistance and Virulence Characteristics of Salmonella Enteritidis Strain Isolated from Patients with Food Poisoning Based on the Whole-Genome Sequencing and Quantitative Proteomic Analysis. Infect Drug Resist 2023; 16:6567-6586. [PMID: 37823028 PMCID: PMC10564084 DOI: 10.2147/idr.s411125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Objective This paper explores the drug resistance, genome and proteome expression characteristics of Salmonella from a food poisoning event. Methods A multidrug-resistant Salmonella Enteritidis strain, labeled as 27A, was isolated and identified from a food poisoning patient. Antimicrobial susceptibility testing determined the resistance of 27A strain to 14 antibiotics. Then, WGS analysis and comparative genomics analysis were performed on 27A, and the functional annotation of resistance genes, virulence genes were performed based on VFDB, ARDB, COG, CARD, GO, KEGG, and CAZY databases. Meanwhile, based on iTRAQ technology, quantitative proteomic analysis was conducted on 27A to analyze the functions and interactions of differentially expressed proteins related to bacterial resistance and pathogenicity. Results Strain 27A belonged to ST11 S. Enteritidis and was resistant to levofloxacin, ciprofloxacin, ampicillin, piperacillin, and ampicillin/sulbactam. There were 33 drug resistance genes, 384 virulence genes and 2 plasmid replicon, IncFIB(S) and IncFII(S), annotated by WGS. Proteomic analysis revealed significant changes in virulence and drug proteins, which were mainly involved in bacterial pathogenicity and metabolic processes. PPI prediction showed the relationship between virulence proteins and T3SS proteins, and PagN cooperated with proteins related to T3SS to jointly mediate the invasion of 27A strain on the human body. Phylogenetic analysis indicated that S. Enteritidis has potential transmission in humans, food, and animals. Conclusion This study comprehensively analyzed the drug resistance and virulence phenotypes of S. Enteritidis 27A using genomic and proteomic approaches. These helps reveal the drug resistance and virulence mechanisms of S. Enteritidis, and provides important information for the source tracing and the prevention of related diseases, which lays a foundation for research on food safety, public health monitoring, and the drug resistance and pathogenicity of S. Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Zhuru Hou
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Miao Du
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Lei Fan
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Zhuoxi Li
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| |
Collapse
|
5
|
Petano-Duque JM, Rueda-García V, Rondón-Barragán IS. Virulence genes identification in Salmonella enterica isolates from humans, crocodiles, and poultry farms from two regions in Colombia. Vet World 2023; 16:2096-2103. [PMID: 38023281 PMCID: PMC10668553 DOI: 10.14202/vetworld.2023.2096-2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Salmonella spp. is frequently found in the digestive tract of birds and reptiles and transmitted to humans through food. Salmonellosis is a public health problem because of pathogenicity variability in strains for virulence factors. This study aimed to identify the virulence genes in Salmonella isolates from humans, crocodiles, broiler cloacas, and broiler carcasses from two departments of Colombia. Materials and Methods This study was conducted on 31 Salmonella enterica strains from humans with gastroenteritis (seven), crocodiles (seven), broiler cloacas (six), and broiler carcasses (12) from Tolima and Santander departments of Colombia, belonging to 21 serotypes. All samples were tested for Salmonella spp. using culture method on selective and non-selective mediums. Extraction of genomic DNA was performed from fresh colonies, DNA quality was verified by spectrophotometry and confirmed by amplification of InvA gene using conventional polymerase chain reaction (PCR). bapA, fimA, icmF, IroB, marT, mgtC, nlpI, oafA, pagN, siiD, spvC, spvR, spvB, Stn, and vexA genes were amplified by PCR. Results The most prevalent gene was bapA (100%), followed by marT (96.77%), mgtC (93.55%), and fimA (83.87%). Likewise, IroB (70.97%), Stn (67.74%), spvR (61.29%), pagN (54.84%), icmF (54.8%), and SiiD (45.16%) were positive for more than 50% of the strains. Furthermore, none of the isolates tested positive for the vexA gene. Salmonella isolates presented 26 virulence profiles. Conclusion This study reported 14 virulence genes in Salmonella spp. isolates from humans with gastroenteritis, crocodiles, and broiler cloacas and carcasses. The distribution of virulence genes differed among sources. This study could help in decision-making by health and sanitary authorities.
Collapse
Affiliation(s)
- Julieth Michel Petano-Duque
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
6
|
Hawwas HAEH, Aboueisha AKM, Fadel HM, El-Mahallawy HS. Salmonella serovars in sheep and goats and their probable zoonotic potential to humans in Suez Canal Area, Egypt. Acta Vet Scand 2022; 64:17. [PMID: 35906669 PMCID: PMC9336019 DOI: 10.1186/s13028-022-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Salmonella is one of the most common and economically important zoonotic pathogens. This study aimed to determine the occurrence of Salmonella serovars in sheep and goats and their probable zoonotic risk to humans in Suez Canal area in Egypt. A total of 320 fecal samples from sheep (n = 120), goats (n = 100), and humans (n = 100) were collected and examined for the presence of Salmonella based on cultural and biochemical characteristics, and serological analysis. Moreover, the virulence of the identified Salmonella isolates was assessed by molecular screening for invA, stn, spvC, and sopB virulence genes using PCR. RESULTS Overall, the occurrence of Salmonella in sheep feces (23.3%) was higher than that in goat feces (7%) and human stool (13%) in the study area. The identified isolates belonged to 12 serotypes; ten, five, and eight from sheep, goats, and humans, respectively. The most frequently identified serotypes were S. Typhimurium from sheep feces, and S. Enteritidis from both goat feces and human stool, with four serotypes; S. Typhimurium, S. Enteritidis, S. Dublin and S. Saintpaul, were mutually shared between all of them. Demographic data revealed that diarrheic sheep (85.7%) and goats (25%) had a higher risk for Salmonella fecal carriage than non-diarrheic ones (19.5% and 6.25%, respectively). The prevalence of Salmonella infection in humans in contact with sheep and goats (28%) was significantly higher than its prevalence in people having a history of contact with animals other than sheep and goats (10%) and those having no history of animal contact (7.3%) (χ2 = 6.728, P ˂ 0.05). The stn, spvC, and sopB genes were detected in 98.1% of the isolates, with a significant, very strong positive correlation for their mutual presence (P < 0.05). Approximately 40.7% of isolates that carried the invA gene had a non-significant, very weak positive correlation with other virulence genes. The most common genotypic virulence profile for all isolates was stn, spvC, and sopB; however, invA, stn, spvC, and sopB was the frequent virulotype for S. Typhimurium, S. Tsevie, S. Apeyeme, and S. Infantis. CONCLUSIONS The present study highlights the role of apparently healthy and diarrheic sheep and goats as reservoirs and sources of human infection with virulent Salmonella serovars in the Suez Canal area.
Collapse
Affiliation(s)
- Hanan Abd El-Halim Hawwas
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| | - Abdel-Karim Mahmoud Aboueisha
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| | - Hanaa Mohamed Fadel
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| | - Heba Sayed El-Mahallawy
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| |
Collapse
|