1
|
Wei X, Luo L, Lu H, Li S, Deng X, Li Z, Gong D, Chen B. Apelin-13's Actions in Controlling Hypertension-Related Cardiac Hypertrophy and the Expressions of Inflammatory Cytokines. Chem Biol Drug Des 2024; 104:e14628. [PMID: 39396917 DOI: 10.1111/cbdd.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
As a key molecule for improving cardiovascular diseases, Apelin-13 was surveyed in this work to explain its actions in controlling inflammation, pyroptosis, and myocardial hypertrophy. First, mouse models with myocardial hypertrophy were established. Then, assessments were made on the pathological variation in the heart of mouse, on the cardiac functions, as well as on the expressions of cardiac hypertrophy markers (β-MHC, ANP, and BNP), inflammatory factors (TNF-α, COX2, IL-6, ICAM-1, and VCAM-1), myocardial cell pyroptosis markers (NLRP3, ASC, c-caspase-1, and GSDMD-N), and Hippo pathway proteins (p-YAP, YAP, LATS1, and p-LATS1) by HE staining, echocardiography scanning, and western blot tests separately. The expressions of such inflammatory factors as in myocardial tissue were acquired by ELISA. After inducing the phenotype of H9c2 cell hypertrophy by noradrenaline, we used CCK-8 kits to know about the activity of H9c2 cells treated with Apelin-13, and performed ɑ-actinin staining to measure the changes in volumes of such cells. As unraveled through this work, Apelin-13 refrained the activation of the Hippo pathway, which in turn attenuated the hypertrophy, inflammation, and pyroptosis of myocardial tissue and H9c2 cells. Hence, Apelin-13 can be considered as a target for hypertension treatment.
Collapse
Affiliation(s)
- Xiaoliang Wei
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Liyun Luo
- Department of Cardiovascular Disease I, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Huifang Lu
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Songbiao Li
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xinlian Deng
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Zhihui Li
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Dong Gong
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Bairong Chen
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
2
|
Cao Z, Li W, Shao Z, Liu X, Zeng Y, Lin P, Lin C, Zhao Y, Li T, Zhao Z, Li X, Zhang Y, Hu B. Apelin ameliorates sepsis-induced myocardial dysfunction via inhibition of NLRP3-mediated pyroptosis of cardiomyocytes. Heliyon 2024; 10:e24568. [PMID: 38356599 PMCID: PMC10864914 DOI: 10.1016/j.heliyon.2024.e24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SMD) is the major cause of death in sepsis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis contributes to the occurrence and development of SMD. Although Apelin confers direct protection against SMD, the potential mechanisms remain unclear. This study aimed to determine whether Apelin protects against SMD via regulation of NLRP3-mediated pyroptosis of cardiomyocytes. Experimental SMD was induced in wild-type (WT) control mice and Apelin knockout (Apelin-/-) mice by cecal ligation and puncture (CLP). Neonatal mouse cardiomyocytes (NMCs) were treated with lipopolysaccharide (LPS) to simulate the physiological environment of SMD in vitro. The expression of Apelin was greatly decreased in the plasma from septic patients and septic mouse heart. Knockout of Apelin aggravated SMD, evidenced by decreased cardiac function, and increased cardiac fibrosis and NLRP3 inflammasome and pyroptosis levels in CLP-treated Apelin-/- mice compared with WT mice. Overexpression of Apelin activated the AMPK pathway and thereby inhibited NLRP3 inflammasome-mediated pyroptosis of NMCs induced by LPS in vitro These protective effects were partially abrogated by AMPK inhibitor. In conclusion, Apelin attenuated SMD by inhibiting NLRP3-mediated pyroptosis via activation of the AMPK pathway. Apelin may serve as a promising therapeutic target for SMD.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinqiang Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Lin
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chuangqiang Lin
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Yuechu Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zichao Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|