1
|
Mehrabani M, Mohammadyar S, Rajizadeh MA, Bejeshk MA, Ahmadi B, Nematollahi MH, Mirtajaddini Goki M, Bahrampour Juybari K, Amirkhosravi A. Boosting therapeutic efficacy of mesenchymal stem cells in pulmonary fibrosis: The role of genetic modification and preconditioning strategies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1001-1015. [PMID: 37605719 PMCID: PMC10440137 DOI: 10.22038/ijbms.2023.69023.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/14/2023] [Indexed: 08/23/2023]
Abstract
Pulmonary fibrosis (PF) is the end stage of severe lung diseases, in which the lung parenchyma is replaced by fibrous scar tissue. The result is a remarkable reduction in pulmonary compliance, which may lead to respiratory failure and even death. Idiopathic pulmonary fibrosis (IPF) is the most prevalent form of PF, with no reasonable etiology. However, some factors are believed to be behind the etiology of PF, including prolonged administration of several medications (e.g., bleomycin and amiodarone), environmental contaminant exposure (e.g., gases, asbestos, and silica), and certain systemic diseases (e.g., systemic lupus erythematosus). Despite significant developments in the diagnostic approach to PF in the last few years, efforts to find more effective treatments remain challenging. With their immunomodulatory, anti-inflammatory, and anti-fibrotic properties, stem cells may provide a promising approach for treating a broad spectrum of fibrotic conditions. However, they may lose their biological functions after long-term in vitro culture or exposure to harsh in vivo situations. To overcome these limitations, numerous modification techniques, such as genetic modification, preconditioning, and optimization of cultivation methods for stem cell therapy, have been adopted. Herein, we summarize the previous investigations that have been designed to assess the effects of stem cell preconditioning or genetic modification on the regenerative capacity of stem cells in PF.
Collapse
Affiliation(s)
- Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sohaib Mohammadyar
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Ahmadi
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Kobra Bahrampour Juybari
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Arian Amirkhosravi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
El-Sawah SG, Rashwan HM, Althobaiti F, Aldhahrani A, Fayad E, Shabana ES, El-Hallous EI, Amen RM. AD-MSCs and BM-MSCs Ameliorating Effects on The Metabolic and Hepato-renal Abnormalities in Type 1 Diabetic Rats. Saudi J Biol Sci 2022; 29:1053-1060. [PMID: 35197774 PMCID: PMC8847940 DOI: 10.1016/j.sjbs.2021.09.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most serious threats in the 21th century throughout the human population that needs to be addressed cautiously. Nowadays, stem cell injection is considered among the most promising protocols for DM therapy; owing to its marked tissues and organs repair capability. Therefore, our 4 weeks study was undertaken to elucidate the probable beneficial effects of two types of adult mesenchymal stem cells (MSCs) on metabolism disturbance and some tissue function defects in diabetic rats. Animals were classified into 4 groups; the control group, the diabetic group, the diabetic group received a single dose of adipose tissue-derived MSCs and the diabetic group received a single dose of bone marrow-derived MSCs. Herein, both MSCs treated groups markedly reduced hyperglycemia resulting from diabetes induction via lowering serum glucose and rising insulin and C-peptide levels, compared to the diabetic group. Moreover, the increased lipid fractions levels were reverted back to near normal values as a consequence to MSCs injection compared to the diabetic untreated rats. Furthermore, both MSCs types were found to have hepato-renal protective effects indicated through the decreased serum levels of both liver and kidney functions markers in the treated diabetic rats. Taken together, our results highlighted the therapeutic benefits of both MSCs types in alleviating metabolic anomalies and hepato-renal diabetic complications.
Collapse
Key Words
- AD-MSCs, Adipose-derived mesenchymal stem cells
- AGEs, Advanced glycation end products
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BM-MSCs, Bone marrow-derived mesenchymal stem cells
- BUN, Blood urea nitrogen
- CD, Cluster of differentiation
- D, Diabetic
- DM, Diabetes mellitus
- DMEM, Dulbecco's modified Eagle's medium
- DN, Diabetic nephropathy
- Diabetes
- Diabetic nephropathy
- FBG, Fasting blood glucose
- FBS, Fetal bovine serum
- HDL-C, High-density lipoprotein cholesterol
- HO-1, Heme-oxygenase 1
- HbA1c, Glycosylated hemoglobin
- Hyperlipidemia
- IPCs, Insulin producing cells
- ISCT, International Society for Cellular Therapy
- LDL-C, Low-density lipoprotein cholesterol
- LPO, Lipid peroxidation
- MSCs
- MSCs, Mesenchymal stem cells
- PBS, Phosphate-buffered saline
- ROS, Reactive oxygen species
- SEM, Standard error of mean
- SPSS, Statistical Package for Social Scientists
- STZ, Streptozotocin
- T1DM, Type 1 diabetes mellitus
- TC, Total cholesterol
- TG, Triglycerides
- TL, Total lipids
- γ-GT, gamma glutamyl transferase
Collapse
Affiliation(s)
- Shady G. El-Sawah
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Hanan M. Rashwan
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Fayez Althobaiti
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Eman Fayad
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - El-Shaimaa Shabana
- Fellow of Biochemistry, Genetic Unit, Children Hospital, Faculty of Medicine, Mansoura University, Egypt
| | | | - Rehab M. Amen
- Biology Department, College of Science, University of Bisha, Bisha 61922, P.O. Box 344, Saudi Arabia
| |
Collapse
|
3
|
Safari S, Eidi A, Mehrabani M, Fatemi MJ, Sharifi AM. Conditioned Medium of Adipose-Derived Mesenchymal Stem Cells as a Promising Candidate to Protect High Glucose-Induced Injury in Cultured C28I2 Chondrocytes. Adv Pharm Bull 2021; 12:632-640. [PMID: 35935054 PMCID: PMC9348542 DOI: 10.34172/apb.2022.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/25/2021] [Accepted: 08/15/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose: The aim of this study was to evaluate the protective effect of conditioned medium derived from human adipose mesenchymal stem cells (CM-hADSCs) on C28I2 chondrocytes against oxidative stress and mitochondrial apoptosis induced by high glucose (HG).
Methods: C28I2 cells were pre-treated with CM-hADSCs for 24 hours followed by HG exposure (75 mM) for 48 hours. MTT assay was used to assess the cell viability. Reactive oxygen species (ROS) and lipid peroxidation were determined by 2,7-dichlorofluorescein diacetate (DCFHDA) and thiobarbituric acid reactive substances (TBARS) assays, respectively. Expressions of glutathione peroxidase 3 (GPX 3), heme oxygenase-1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) were analyzed by RT-PCR. Finally, western blot analysis was used to measure Bax, Bcl-2, cleaved caspase-3, and Nrf-2 expression at protein levels.
Results: CM-hADSCs pretreatment mitigated the cytotoxic effect of HG on C28I2 viability. Treatment also markedly reduced the levels of ROS, lipid peroxidation, and augmented the expression of HO-1, NQO1, and GPx3 genes in HG-exposed group. CM-ADSCs enhanced Nrf-2 protein expression and reduced mitochondrial apoptosis through reducing Bax/Bcl-2 ratio and Caspase-3 activation.
Conclusion: MSCs, probably through its paracrine effects, declined the deleterious effect of HG on chondrocytes. Hence, therapies based on MSCs secretomes appear to be a promising therapeutic approaches to prevent joint complications in diabetic patients.
Collapse
Affiliation(s)
- Sedighe Safari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Fatemi
- Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and Regenerative Medicine research center, Iran University of Medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|