1
|
Ji H, Lu Y, Liu G, Zhao X, Xu M, Chen M. Role of Decreased Expression of miR-155 and miR-146a in Peripheral Blood of Type 2 Diabetes Mellitus Patients with Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2024; 17:2747-2760. [PMID: 39072343 PMCID: PMC11283243 DOI: 10.2147/dmso.s467409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Objective To Study the Correlations of microRNA-155 (miR-155) and microRNA-146a (miR-146a) Expression in Peripheral Blood of Type 2 Diabetes Mellitus (T2DM) Patients with Diabetic Peripheral Neuropathy (DPN), and Explore the Clinical Value of miR-155 and miR-146a in the Diagnosis and Treatment Outcomes of DPN. Methods The study included 51 T2DM patients without DPN (T2DM group), 49 T2DM patients with DPN (DPN group), and 50 normal controls (NC group). Quantitative real-time PCR was utilized to determine the expression levels of miR-155 and miR-146a. Clinical features and risk factors for DPN were assessed. Multivariate stepwise logistic regression analysis was conducted to confirm whether the expressions of miR-155 and miR-146a could independently predict the risk of DPN. ROC curve analysis evaluated their diagnostic value. Results The T2DM group exhibited significantly lower expression levels of miR-155 and miR-146a compared to the NC group (P < 0.05). Moreover, the DPN group exhibited a significantly decreased expression level of miR-155 and miR-146a compared to the T2DM group (P < 0.01). Multivariate logistic regression analysis indicated that higher levels of miR-155 and miR-146a might serve as protective factors against DPN development. ROC curve analysis revealed that miR-155 (sensitivity 91.8%, specificity 37.3%, AUC 0.641,) and miR-146a (sensitivity 57.1%, specificity 84.3%, AUC 0.722) possess a strong ability to discriminate between T2DM and DPN. Their combined use further enhanced the diagnostic potential of DPN (sensitivity 83.7%, specificity 60.8%, AUC 0.775). A multi-index combination can improve DPN diagnostic efficiency. Conclusion The decreased expression of miR-155 and miR-146a in the peripheral blood of T2DM patients is closely related to the occurrence of DPN, highlighting their potential as valuable biomarkers for diagnosing and prognosticating DPN.
Collapse
Affiliation(s)
- Hua Ji
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - YaTing Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Gui Liu
- Department of Endocrinology, The Second People’s Hospital of Lu’an City, Lu’an City, Anhui Province, People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| |
Collapse
|
2
|
Milcu AI, Anghel FM, Romanescu M, Chis AR, Anghel A, Boruga O. Plasma miR-19b, miR-34a, and miR-146a expression in patients with type 2 diabetes mellitus and cataract: A pilot study. BIOMOLECULES & BIOMEDICINE 2024; 24:537-544. [PMID: 38018996 PMCID: PMC11088884 DOI: 10.17305/bb.2023.9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Cataract is among the most common ocular complications in diabetes mellitus (DM). While microRNA (miRNA) dysregulations in DM have been previously reported, consensus is still lacking concerning miRNA expression in cataract. Furthermore, the miRNA profile in diabetic cataract patients remains largely unexplored, and data on plasma expression levels are limited. Our study aimed to assess the plasma levels of three distinct miRNA species (hsa-miR-19b, hsa-miR-34a, and hsa-miR-146a) implicated in the development of cataract and/or DM.We investigated the circulating miRNA expression in DM patients diagnosed with cataract, compared to a non-DM cataract group. We employed qRT-PCR for relative quantification experiments and subsequently conducted a correlation analysis between miRNA expression levels and clinical characteristics. Our findings reveal that hsa-miR-34a and hsa-miR-146a are differentially expressed in the two cohorts. However, no significant correlation was observed between the clinical variables and miRNA levels. In summary, our results suggest a potential role for hsa-miR-34a and hsa-miR-146a in the biology of diabetic cataract.
Collapse
Affiliation(s)
- Adina Iuliana Milcu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Ophthalmology, Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Ophthalmology, Municipal Emergency Clinical Hospital, Timisoara, Romania
| | - Flavia Medana Anghel
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirabela Romanescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Aimee Rodica Chis
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrei Anghel
- Discipline of Biochemistry, Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Ovidiu Boruga
- Discipline of Ophthalmology, Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Ophthalmology, Municipal Emergency Clinical Hospital, Timisoara, Romania
| |
Collapse
|
3
|
Agnihotri R, Gaur S, Bhat SG. Role of microRNAs in Diabetes-Associated Periodontitis: A Scoping Review. J Int Soc Prev Community Dent 2024; 14:180-191. [PMID: 39055291 PMCID: PMC11268527 DOI: 10.4103/jispcd.jispcd_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024] Open
Abstract
Aim Diabetes mellitus (DM), a metabolic disorder, exhibits a bidirectional relationship with periodontitis (PD), and recently, microRNAs (miRNAs) were associated with their progression. This review aims to assess the role of miRNAs in the pathogenesis of DM-associated PD and their plausible application as a biomarker for PD in individuals with DM. Materials and Methods The search conducted until September 2023 on Medline (Pubmed), Scopus, Embase, and Web of Science using the keywords "microRNA," "miRNA," or "miR," combined with "Diabetes" and "PD" yielded 100 articles. Only research focusing on the role of miRNAs in the pathogenesis of DM-associated PD and their potential application as biomarkers for both conditions were included. Finally, 14 studies were assessed for any bias, and the collected data included study design, sample size, participant groups, age, sample obtained, PD severity, miRNAs examined, clinical and biochemical parameters related to DM and PD, and primary outcomes. Results In vivo studies indicated altered expression of miRNAs-146a, -146b, -155, -200b, -203, and -223, specifically in the comorbid subjects with both conditions. Animal, ex vivo, and in vitro studies demonstrated altered expression of miRNAs-126, -147, -31, -25-3p, -508-3p, -214, 124-3p, -221, -222, and the SIRT6-miR-216/217 axis. These miRNAs impact innate and adaptive immune mechanisms, oxidative stress, hyperglycemia, and insulin sensitivity, thereby promoting periodontal destruction in DM. miRNA-146a emerges as a reliable biomarker of PD in DM, whereas miRNA-155 is a consistent predictor of PD in subjects without DM. Conclusions miRNAs exert influence on immuno-inflammation in DM-associated PD. Although they can be biomarkers of PD and DM, their clinical utility is hindered by the absence of standardized tests to evaluate their sensitivity and specificity. Moreover, there has been limited exploration of the role of miRNAs in DM-associated PD through human studies. Future clinical trials are warranted to address this gap, focusing on standardizing sample collection, miRNA sources, and detection methods. This approach will enable the identification of specific miRNAs for DM-associated PD.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Xu X, Yu C, He H, Pan X, Hou A, Feng J, Tan R, Gong L, Chen J, Ren J. MiR-337-3p improves metabolic-associated fatty liver disease through regulation of glycolipid metabolism. iScience 2023; 26:108352. [PMID: 38026196 PMCID: PMC10665915 DOI: 10.1016/j.isci.2023.108352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Epigenetic regulations play crucial roles in the pathogenesis of metabolic-associated fatty liver disease; therefore, elucidating the biological functions of differential miRNAs helps us to understand the pathogenesis. Herein, we discovered miR-337-3p was decreased in patients with NAFLD from Gene Expression Omnibus dataset, which was replicated in various cell and mouse models with lipid disorders. Subsequently, overexpression of miR-337-3p in vivo could ameliorate hepatic lipid accumulation, reduce fasting blood glucose, and improve insulin resistance. Meanwhile, we determined miR-337-3p might influence multiple genes involved in glycolipid metabolism through mass spectrometry detection, bioinformatics analysis, and experimental verification. Finally, we selected HMGCR as a representative example to investigate the molecular mechanism of miR-337-3p regulating these genes, where the seed region of miR-337-3p bound to 3'UTR of HMGCR to inhibit HMGCR translation. In conclusion, we discovered a new function of miR-337-3p in glycolipid metabolism and that might be a new therapeutic target of MAFLD.
Collapse
Affiliation(s)
- Xiaoding Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chuwei Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hongxiu He
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiangyu Pan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Aijun Hou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jianxun Feng
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Likun Gong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jing Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jin Ren
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Li X, Dai A, Tran R, Wang J. Text mining-based identification of promising miRNA biomarkers for diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1195145. [PMID: 37560309 PMCID: PMC10407569 DOI: 10.3389/fendo.2023.1195145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction MicroRNAs (miRNAs) are small, non-coding RNAs that play a critical role in diabetes development. While individual studies investigating the mechanisms of miRNA in diabetes provide valuable insights, their narrow focus limits their ability to provide a comprehensive understanding of miRNAs' role in diabetes pathogenesis and complications. Methods To reduce potential bias from individual studies, we employed a text mining-based approach to identify the role of miRNAs in diabetes and their potential as biomarker candidates. Abstracts of publications were tokenized, and biomedical terms were extracted for topic modeling. Four machine learning algorithms, including Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machines (SVM), were employed for diabetes classification. Feature importance was assessed to construct miRNA-diabetes networks. Results Our analysis identified 13 distinct topics of miRNA studies in the context of diabetes, and miRNAs exhibited a topic-specific pattern. SVM achieved a promising prediction for diabetes with an accuracy score greater than 60%. Notably, miR-146 emerged as one of the critical biomarkers for diabetes prediction, targeting multiple genes and signal pathways implicated in diabetic inflammation and neuropathy. Conclusion This comprehensive approach yields generalizable insights into the network miRNAs-diabetes network and supports miRNAs' potential as a biomarker for diabetes.
Collapse
Affiliation(s)
- Xin Li
- Central Hospital Affiliated to Shandong First Medical University, Ophthalmology Department, Jinan, Shandong, China
| | - Andrea Dai
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Richard Tran
- University of Chicago, Master’s Program in Computer Science, Chicago, IL, United States
| | - Jie Wang
- Syracuse University, Applied Data Science Program, Syracuse, NY, United States
- MDSight, LLC, Brookeville, MD, United States
| |
Collapse
|
6
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
7
|
Ghaffari M, Razi S, Zalpoor H, Nabi-Afjadi M, Mohebichamkhorami F, Zali H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J Diabetes Res 2023; 2023:2587104. [PMID: 36911496 PMCID: PMC10005876 DOI: 10.1155/2023/2587104] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.
Collapse
Affiliation(s)
- Mahyar Ghaffari
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehram, Iran
| |
Collapse
|
8
|
MIR146A and ADIPOQ genetic variants are associated with birth weight in relation to gestational age: a cohort study. J Assist Reprod Genet 2022; 39:1873-1886. [PMID: 35689735 PMCID: PMC9428086 DOI: 10.1007/s10815-022-02532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To evaluate the genetic variants related to polycystic ovary syndrome (PCOS) and its metabolic complications in girls born small for gestational age (SGA). DESIGN Retrospective birth cohort study. MATERIALS AND METHODS We evaluated 66 women of reproductive age born at term (37-42 weeks of gestational age) according to the birth weight in relation to gestational age: 26 SGA and 40 AGA (Adequate for gestational age). Anthropometric and biochemical characteristics were measured, as well as the PCOS prevalence. We analyzed 48 single nucleotide polymorphisms (SNPs) previously associated with PCOS and its comorbidities using TaqMan Low-Density Array (TLDA). miRNet and STRING databases were used to predict target and disease networks. RESULTS Anthropometric and biochemical characteristics did not differ between the SGA and AGA groups, as well as insulin resistance and PCOS prevalence. Two SNPs were not in Hardy-Weinberg equilibrium, the rs2910164 (MIR146A C > G) and rs182052 (ADIPOQ G > A). The rs2910164 minor allele frequency (MAF) was increased in SGA (OR, 2.77; 95%; CI, 1.22-6.29), while the rs182052 was increased AGA (OR, 0.34; 95%; CI, 0.13 - 0.88). The alleles related to reduced miRNA-146a (C) and ADIPOQ (A) activity showed increased frequency in SGA. The mature miR-146a targets 319 genes, been the CXCR4, TMEM167A and IF144L common targets and contributes to PCOS. The ADIPOQ main protein interactions were ERP44, PPARGCIA and CDH13. CONCLUSIONS The miR-146a (rs2910164) and ADIPOQ (rs182052) allelic variants are related to birth weight in SGA and may predict health-related outcomes, such as PCOS and obesity risk.
Collapse
|
9
|
Opazo-Ríos L, Tejera-Muñoz A, Soto Catalan M, Marchant V, Lavoz C, Mas Fontao S, Moreno JA, Fierro Fernandez M, Ramos R, Suarez-Alvarez B, López-Larrea C, Ruiz-Ortega M, Egido J, Rodrigues-Díez RR. Kidney microRNA Expression Pattern in Type 2 Diabetic Nephropathy in BTBR Ob/Ob Mice. Front Pharmacol 2022; 13:778776. [PMID: 35370692 PMCID: PMC8966705 DOI: 10.3389/fphar.2022.778776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is the main leading cause of chronic kidney disease worldwide. Although remarkable therapeutic advances have been made during the last few years, there still exists a high residual risk of disease progression to end-stage renal failure. To further understand the pathogenesis of tissue injury in this disease, by means of the Next-Generation Sequencing, we have studied the microRNA (miRNA) differential expression pattern in kidneys of Black and Tan Brachyury (BTBR) ob/ob (leptin deficiency mutation) mouse. This experimental model of type 2 diabetes and obesity recapitulates the key histopathological features described in advanced human DN and therefore can provide potential useful translational information. The miRNA-seq analysis, performed in the renal cortex of 22-week-old BTBR ob/ob mice, pointed out a set of 99 miRNAs significantly increased compared to non-diabetic, non-obese control mice of the same age, whereas no miRNAs were significantly decreased. Among them, miR-802, miR-34a, miR-132, miR-101a, and mir-379 were the most upregulated ones in diabetic kidneys. The in silico prediction of potential targets for the 99 miRNAs highlighted inflammatory and immune processes, as the most relevant pathways, emphasizing the importance of inflammation in the pathogenesis of kidney damage associated to diabetes. Other identified top canonical pathways were adipogenesis (related with ectopic fatty accumulation), necroptosis (an inflammatory and regulated form of cell death), and epithelial-to-mesenchymal transition, the latter supporting the importance of tubular cell phenotype changes in the pathogenesis of DN. These findings could facilitate a better understanding of this complex disease and potentially open new avenues for the design of novel therapeutic approaches to DN.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Concepción, Chile
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Manuel Soto Catalan
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Mas Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marta Fierro Fernandez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Viral Vectors Service, Madrid, Spain
| | - Ricardo Ramos
- Unidad de Genómica Fundación Parque Científico de Madrid, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Raúl R. Rodrigues-Díez
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
10
|
Rasoulinejad SA, Akbari A, Nasiri K. Interaction of miR-146a-5p with oxidative stress and inflammation in complications of type 2 diabetes mellitus in male rats: Anti-oxidant and anti-inflammatory protection strategies in type 2 diabetic retinopathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1078-1086. [PMID: 34804425 PMCID: PMC8591764 DOI: 10.22038/ijbms.2021.56958.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study aimed to evaluate the role of miR-146a-5p in the pathogenesis of diabetic retinopathy and its interaction with oxidative stress and inflammation in the ocular tissue of rats with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Twenty adult male Sprague Dawley rats (220 ±20 g) were randomly assigned to control and diabetic groups. A high-fat diet was used for three months to induce T2DM which was confirmed by the HOMA-IR index. After that, the levels of glucose and insulin in serum, HOMA-IR as an indicator of insulin resistance, the ocular level of oxidative markers, TNF-α, IL-1β, MIPs, and MCP-1 along with ocular gene expression of NF-κB, Nrf2, and miR-146a-5p were evaluated. RESULTS The level of lipid peroxidation along with metabolic and inflammatory factors significantly increased and the antioxidant enzyme activity significantly decreased in diabetic rats (P<0.05). The ocular expression of NF-κB and TNF-α increased and Nrf2, HO-1, and miR-146a-5p expression decreased in diabetic rats (P<0.05). In addition, a negative correlation between miR-146a-5p expression with NF-κB and HOMA-IR and a positive correlation between miR-146a-5p with Nrf2 were observed. CONCLUSION It can be concluded that miR-146a-5p may regulate Nrf2 and NF-κB expression and inflammation and oxidative stress in the ocular tissue of diabetic rats.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran,Corresponding author: Khadijeh Nasiri. Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran. Babolsar, Iran.
| |
Collapse
|
11
|
Zeinali F, Aghaei Zarch SM, Jahan-Mihan A, Kalantar SM, Vahidi Mehrjardi MY, Fallahzadeh H, Hosseinzadeh M, Rahmanian M, Mozaffari-Khosravi H. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study. PLoS One 2021; 16:e0251697. [PMID: 34077450 PMCID: PMC8171947 DOI: 10.1371/journal.pone.0251697] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing dramatically worldwide. Dysregulation of microRNA (miRNA) as key regulators of gene expression, has been reported in numerous diseases including diabetes. The aim of this study was to investigate the expression levels of miRNA-122, miRNA-126-3p and miRNA-146a in diabetic and pre-diabetic patients and in healthy individuals, and to determine whether the changes in the level of these miRNAs are reliable biomarkers in diagnosis, prognosis, and pathogenesis of T2DM. Additionally, we examined the relationship between miRNA levels and plasma concentrations of inflammatory factors including tumor necrosis factor alpha (TNF-α) and interleukin 6 (Il-6) as well as insulin resistance. In this case-control study, participants (n = 90) were allocated to three groups (n = 30/group): T2DM, pre-diabetes and healthy individuals as control (males and females, age: 25–65, body mass index: 25–35). Expression of miRNA was determined by real-time polymerase chain reaction (RT-PCR). Furthermore, plasma concentrations of TNF-α, IL-6 and fasting insulin were measured by enzyme-linked immunosorbent assay. Homeostatic model assessment for insulin resistance (HOMA-IR) was calculated as an indicator of insulin resistance. MiRNA-122 levels were higher while miRNA-126-3p and miRNA-146a levels were lower in T2DM and pre-diabetic patients compared to control (p<0.05). Furthermore, a positive correlation was found between miRNA-122 expression and TNF-α (r = 0.82), IL-6 (r = 0.83) and insulin resistance (r = 0.8). Conversely, negative correlations were observed between miRNA-126-3p and miRNA-146a levels and TNF-α (r = -0.7 and r = -0.82 respectively), IL-6 (r = -0.65 and r = -0.78 respectively) as well as insulin resistance (r = -0.67 and r = -0.78 respectively) (all p<0.05). Findings of this study suggest the miRNAs can potentially contribute to the pathogenesis of T2DM. Further studies are required to examine the reproducibility of these findings.
Collapse
Affiliation(s)
- Fahime Zeinali
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, United States of America
| | - Seyed Mehdi Kalantar
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Clinical and Research Center of Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- * E-mail:
| |
Collapse
|
12
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
13
|
Zhu H, Leung SW. MicroRNA biomarkers of type 2 diabetes: A protocol for corroborating evidence by computational genomics and meta-analyses. PLoS One 2021; 16:e0247556. [PMID: 33822793 PMCID: PMC8023490 DOI: 10.1371/journal.pone.0247556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Few microRNAs were found consistently dysregulated in type 2 diabetes (T2D) that would gain confidence from Big Pharma to develop diagnostic or therapeutic biomarkers. This study aimed to corroborate evidence from eligible microRNAs-T2D association studies according to stringent quality criteria covering both biological and statistical significance in T2D for biomarker development. METHODS AND ANALYSES Controlled microRNA expression profiling studies on human with T2D will be retrieved from PubMed, ScienceDirect, and Embase for selecting the statistically significant microRNAs according to pre-specified search strategies and inclusion criteria. Multiple meta-analyses with restricted maximum-likelihood estimation and empirical Bayes estimation under the random-effects model will be conducted by metafor package in R. Subgroup and sensitivity analyses further examine the microRNA candidates for their disease specificity, tissue specificity, blood fraction specificity, and statistical robustness of evidence. Biologically relevant microRNAs will then be selected through genomic database corroboration. Their association with T2D is further measured by area under the curve (AUC) of receive operating characteristic (ROC). Meta-analysis of AUC of potential biomarkers will also be conducted. Enrichment analysis on potential microRNA biomarkers and their target genes will be performed by iPathwayGuide and clusterProfiler, respectively. The corresponding reporting guidelines will be used to assess the quality of included studies according to their profiling methods (microarray, RT-PCR, and RNA-Seq). ETHICS AND DISSEMINATION No ethics approval is required since this study does not include identifiable personal patient data. PROTOCOL REGISTRATION NUMBER CRD42017081659.
Collapse
Affiliation(s)
- Hongmei Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-wai Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
14
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
15
|
Roganović J. Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19. Med Hypotheses 2021; 146:110448. [PMID: 33338955 PMCID: PMC7836676 DOI: 10.1016/j.mehy.2020.110448] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is able to produce an excessive host immune reaction and may leads to severe disease- a life-threatening condition occurring more often in patients suffering from comorbidities such as hypertension, diabetes and obesity. Infection by human corona viruses highly depends on host microRNA (miR) involved in regulation of host innate immune response and inflammation-modulatory miR-146a is among the first miRs induced by immune reaction to a virus. Moreover, recent analysis showed that miR-146 is predicted to target at the SARS-CoV-2 genome. As the dominant regulator of Toll-like receptors (TLRs) downstream signaling, miR-146a may limit excessive inflammatory response to virus. Downregulation of circulating miR-146a was found in diabetes, obesity and hypertension and it is reflected by enhanced inflammation and fibrosis, systemic effects accompanying severe COVID-19. Thus it could be hypothesized that miR-146a deficiency may contribute to severe COVID-19 state observed in diabetes, obesity and hypertension but further investigations are needed.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
16
|
miR-146a regulates insulin sensitivity via NPR3. Cell Mol Life Sci 2020; 78:2987-3003. [PMID: 33206203 PMCID: PMC8004521 DOI: 10.1007/s00018-020-03699-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
The pathogenesis of obesity-related metabolic diseases has been linked to the inflammation of white adipose tissue (WAT), but the molecular interconnections are still not fully understood. MiR-146a controls inflammatory processes by suppressing pro-inflammatory signaling pathways. The aim of this study was to characterize the role of miR-146a in obesity and insulin resistance. MiR-146a-/- mice were subjected to a high-fat diet followed by metabolic tests and WAT transcriptomics. Gain- and loss-of-function studies were performed using human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Compared to controls, miR-146a-/- mice gained significantly more body weight on a high-fat diet with increased fat mass and adipocyte hypertrophy. This was accompanied by exacerbated liver steatosis, insulin resistance, and glucose intolerance. Likewise, adipocytes transfected with an inhibitor of miR-146a displayed a decrease in insulin-stimulated glucose uptake, while transfecting miR-146a mimics caused the opposite effect. Natriuretic peptide receptor 3 (NPR3) was identified as a direct target gene of miR-146a in adipocytes and CRISPR/Cas9-mediated knockout of NPR3 increased insulin-stimulated glucose uptake and enhanced de novo lipogenesis. In summary, miR-146a regulates systemic and adipocyte insulin sensitivity via downregulation of NPR3.
Collapse
|
17
|
Lo WY, Wang SJ, Wang HJ. Non-canonical Interaction Between O-Linked N-Acetylglucosamine Transferase and miR-146a-5p Aggravates High Glucose-Induced Endothelial Inflammation. Front Physiol 2020; 11:1091. [PMID: 33192537 PMCID: PMC7662465 DOI: 10.3389/fphys.2020.01091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Aims: Increased O-GlcNAc transferase (OGT)–induced O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification is linked with diabetic complications. MicroRNA-146a-5p (miR-146a-5p) is a negative inflammatory regulator and is downregulated in diabetes. Here, we investigated the interaction between miR-146a-5p and OGT. Methods: Human aortic endothelial cells (HAECs) were stimulated with high glucose (25 mM) and glucosamine (25 mM) for 24 h. Western blot, real time PCR, bioinformatics analysis, luciferase reporter assay, miR-146a-5p mimic/inhibitor transfection, siRNA OGT transfection, miR-200a/200b mimic transfection, and OGT pharmacological inhibition (ST045849) were performed. The aorta from miR-146a-5p mimic-treated db/db mice were examined by immunohistochemistry staining. Results: HG and glucosamine upregulated OGT mRNA and protein expression, protein O-GlcNAcylation, and IL-6 mRNA and protein expression. Real time PCR analysis found that miR-146a-5p was decreased in HG- and glucosamine-stimulated HAECs. This suggested that OGT-induced protein O-GlcNAcylation as a mechanism to downregulate miR-146a-5p. Bioinformatic miR target analysis excluded miR-146a-5p as a post-transcriptional regulator of OGT. However, a luciferase reporter assay confirmed that miR-146a-5p mimic bound to 3′-UTR of human OGT mRNA, indicating that OGT is a non-canonical target of miR-146a-5p. Transfection with miR-146a-5p mimic and inhibitor confirmed that miR-146a-5p regulated OGT/protein O-GlcNAcylation/IL-6 expression levels. Furthermore, OGT siRNA transfection, miR-200a/miR-200b mimic transfection, and ST045849 increased HG-induced miR-146a-5p expression levels, indicating that HG-induced miR-146a-5p downregulation is partially mediated through OGT-mediated protein O-GlcNAcylation. In vivo, intravenous injections of miR-146a mimic decreased endothelial OGT and IL6 expression in db/db mice. Conclusion: A non-canonical positive feedback interaction between miR-146a-5p and OGT is involved in a vicious cycle to aggravate HG-induced vascular complications.
Collapse
Affiliation(s)
- Wan-Yu Lo
- Cardiovascular and Translational Medicine Laboratory, Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Shou-Jie Wang
- Cardiovascular and Translational Medicine Laboratory, Department of Biotechnology, Hungkuang University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Huang-Joe Wang
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Raghavan S, Malayaperumal S, Mohan V, Balasubramanyam M. A comparative study on the cellular stressors in mesenchymal stem cells (MSCs) and pancreatic β-cells under hyperglycemic milieu. Mol Cell Biochem 2020; 476:457-469. [PMID: 32997307 DOI: 10.1007/s11010-020-03922-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022]
Abstract
β-cell dysfunction is a critical determinant for both type 1 diabetes and type 2 diabetes and β-cells are shown to be highly susceptible to cellular stressors. Mesenchymal stem cells (MSCs) on the other hand are known to have immunomodulatory potential and preferred in clinical applications. However, there is paucity of a comparative study on these cells in relation to several cellular stressors in response to hyperglycemia and this forms the rationale for the present study. INS1 β-cells and MSCs were subjected to high-glucose treatment without and with Metformin, Lactoferrin, or TUDCA and assessed for stress signaling alterations using gene expression, protein expression, as well as functional read-outs. Compared to the untreated control cells, INS1 β-cells or MSCs treated with high glucose showed significant increase in mRNA expressions of ER stress, senescence, and proinflammation. This was accompanied by increased miR146a target genes and decreased levels of SIRT1, NRF2, and miR146a in both the cell types. Consistent with the mRNA results, protein expression levels do reflect the same alterations. Notably, the alterations are relatively less extent in MSCs compared to INS1 β-cells. Interestingly, three different agents, viz., Metformin, Lactoferrin, or TUDCA, were found to overcome the high glucose-induced cellular stresses in a concerted and inter-linked way and restored the proliferation and migration capacity in MSCs as well as normalized the glucose-stimulated insulin secretion in INS1 β-cells. While our study gives a directionality for potential supplementation of metformin/lactoferrin/TUDCA in optimization protocols of MSCs, we suggest that in vitro preconditioning of MSCs with such factors should be further explored with in-depth investigations to harness and enhance the therapeutic capacity/potential of MSCs.
Collapse
Affiliation(s)
- Srividhya Raghavan
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Sarubala Malayaperumal
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India. .,Medical and Health Sciences (MHS), SRM Institute of Science and Technology (SRMIST), SRM Nagar, Kattankulathur, Kanchipuram, Chennai, 603 203, India.
| |
Collapse
|
19
|
Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci 2020; 21:ijms21134725. [PMID: 32630698 PMCID: PMC7369709 DOI: 10.3390/ijms21134725] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic β-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic β-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins’ impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.
Collapse
|
20
|
Takahara S, Lee SY, Iwakura T, Oe K, Fukui T, Okumachi E, Arakura M, Sakai Y, Matsumoto T, Matsushita T, Kuroda R, Niikura T. Altered microRNA profile during fracture healing in rats with diabetes. J Orthop Surg Res 2020; 15:135. [PMID: 32264968 PMCID: PMC7140490 DOI: 10.1186/s13018-020-01658-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression. There is increasing evidence that some miRNAs are involved in the pathology of diabetes mellitus (DM) and its complications. We hypothesized that the functions of certain miRNAs and the changes in their patterns of expression may contribute to the pathogenesis of impaired fractures due to DM. Methods In this study, 108 male Sprague–Dawley rats were divided into DM and control groups. DM rats were created by a single intravenous injection of streptozotocin. Closed transverse femoral shaft fractures were created in both groups. On post-fracture days 5, 7, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was conducted with miRNA samples from each group on post-fracture days 5 and 11. The microarray findings were validated by real-time polymerase chain reaction (PCR) analysis at each time point. Results Microarray analysis revealed that, on days 5 and 11, 368 and 207 miRNAs, respectively, were upregulated in the DM group, compared with the control group. The top four miRNAs on day 5 were miR-339-3p, miR451-5p, miR-532-5p, and miR-551b-3p. The top four miRNAs on day 11 were miR-221-3p, miR376a-3p, miR-379-3p, and miR-379-5p. Among these miRNAs, miR-221-3p, miR-339-3p, miR-376a-3p, miR-379-5p, and miR-451-5p were validated by real-time PCR analysis. Furthermore, PCR analysis revealed that these five miRNAs were differentially expressed with dynamic expression patterns during fracture healing in the DM group, compared with the control group. Conclusions Our findings will aid in understanding the pathology of impaired fracture healing in DM and may support the development of molecular therapies using miRNAs for the treatment of impaired fracture healing in patients with DM.
Collapse
Affiliation(s)
- Shunsuke Takahara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Orthopaedic Surgery, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, 675-8555, Japan
| | - Sang Yang Lee
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Takashi Iwakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Etsuko Okumachi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Michio Arakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
21
|
Beck R, Chandi M, Kanke M, Stýblo M, Sethupathy P. Arsenic is more potent than cadmium or manganese in disrupting the INS-1 beta cell microRNA landscape. Arch Toxicol 2019; 93:3099-3109. [PMID: 31555879 DOI: 10.1007/s00204-019-02574-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Diabetes is a metabolic disorder characterized by fasting hyperglycemia and impaired glucose tolerance. Laboratory and population studies have shown that inorganic arsenic (iAs) can impair these pathways. Other metals including cadmium (Cd) and manganese (Mn) have also been linked to diabetes phenotypes. MicroRNAs, short non-coding RNAs that regulate gene expression, have emerged as potential drivers of metabolic dysfunction. MicroRNAs responsive to metal exposures in vitro have also been reported in independent studies to regulate insulin secretion in vivo. We hypothesize that microRNA dysregulation may associate with and possibly contribute to insulin secretion impairment upon exposure to iAs, Cd, or Mn. We exposed insulin secreting rat insulinoma cells to non-cytotoxic concentrations of iAs (1 µM), Cd (5 µM), and Mn (25 µM) for 24 h followed by small RNA sequencing to identify dysregulated microRNAs. RNA sequencing was then performed to further investigate changes in gene expression caused by iAs exposure. While all three metals significantly inhibited glucose-stimulated insulin secretion, high-throughput sequencing revealed distinct microRNA profiles specific to each exposure. One of the most significantly upregulated microRNAs post-iAs treatment is miR-146a (~ + 2-fold), which is known to be activated by nuclear factor κB (NF-κB) signaling. Accordingly, we found by RNA-seq analysis that genes upregulated by iAs exposure are enriched in the NF-κB signaling pathway and genes down-regulated by iAs exposure are enriched in miR-146a binding sites and are involved in regulating beta cell function. Notably, iAs exposure caused a significant decrease in the expression of Camk2a, a calcium-dependent protein kinase that regulates insulin secretion, has been implicated in type 2 diabetes, and is a likely target of miR-146a. Further studies are needed to elucidate potential interactions among NF-kB, miR-146a, and Camk2a in the context of iAs exposure.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Mohit Chandi
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Roy S, Awasthi A. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. Int Rev Immunol 2019; 38:232-245. [PMID: 31411520 DOI: 10.1080/08830185.2019.1648454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Noncoding RNA comprises of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that are abundantly present in mammalian transcriptome. These noncoding RNAs have been implicated in multiple biological processes through the regulation of gene expression. Each of these noncoding RNAs were found to have multiple genes targets. Emerging literature indicated the role of noncoding RNAs in shaping the immune responses which include immune cell development, helper T (Th) cell differentiation as well as maintenance of immune homeostasis by inducing the interplay between effector and regulatory T cells. Dysregulated expression and functions of noncoding RNAs in the immune system leads to aberrations in immune response that lead to the induction of tissue inflammation in autoimmune diseases. In this review, we summarize the current advances of post-transcriptional regulation, focusing on the functions of noncoding RNAs (miRNAs and lncRNAs) during differentiation of Th cells in tissue inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Lab, Translational Health Science and Technology Institute , Faridabad , India
| | - Amit Awasthi
- Immuno-Biology Lab, Translational Health Science and Technology Institute , Faridabad , India
| |
Collapse
|
23
|
Ghasemi H, Sabati Z, Ghaedi H, Salehi Z, Alipoor B. Circular RNAs in β-cell function and type 2 diabetes-related complications: a potential diagnostic and therapeutic approach. Mol Biol Rep 2019; 46:5631-5643. [PMID: 31302804 DOI: 10.1007/s11033-019-04937-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Recent investigations have indicated that altered expression of non-coding RNAs (ncRNAs) could be associated with human diseases such as type 2 diabetes (T2D). Circular RNAs (circRNAs) are a new discovered class of ncRNAs with unique structural characteristics that involved in several molecular and cellular functions. Exploring of the circulating circRNAs as a reliable non-invasive biomarker for monitoring and diagnosing of human diseases has grown significantly. However, the molecular functions and clinical relevance of circRNAs are not yet well clarified in T2D. Accordingly, in this review, the involvement of circRNAs in the β-cell function and T2D-related complications is highlighted. The study also shed light on the possibility of using circRNAs as a biomarker for T2D diagnosis.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Zolfaghar Sabati
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zaker Salehi
- Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
24
|
MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19123705. [PMID: 30469501 PMCID: PMC6321520 DOI: 10.3390/ijms19123705] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022] Open
Abstract
The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3′UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.
Collapse
|
25
|
Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int J Mol Sci 2018; 19:ijms19113608. [PMID: 30445764 PMCID: PMC6275070 DOI: 10.3390/ijms19113608] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally. They are involved in the regulation of physiological processes, such as adaptation to physical exercise, and also in disease settings, such as systemic arterial hypertension (SAH), type 2 diabetes mellitus (T2D), and obesity. In SAH, microRNAs play a significant role in the regulation of key signaling pathways that lead to the hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, inflammation, proliferation, and phenotypic change in smooth muscle cells, and the hyperactivation of the sympathetic nervous system. MicroRNAs are also involved in the regulation of insulin signaling and blood glucose levels in T2D, and participate in lipid metabolism, adipogenesis, and adipocyte differentiation in obesity, with specific microRNA signatures involved in the pathogenesis of each disease. Many studies report the benefits promoted by exercise training in cardiovascular diseases by reducing blood pressure, glucose levels, and improving insulin signaling and lipid metabolism. The molecular mechanisms involved, however, remain poorly understood, especially regarding the participation of microRNAs in these processes. This review aimed to highlight microRNAs already known to be associated with SAH, T2D, and obesity, as well as their possible regulation by exercise training.
Collapse
|