1
|
Zakaria EM, Mohammed E, Alsemeh AE, Eltaweel AM, Elrashidy RA. Multiple-heated cooking oil promotes early hepatic and renal senescence in adult male rats: the potential regenerative capacity of oleuropein. Toxicol Mech Methods 2024; 34:936-953. [PMID: 38845370 DOI: 10.1080/15376516.2024.2365431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
For economic purposes, cooking oil is repeatedly heated in food preparation, which imposes serious health threats. This study investigated the detrimental effects of multiple-heated cooking oil (MHO) on hepatic and renal tissues with particular focusing on cellular senescence (CS), and the potential regenerative capacity of oleuropein (OLE). Adult male rats were fed MHO-enriched diet for 8 weeks and OLE (50 mg/kg, PO) was administered daily for the last four weeks. Liver and kidney functions and oxidative stress markers were measured. Cell cycle markers p53, p21, cyclin D, and proliferating cell nuclear antigen (PCNA) were evaluated in hepatic and renal tissues. Tumor necrosis factor-α (TNF-α) and Bax were assessed by immunohistochemistry. General histology and collagen deposition were also examined. MHO disturbed hepatic and renal structures and functions. MHO-fed rats showed increased oxidative stress, TNF-α, Bax, and fibrosis in liver and kidney tissues. MHO also enhanced the renal and hepatic expression of p53, p21, cyclin D and PCNA. On the contrary, OLE mitigated MHO-induced oxidative stress, inflammatory burden, apoptotic and fibrotic changes. OLE also suppressed CS and preserved kidney and liver functions. Collectively, OLE displays marked regenerative capacity against MHO-induced hepatic and renal CS, via its potent antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Ebaa Mohammed
- Pharmacology Department, Zagazig University, Zagazig, Egypt
- Medicines Information Center, Zagazig University Hospitals, Zagazig, Egypt
| | | | - Asmaa Monir Eltaweel
- Anatomy and Embryology Department, Zagazig University, Zagazig, Egypt
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Abdellah F, Silarbi T, Zouidi F, Hamden K. Effects of Olea oleaster leaf extract and purified oleuropein on ethanol-induced gastric ulcer in male Wistar rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:996-1004. [PMID: 38911236 PMCID: PMC11193495 DOI: 10.22038/ijbms.2024.76135.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/06/2024] [Indexed: 06/25/2024]
Abstract
Objectives Evaluating the effect of fresh Oleaster leaf extract (OLE) and purified oleuropein (OLR) on ethanol-induced gastric ulcers in rats. HPLC analysis demonstrates the presence of various polyphenol compounds such as ligstroside, luteolin derivative, oleuropein, and comselogoside. Materials and Methods Gastric ulcer was induced by administration of ethanol by the gastric gavage route. The olive leaf extract was analyzed by HPLC-PDA-ESI-MS, and OLR was purified. These two compounds were given 2 hr before gastric ulcer induction by ethanol. Results This study verified that OLE and purified OLR protect from ethanol-induced gastric ulceration and damage, evidenced by the significant decrease in gastric ulcer urea (by 74 and 58% respectively) and stomach mucus content (by 169 and 87% respectively). In addition, the ulcer index (UI) and curative index (CI) levels in the stomach of the rats treated with this supplement were also suppressed by 55 and 46%, respectively. OLE and OLR also decreased the gastric myeloperoxidase (MPO) activity and ameliorated the nitric oxide (NO) content. OLE and OL also ingestion suppressed gastric tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6) rates. Macroscopic and histological findings revealed that OLE and OLR protect from gastric hemorrhage, severe disruption of the gastric mucosa, and neutrophil infiltration. Conclusion Overall, the findings demonstrate that OLE and OLR have both promising potential with regard to the inhibition of gastric hemorrhage and lesions.
Collapse
Affiliation(s)
- Fatiha Abdellah
- Laboratory of Bioresources, Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia
| | - Tayeb Silarbi
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University, Tiaret, Algeria
| | - Ferjeni Zouidi
- Biology Department, Faculty of Sciences and Arts of Muhayil Asir, King Khaled University, Saudi Arabia
| | - Khaled Hamden
- Laboratory of Bioresources, Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia
| |
Collapse
|
3
|
Bejeshk MA, Aminizadeh AH, Rajizadeh MA, Rostamabadi F, Bagheri F, Khaksari M, Azimi M. Ameliorating effects of Acacia arabica and Ocimum basilicum on acetic acid-induced ulcerative colitis model through mitigation of inflammation and oxidative stress. Heliyon 2023; 9:e22355. [PMID: 38058645 PMCID: PMC10696014 DOI: 10.1016/j.heliyon.2023.e22355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the large intestine and rectum. The disease is characterized by oxidative stress and severe inflammation. Research has shown the anti-oxidative and anti-inflammatory effects induced by consuming the Acacia arabia and Ocimum basilicum. The present study aimed to evaluate the effect of treatment with O. basilicum together with A. arabica on healing, inflammation, and oxidative stress in the course of experimental colitis in rats. Methods A total number of 50 male rats were selected and randomly assigned to five groups of 10 rats each. Colitis was induced in rats by enemas with a 4 % acetic acid solution. Four days after the colitis induction, the rats were orally treated for the next 4 days with saline or a combination of A. arabica and O. basilicum (1000 mg/kg) or sulfasalazine (100 mg/kg). Results Acetic acid-induced colitis increased the colon's macroscopic and histopathological damage scores; increased colon levels of MDA (Malondialdehyde), MPO (Myeloperoxidase), TNF-α (Tissue necrosis factor α), IL6 (Interleukin 6), and IL17 (Interleukin 17); and decreased SOD (Superoxide Dismutase), GPx (Glutathione Peroxidase), and IL10 (Interleukin 10) levels in the treated rats compared with the control group (P < 0.001). Overall, a combination of A. arabica and O. basilicum reduced macroscopic and histopathological damage scores (P < 0.01) of the colon, and MDA, MPO, TNF-α, IL6 (P < 0.001), and IL17 (P < 0.01) levels of the colon. Furthermore, it increased SOD, GPx, and IL10 levels compared to the colitis group (P < 0.01). Conclusion A. arabica and O. basilicum have improving effects on UC by reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Abbas Bejeshk
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Azimi
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Grubić Kezele T, Ćurko-Cofek B. Neuroprotective Panel of Olive Polyphenols: Mechanisms of Action, Anti-Demyelination, and Anti-Stroke Properties. Nutrients 2022; 14:4533. [PMID: 36364796 PMCID: PMC9654510 DOI: 10.3390/nu14214533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Neurological diseases such as stroke and multiple sclerosis are associated with high morbidity and mortality, long-term disability, and social and economic burden. Therefore, they represent a major challenge for medical treatment. Numerous evidences support the beneficial effects of polyphenols from olive trees, which can alleviate or even prevent demyelination, neurodegeneration, cerebrovascular diseases, and stroke. Polyphenols from olive oils, especially extra virgin olive oil, olive leaves, olive leaf extract, and from other olive tree derivatives, alleviate inflammation and oxidative stress, two major factors in demyelination. In addition, they reduce the risk of stroke due to their multiple anti-stroke effects, such as anti-atherosclerotic, antihypertensive, antioxidant, anti-inflammatory, hypocholesterolemic, hypoglycemic, and anti-thrombotic effects. In addition, olive polyphenols have beneficial effects on the plasma lipid profiles and insulin sensitivity in obese individuals. This review provides an updated version of the beneficial properties and mechanisms of action of olive polyphenols against demyelination in the prevention/mitigation of multiple sclerosis, the most common non-traumatic neurological cause of impairment in younger adults, and against cerebral insult with increasing incidence, that has already reached epidemic proportions.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
6
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
7
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
8
|
Liu C, Zeng Y, Wen Y, Huang X, Liu Y. Natural Products Modulate Cell Apoptosis: A Promising Way for the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:806148. [PMID: 35173617 PMCID: PMC8841338 DOI: 10.3389/fphar.2022.806148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease impacting patients’ quality of life and imposing heavy societal and economic burdens. Apoptosis of intestinal epithelial cells (IECs) has been considered an early event during the onset of UC and plays a crucial role in disease development. Thus, effectively inhibiting apoptosis of IECs is of critical significance for the clinical management of UC, presenting a potential direction for the research and development of pharmacotherapeutic agents. In recent years, research on the ameliorative effects of natural products on UC through inhibiting IECs apoptosis has attracted increasing attention and made remarkable achievements in ameliorating UC. In this review, we summarized the currently available research about the anti-apoptotic effects of natural products on UC and its mechanisms involving the death-receptor mediated pathway, mitochondrial-dependent pathway, ERS-mediated pathway, MAPK-mediated pathway, NF-κB mediated pathway, P13k/Akt pathway, JAK/STAT3 pathway, and NLRP3/ASC/Caspase-1 pathway. Hopefully, this review may yield useful information about the anti-apoptotic effects of natural products on UC and their potential molecular mechanisms and provide helpful insights for further investigations.
Collapse
Affiliation(s)
- Chenhao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinggui Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Liu,
| |
Collapse
|
9
|
Dikmen N, Cellat M, Etyemez M, İşler CT, Uyar A, Aydın T, Güvenç M. Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats. Inflammation 2021; 44:2246-2259. [PMID: 34515957 DOI: 10.1007/s10753-021-01496-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is one of the most common causes of death in diseases with septic shock. Oleuropein, one of the important components of olive leaf, has antioxidant and anti-inflammatory effects. The objective of this study was to investigate the effects of oleuropein on lipopolysaccharide (LPS)-induced ALI in rats. Oleuropein was administered to rats at a dose of 200 mg/kg for 20 days and LPS was given through intratracheal administration to induce ALI. The study was terminated after 12 h. The results showed that in the group treated with oleuropein, inflammatory cytokines and oxidative stress decreased in serum, bronchoalveolar lavage fluid (BALF), and lung tissue, and there were significant improvements in the picture of acute interstitial pneumonia (AIP) caused by LPS in histopathological examination. Based on the findings of the present study, oleuropein showed protective effects against LPS-induced ALI.
Collapse
Affiliation(s)
- Nursel Dikmen
- Department of Chest Diseases, Faculty of Medicine, University of Hatay Mustafa Kemal, 31060, Antakya, Hatay, Turkey.
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Tuba Aydın
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Agri, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| |
Collapse
|
10
|
Melguizo-Rodríguez L, de Luna-Bertos E, Ramos-Torrecillas J, Illescas-Montesa R, Costela-Ruiz VJ, García-Martínez O. Potential Effects of Phenolic Compounds That Can Be Found in Olive Oil on Wound Healing. Foods 2021; 10:1642. [PMID: 34359512 PMCID: PMC8307686 DOI: 10.3390/foods10071642] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
The treatment of tissue damage produced by physical, chemical, or mechanical agents involves considerable direct and indirect costs to health care systems. Wound healing involves a series of molecular and cellular events aimed at repairing the defect in tissue integrity. These events can be favored by various natural agents, including the polyphenols in extra virgin olive oil (EVOO). The objective of this study was to review data on the potential effects of different phenolic compounds that can also be found in EVOO on wound healing and closure. Results of in vitro and animal studies demonstrate that polyphenols from different plant species, also present in EVOO, participate in different aspects of wound healing, accelerating this process through their anti-inflammatory, antioxidant, and antimicrobial properties and their stimulation of angiogenic activities required for granulation tissue formation and wound re-epithelialization. These results indicate the potential usefulness of EVOO phenolic compounds for wound treatment, either alone or in combination with other therapies. Human studies are warranted to verify this proposition.
Collapse
Affiliation(s)
- Lucia Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Rebeca Illescas-Montesa
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Victor Javier Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| |
Collapse
|
11
|
Methylglyoxal-Dependent Glycative Stress Is Prevented by the Natural Antioxidant Oleuropein in Human Dental Pulp Stem Cells through Nrf2/Glo1 Pathway. Antioxidants (Basel) 2021; 10:antiox10050716. [PMID: 34062923 PMCID: PMC8147383 DOI: 10.3390/antiox10050716] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.
Collapse
|
12
|
Musa A, Shady NH, Ahmed SR, Alnusaire TS, Sayed AM, Alowaiesh BF, Sabouni I, Al-Sanea MM, Mostafa EM, Youssif KA, Abu-Baih DH, Elrehany MA, Abdelmohsen UR. Antiulcer Potential of Olea europea L. cv. Arbequina Leaf Extract Supported by Metabolic Profiling and Molecular Docking. Antioxidants (Basel) 2021; 10:644. [PMID: 33922167 PMCID: PMC8146603 DOI: 10.3390/antiox10050644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023] Open
Abstract
Gastric ulceration is among the most serious humanpublic health problems. Olea europea L. cv. Arbequina is one of the numerous olive varieties which have scarcely been studied. The reported antioxidant and anti-inflammatory potential of the olive plant make it a potential prophylactic natural product against gastric ulcers. Consequently, the main goal of this study is to investigate the gastroprotective effect of Olea europea L. cv. Arbequina leaf extract. LC-HRMS-based metabolic profiling of the alcoholic extract of Olea europea L. cv. Arbequina led to the dereplication of 18 putative compounds (1-18). In vivo indomethacin-induced gastric ulcer in a rat model was established and the Olea europea extract was tested at a dose of 300 mg kg-1 compared to cimetidine (100 mg kg-1). The assessment of gastric mucosal lesions and histopathology of gastric tissue was done. It has been proved that Olea europea significantly decreased the ulcer index and protected the mucosa from lesions. The antioxidant potential of the extract was evaluated using three in vitro assays, H2O2 scavenging, xanthine oxidase inhibitory, and superoxide radical scavenging activities and showed promising activities. Moreover, an in silico based study was performed on the putatively dereplicated compounds, which highlighted that 3-hydroxy tyrosol (4) and oleacein (18) can target the 5-lipoxygenase enzyme (5-LOX) as a protective mechanism against the pathogenesis of ulceration. Upon experimental validation, both compounds 3-hydroxy tyrosol (HT) and oleacein (OC) (4 and 18, respectively) exhibited a significant in vitro 5-LOX inhibitory activity with IC50 values of 8.6 and 5.8 µg/mL, respectively. The present study suggested a possible implication of O. europea leaves as a potential candidate having gastroprotective, antioxidant, and 5-LOX inhibitory activity for the management of gastric ulcers.
Collapse
Affiliation(s)
- Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia 61111, Egypt;
| | - Shaimaa R. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Taghreed S. Alnusaire
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Bassam F. Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
- Olive Research Center, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
| | - Ibrahim Sabouni
- Olive Research Center, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
| | - Ehab M. Mostafa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11371, Egypt;
| | - Dalia H. Abu-Baih
- Department of Biochemistry and molecular biology, Faculty of Pharmacy, Deraya University, New Minia City, Minia 61111, Egypt; (D.H.A.-B.); (M.A.E.)
| | - Mahmoud A. Elrehany
- Department of Biochemistry and molecular biology, Faculty of Pharmacy, Deraya University, New Minia City, Minia 61111, Egypt; (D.H.A.-B.); (M.A.E.)
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia 61111, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|