1
|
Arrazuria R, Knight CG, Lahiri P, Cobo ER, Barkema HW, De Buck J. Treponema spp. Isolated from Bovine Digital Dermatitis Display Different Pathogenicity in a Murine Abscess Model. Microorganisms 2020; 8:E1507. [PMID: 33007829 PMCID: PMC7600977 DOI: 10.3390/microorganisms8101507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 01/13/2023] Open
Abstract
Digital dermatitis (DD) causes lameness in cattle with substantial negative impact on sustainability and animal welfare. Although several species of Treponema bacteria have been isolated from various DD stages, their individual or synergistic roles in the initiation or development of lesions remain largely unknown. The objective of this study was to compare effects of the three most common Treponema species isolated from DD lesions in cattle (T. phagedenis, T. medium and T. pedis), both as individual and as mixed inoculations, in a murine abscess model. A total of 109 or 5 × 108Treponema spp. were inoculated subcutaneously, and produced abscess was studied after 7 days post infection. There were no synergistic effects when two or three species were inoculated together; however, T. medium produced the largest abscesses, whereas those produced by T. phagedenis were the smallest and least severe. Treponema species were cultured from skin lesions at 7 days post infection and, additionally, from the kidneys of some mice (2/5), confirming systemic infection may occur. Taken together, these findings suggest that T. medium and T. pedis may have more important roles in DD lesion initiation and development than T. phagedenis.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Cameron G. Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada;
| | - Priyoshi Lahiri
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Eduardo R. Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N1N4, Canada; (R.A.); (P.L.); (E.R.C.); (H.W.B.)
| |
Collapse
|
2
|
Tan KH, Seers CA, Dashper SG, Mitchell HL, Pyke JS, Meuric V, Slakeski N, Cleal SM, Chambers JL, McConville MJ, Reynolds EC. Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLoS Pathog 2014; 10:e1003955. [PMID: 24603978 PMCID: PMC3946380 DOI: 10.1371/journal.ppat.1003955] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/12/2014] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis and Treponema denticola are strongly associated with chronic periodontitis. These bacteria have been co-localized in subgingival plaque and demonstrated to exhibit symbiosis in growth in vitro and synergistic virulence upon co-infection in animal models of disease. Here we show that during continuous co-culture a P. gingivalis:T. denticola cell ratio of 6∶1 was maintained with a respective increase of 54% and 30% in cell numbers when compared with mono-culture. Co-culture caused significant changes in global gene expression in both species with altered expression of 184 T. denticola and 134 P. gingivalis genes. P. gingivalis genes encoding a predicted thiamine biosynthesis pathway were up-regulated whilst genes involved in fatty acid biosynthesis were down-regulated. T. denticola genes encoding virulence factors including dentilisin and glycine catabolic pathways were significantly up-regulated during co-culture. Metabolic labeling using 13C-glycine showed that T. denticola rapidly metabolized this amino acid resulting in the production of acetate and lactate. P. gingivalis may be an important source of free glycine for T. denticola as mono-cultures of P. gingivalis and T. denticola were found to produce and consume free glycine, respectively; free glycine production by P. gingivalis was stimulated by T. denticola conditioned medium and glycine supplementation of T. denticola medium increased final cell density 1.7-fold. Collectively these data show P. gingivalis and T. denticola respond metabolically to the presence of each other with T. denticola displaying responses that help explain enhanced virulence of co-infections. Unlike the traditional view that most diseases are caused by infection with a single bacterial species, some chronic diseases including periodontitis result from the perturbation of the natural microbiota and the proliferation of a number of opportunistic pathogens. Both Porphyromonas gingivalis and Treponema denticola have been associated with the progression and severity of chronic periodontitis and have been shown to display synergistic virulence in animal models. However, the underlying mechanisms to these observations are unclear. Here we demonstrate that these two bacteria grow synergistically in continuous co-culture and modify their gene expression. The expression of T. denticola genes encoding known virulence factors and enzymes involved in the uptake and metabolism of the amino acid glycine was up-regulated in co-culture. T. denticola stimulated the proteolytic P. gingivalis to produce free glycine, which T. denticola used as a major carbon source. Our study shows P. gingivalis and T. denticola co-operate metabolically and this helps to explain their synergistic virulence in animal models and their intimate association in vivo.
Collapse
Affiliation(s)
- Kheng H. Tan
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine A. Seers
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen L. Mitchell
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - James S. Pyke
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Vincent Meuric
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Nada Slakeski
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven M. Cleal
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jenny L. Chambers
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
3
|
Orth RKH, O'Brien-Simpson NM, Dashper SG, Reynolds EC. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol Oral Microbiol 2011; 26:229-40. [PMID: 21729244 DOI: 10.1111/j.2041-1014.2011.00612.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chronic periodontitis is characterized by the destruction of the tissues supporting the teeth and has been associated with the presence of a subgingival polymicrobial biofilm containing Porphyromonas gingivalis and Treponema denticola. We have investigated the potential synergistic virulence of P. gingivalis and T. denticola using a murine experimental model of periodontitis. An inoculation regime of four intra-oral doses of 1 × 10(10) P. gingivalis cells induced significant periodontal bone loss compared with loss in sham-inoculated mice, whereas doses of 1 × 10(9) cells or lower did not induce bone loss. Inoculation with T. denticola with up to eight doses of 1 × 10(10) cells failed to induce bone loss in this model. However, four doses of a co-inoculum of a 1 : 1 ratio of P. gingivalis and T. denticola at 5 × 10(8) or 1 × 10(9) total bacterial cells induced the same level of bone loss as four doses of 1 × 10(10) P. gingivalis cells. Co-inoculation induced strong P. gingivalis-specific T-cell proliferative and interferon-γ-dominant cytokine responses, and induced a strong T. denticola-specific interferon-γ dominant cytokine response. Only at the higher co-inoculum dose of 1 × 10(10) total cells was a T. denticola-specific T-cell proliferative response observed. These data show that P. gingivalis and T. denticola act synergistically to stimulate the host immune response and to induce alveolar bone loss in a murine experimental periodontitis model.
Collapse
Affiliation(s)
- R K-H Orth
- Oral Health CRC, Melbourne Dental School and Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
5
|
Porphyromonas gingivalis and Treponema denticola Mixed Microbial Infection in a Rat Model of Periodontal Disease. Interdiscip Perspect Infect Dis 2010; 2010:605125. [PMID: 20592756 PMCID: PMC2879544 DOI: 10.1155/2010/605125] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022] Open
Abstract
Porphyromonas gingivalis and Treponema denticola are periodontal pathogens that express virulence factors associated with the pathogenesis of periodontitis. In this paper we tested the hypothesis that P. gingivalis and T. denticola are synergistic in terms of virulence; using a model of mixed microbial infection in rats. Groups of rats were orally infected with either P. gingivalis or T. denticola or mixed microbial infections for 7 and 12 weeks. P. gingivalis genomic DNA was detected more frequently by PCR than T. denticola. Both bacteria induced significantly high IgG, IgG2b, IgG1, IgG2a antibody levels indicating a stimulation of Th1 and Th2 immune response. Radiographic and morphometric measurements demonstrated that rats infected with the mixed infection exhibited significantly more alveolar bone loss than shaminfected control rats. Histology revealed apical migration of junctional epithelium, rete ridge elongation, and crestal alveolar bone resorption; resembling periodontal disease lesion. These results showed that P. gingivalis and T. denticola exhibit no synergistic virulence in a rat model of periodontal disease.
Collapse
|