1
|
Omojola AD, Akpochafor MO, Adeneye SO, Akala IO, Agboje AA. Estimation of dose and cancer risk to newborn from chest X-ray in South-South Nigeria: a call for protocol optimization. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The use of X-ray as a diagnostic tool for complication and anomaly in the neonatal patient has been helpful, but the effect of radiation on newborn stands to increase their cancer risk. This study aims to determine the mean, 50th percentile (quartile 2 (Q2)), and 75th percentile (quartile 3 (Q3)) entrance surface dose (ESD) from anteroposterior (AP) chest X-ray and to compare our findings with other relevant studies. The study used calibrated thermoluminescent dosimeters (TLDs), which was positioned on the central axis of the patient. The encapsulated TLD chips were held to the patients’ body using paper tape. The mean kilovoltage peak (kVp) and milliampere seconds (mAs) used was 56.63(52–60) and 5.7 (5–6.3). The mean background TLD counts were subtracted from the exposed TLD counts and a calibration factor was applied to determine ESD.
Results
The mean ESDs of the newborn between 1 and 7, 8 and 14, 15 and 21, and 22 and 28 days were 1.09 ± 0.43, 1.15 ± 0.50, 1.19 ± 0.45, and 1.32 ± 0.47 mGy respectively. A one-way ANOVA test shows that there were no differences in the mean doses for the 4 age groups (P = 0.597). The 50th percentile for the 4 age groups was 1.07, 1.26, 1.09, and 1.29 mGy respectively, and 75th percentile were 1.41, 1.55, 1.55, and 1.69 mGy respectively. The mean effective dose (ED) in this study was 0.74 mSv, and the estimated cancer risk was 20.7 × 10−6.
Conclusion
ESD was primarily affected by the film-focus distance (FFD) and the patient field size. The ESD at 75th percentile and ED in this study was higher compared to other national and international studies. The estimated cancer risk to a newborn was below the International Commission on Radiological Protection (ICRP) limit for fatal childhood cancer (2.8 × 10−2Sv−1).
Collapse
|
2
|
Marron M, Brackmann LK, Schwarz H, Hummel-Bartenschlager W, Zahnreich S, Galetzka D, Schmitt I, Grad C, Drees P, Hopf J, Mirsch J, Scholz-Kreisel P, Kaatsch P, Poplawski A, Hess M, Binder H, Hankeln T, Blettner M, Schmidberger H. Identification of Genetic Predispositions Related to Ionizing Radiation in Primary Human Skin Fibroblasts From Survivors of Childhood and Second Primary Cancer as Well as Cancer-Free Controls: Protocol for the Nested Case-Control Study KiKme. JMIR Res Protoc 2021; 10:e32395. [PMID: 34762066 PMCID: PMC8663494 DOI: 10.2196/32395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. OBJECTIVE Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. METHODS We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). RESULTS Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). CONCLUSIONS This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/32395.
Collapse
Affiliation(s)
- Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Heike Schwarz
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | | | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Iris Schmitt
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Grad
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johannes Hopf
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry, Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Moritz Hess
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Marcu LG, Chau M, Bezak E. How much is too much? Systematic review of cumulative doses from radiological imaging and the risk of cancer in children and young adults. Crit Rev Oncol Hematol 2021; 160:103292. [DOI: 10.1016/j.critrevonc.2021.103292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 01/18/2023] Open
|
4
|
Early life ionizing radiation exposure and cancer risks: systematic review and meta-analysis. Pediatr Radiol 2021; 51:45-56. [PMID: 32910229 DOI: 10.1007/s00247-020-04803-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Ionizing radiation use for medical diagnostic purposes has substantially increased over the last three decades. Moderate to high doses of radiation are well established causes of cancer, especially for exposure at young ages. However, cancer risk from low-dose medical imaging is debated. OBJECTIVE To review the literature on cancer risks associated with prenatal and postnatal medical diagnostic ionizing radiation exposure among children and to assess this risk through a meta-analysis. MATERIALS AND METHODS A literature search of five electronic databases supplemented by a hand search was performed to retrieve relevant epidemiological studies published from 2000 to 2019, including patients younger than 22 years of age exposed to medical imaging ionizing radiation. Pooled odds ratio (ORpooled) and pooled excess relative risk (ERRpooled) representing the excess of risk per unit of organ dose were estimated with a random effect model. RESULTS Twenty-four studies were included. For prenatal exposure (radiographs or CT), no significant increased risk was reported for all cancers, leukemia and brain tumors. For postnatal exposure, increased risk was observed only for CT, mostly for leukemia (ERRpooled=26.9 Gy-1; 95% confidence interval [CI]: 2.7-57.1) and brain tumors (ERRpooled=9.1 Gy-1; 95% CI: 5.2-13.1). CONCLUSION CT exposure in childhood appears to be associated with increased risk of cancer while no significant association was observed with diagnostic radiographs.
Collapse
|
5
|
The Risk of Cancer from CT Scans and Other Sources of Low-Dose Radiation: A Critical Appraisal of Methodologic Quality. Prehosp Disaster Med 2020; 35:3-16. [PMID: 32009606 DOI: 10.1017/s1049023x1900520x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Concern exists that radiation exposure from computerized tomography (CT) will cause thousands of malignancies. Other experts share the same perspective regarding the risk from additional sources of low-dose ionizing radiation, such as the releases from Three Mile Island (1979; Pennsylvania USA) and Fukushima (2011; Okuma, Fukushima Prefecture, Japan) nuclear power plant disasters. If this premise is false, the fear of cancer leading patients and physicians to avoid CT scans and disaster responders to initiate forced evacuations is unfounded. STUDY OBJECTIVE This investigation provides a quantitative evaluation of the methodologic quality of studies to determine the evidentiary strength supporting or refuting a causal relationship between low-dose radiation and cancer. It will assess the number of higher quality studies that support or question the role of low-dose radiation in oncogenesis. METHODS This investigation is a systematic, methodologic review of articles published from 1975-2017 examining cancer risk from external low-dose x-ray and gamma radiation, defined as less than 200 millisievert (mSv). Following the PRISMA guidelines, the authors performed a search of the PubMed, Cochrane, Scopus, and Web of Science databases. Methodologies of selected articles were scored using the Newcastle Ottawa Scale (NOS) and a tool identifying 11 lower quality indicators. Manuscript methodologies were ranked as higher quality if they scored no lower than seven out of nine on the NOS and contained no more than two lower quality indicators. Investigators then characterized articles as supporting or not supporting a causal relationship between low-dose radiation and cancer. RESULTS Investigators identified 4,382 articles for initial review. A total of 62 articles met all inclusion/exclusion criteria and were evaluated in this study. Quantitative evaluation of the manuscripts' methodologic strengths found 25 studies met higher quality criteria while 37 studies met lower quality criteria. Of the 25 studies with higher quality methods, 21 out of 25 did not support cancer induction by low-dose radiation (P = .0003). CONCLUSIONS A clear preponderance of articles with higher quality methods found no increased risk of cancer from low-dose radiation. The evidence suggests that exposure to multiple CT scans and other sources of low-dose radiation with a cumulative dose up to 100 mSv (approximately 10 scans), and possibly as high as 200 mSv (approximately 20 scans), does not increase cancer risk.
Collapse
|
6
|
Acharya PT, Parentes V, Frush DP, Reid JR. Radiation in Pediatric Imaging: A Primer for Pediatricians. Pediatr Ann 2020; 49:e370-e373. [PMID: 32929511 DOI: 10.3928/19382359-20200825-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Medical imaging in children makes up a considerable percentage of all imaging procedures performed in the United States. Although in recent years there has been a 15% to 20% reduction in the exposure to ionizing radiation from medical imaging in the US population, the total number of computed tomography (CT) scans has increased from 2006 to 2016, and about 85% of all medical ionizing radiation in children is due to CT. [Pediatr Ann. 2020;49(9):e370-e373.].
Collapse
|
7
|
Xie L, Onysko J, Morrison H. Childhood cancer incidence in Canada: demographic and geographic variation of temporal trends (1992-2010). HEALTH PROMOTION AND CHRONIC DISEASE PREVENTION IN CANADA-RESEARCH POLICY AND PRACTICE 2018. [PMID: 29537768 DOI: 10.24095/hpcdp.38.3.01] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Surveillance of childhood cancer incidence trends can inform etiologic research, policy and programs. This study presents the first population-based report on demographic and geographic variations in incidence trends of detailed pediatric diagnostic groups in Canada. METHODS The Canadian Cancer Registry data were used to calculate annual age-standardized incidence rates (ASIRs) from 1992 to 2010 among children less than 15 years of age by sex, age and region for the 12 main diagnostic groups and selected subgroups of the International Classification of Childhood Cancer (ICCC), 3rd edition. Temporal trends were examined by annual percent changes (APCs) using Joinpoint regression. RESULTS The ASIRs of childhood cancer among males increased by 0.5% (95% confidence interval (CI) = 0.2-0.9) annually from 1992 to 2010, whereas incidence among females increased by 3.2% (CI = 0.4-6.2) annually since 2004 after an initial stabilization. The largest overall increase was observed in children aged 1-4 years (APC = 0.9%, CI = 0.4-1.3). By region, the overall rates increased the most in Ontario from 2006 to 2010 (APC = 5.9%, CI = 1.9-10.1), and increased non-significantly in the other regions from 1992 to 2010. Average annual ASIRs for all cancers combined from 2006 to 2010 were lower in the Prairies (149.4 per million) and higher in Ontario (170.1 per million). The ASIRs increased for leukemias, melanoma, carcinoma, thyroid cancer, ependymomas and hepatoblastoma for all ages, and neuroblastoma in 1-4 year olds. Astrocytoma decreased in 10-14 year olds (APC = -2.1%, CI = -3.7 to -0.5), and among males (APC = -2.4%, CI = -4.6 to -0.2) and females (APC = -3.7%, CI = -5.8 to -1.6) in Ontario over the study period. CONCLUSION Increasing incidence trends for all cancers and selected malignancies are consistent with those reported in other developed countries, and may reflect the changes in demographics and etiological exposures, and artefacts of changes in cancer coding, diagnosis and reporting. Significant decreasing trend for astrocytoma in late childhood was observed for the first time.
Collapse
Affiliation(s)
- Lin Xie
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Jay Onysko
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
8
|
Yi DY, Lee KH, Park SB, Kim JT, Lee NM, Kim H, Yun SW, Chae SA, Lim IS. Accuracy of low dose CT in the diagnosis of appendicitis in childhood and comparison with USG and standard dose CT. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2017.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Yi DY, Lee KH, Park SB, Kim JT, Lee NM, Kim H, Yun SW, Chae SA, Lim IS. Accuracy of low dose CT in the diagnosis of appendicitis in childhood and comparison with USG and standard dose CT. J Pediatr (Rio J) 2017; 93:625-631. [PMID: 28445687 DOI: 10.1016/j.jped.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/27/2016] [Accepted: 01/02/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Computed tomography should be performed after careful consideration due to radiation hazard, which is why interest in low dose CT has increased recently in acute appendicitis. Previous studies have been performed in adult and adolescents populations, but no studies have reported on the efficacy of using low-dose CT in children younger than 10 years. METHODS Patients (n=475) younger than 10 years who were examined for acute appendicitis were recruited. Subjects were divided into three groups according to the examinations performed: low-dose CT, ultrasonography, and standard-dose CT. Subjects were categorized according to age and body mass index (BMI). RESULTS Low-dose CT was a contributive tool in diagnosing appendicitis, and it was an adequate method, when compared with ultrasonography and standard-dose CT in terms of sensitivity (95.5% vs. 95.0% and 94.5%, p=0.794), specificity (94.9% vs. 80.0% and 98.8%, p=0.024), positive-predictive value (96.4% vs. 92.7% and 97.2%, p=0.019), and negative-predictive value (93.7% vs. 85.7% and 91.3%, p=0.890). Low-dose CT accurately diagnosed patients with a perforated appendix. Acute appendicitis was effectively diagnosed using low-dose CT in both early and middle childhood. BMI did not influence the accuracy of detecting acute appendicitis on low-dose CT. CONCLUSION Low-dose CT is effective and accurate for diagnosing acute appendicitis in childhood, as well as in adolescents and young adults. Additionally, low-dose CT was relatively accurate, irrespective of age or BMI, for detecting acute appendicitis. Therefore, low-dose CT is recommended for assessing children with suspected acute appendicitis.
Collapse
Affiliation(s)
- Dae Yong Yi
- Chung-Ang University Hospital, Department of Pediatrics, Seoul, South Korea
| | - Kyung Hoon Lee
- Chung-Ang University Hospital, Department of Pediatrics, Seoul, South Korea
| | - Sung Bin Park
- Chung-Ang University Hospital, Department of Radiology, Seoul, South Korea
| | - Jee Taek Kim
- Chung-Ang University Hospital, Department of Ophthalmology, Seoul, South Korea
| | - Na Mi Lee
- Chung-Ang University Hospital, Department of Pediatrics, Seoul, South Korea
| | - Hyery Kim
- Chung-Ang University Hospital, Department of Pediatrics, Seoul, South Korea
| | - Sin Weon Yun
- Chung-Ang University Hospital, Department of Pediatrics, Seoul, South Korea
| | - Soo Ahn Chae
- Chung-Ang University Hospital, Department of Pediatrics, Seoul, South Korea
| | - In Seok Lim
- Chung-Ang University Hospital, Department of Pediatrics, Seoul, South Korea.
| |
Collapse
|
10
|
Abstract
BACKGROUND The radiation dose delivered from computed tomography (CT) scanning and the risks associated with ionising radiation are major concerns in paediatric imaging. Compared to adults, children have increased organ sensitivity and a longer expected lifetime in which cancer may develop. Therefore, it is important to investigate the awareness of paediatricians (referring physicians) regarding radiation doses and the associated risks. METHODS A multiple-choice survey was distributed among paediatricians in 8 hospitals in Riyadh, the capital of Saudi Arabia. RESULTS Among the 162 respondents, only 24 (15 %) were aware of the As Low As Reasonably Achievable (ALARA) principle. Approximately half (54 %) of the respondents believed that multi-slice CT delivered a low radiation dose, and 100 (62 %) of the respondents were not aware that radiation is considered carcinogenic by the Food and Drug Administration in the United States. Among the respondents, 110 (68 %) did not have any specific education regarding radiation during their training. There was an overall underestimation (83 %) of the CT radiation dose, and 70 % thought that magnetic resonance imaging (MRI) delivered some level of ionising radiation. CONCLUSIONS Among paediatricians in Saudi Arabian hospitals, there was a wide underestimation of the CT radiation dose and the associated risks for children. We should improve paediatricians' knowledge about radiation doses. Radiologists, paediatricians, radiation technologists and medical physicists should work together to optimise CT guidelines and protocols to reduce the radiation risks for children.
Collapse
Affiliation(s)
- Tamader Y Al-Rammah
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, P.O.Box 10219, Riyadh, 11433, Kingdom of Saudi Arabia.
| |
Collapse
|
11
|
Cho YY, Jang HW, Joung JY, Park SM, Jeong DJ, Kim SW, Chung JH. Trends in Thyroid Cancer Incidence in Korean Children (1999-2012) Based on Palpation and Nonpalpation Detection Methods. Eur Thyroid J 2015; 4:252-9. [PMID: 26835429 PMCID: PMC4716412 DOI: 10.1159/000442047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The incidence of childhood thyroid cancer is increasing in several populations; however, contributing factors have not been adequately discussed. OBJECTIVES Our aim was to identify trends of childhood thyroid cancer based on the Korea Central Cancer Registry (KCCR) database and to elucidate changes in detection methods of cancers using a single-center database. METHODS Data from the KCCR and Statistics Korea between 1999 and 2012 were used to calculate the crude incidence of thyroid cancer in children. To analyze detection methods for cancers, pediatric patients (aged 0-19 years, n = 126) who underwent thyroid surgery for thyroid cancers at our institution were identified. Subjects were divided into two groups by detection method: (1) palpation group and (2) screening group. RESULTS The crude incidence of childhood thyroid cancer increased from 0.5 per 100,000 in 1999 to 1.7 in 2012. The proportion of thyroid cancer among total cancers also increased from 4.4% in 1999 to 10.6% in 2012. Among 126 children from our institution, 91 cases (72%) were identified as palpable neck masses, and the remainder were discovered during imaging studies. The numbers in both groups gradually increased during the study period. CONCLUSIONS The incidence of childhood thyroid cancer has steadily increased in Korea. Regarding the detection methods of cancers, most tumors are detected by palpation rather than screening, although the rate of masses identified during screening has increased.
Collapse
Affiliation(s)
- Yoon Young Cho
- Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Seoul, Republic of Korea
| | - Hye Won Jang
- Department of Medical Education, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Young Joung
- Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Seoul, Republic of Korea
| | - Sun-Mi Park
- Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Seoul, Republic of Korea
| | - Dae Joon Jeong
- Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Seoul, Republic of Korea
| | - Sun Wook Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Seoul, Republic of Korea
| | - Jae Hoon Chung
- Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Seoul, Republic of Korea
- *Jae Hoon Chung, MD, PhD, Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 135-710 (Republic of Korea), E-Mail
| |
Collapse
|
12
|
Abstract
Several radiation-related professional societies have concluded that carcinogenic risks associated with doses below 50-100 mSv are either too small to be detected, or are nonexistent. This is especially important in the context of doses from medical imaging. Radiation exposure to the public from medical imaging procedures is rising around the world, primarily due to increased utilization of computed tomography. Professional societies and advisory bodies consistently recommend against multiplying small doses by large populations to predict excess radiation-induced cancers, in large part because of the potential for sensational claims of health impacts which do not adequately take the associated uncertainties into account. Nonetheless, numerous articles have predicted thousands of future cancers as a result of CT scanning, and this has generated considerable concern among patients and parents. In addition, some authors claim that we now have direct epidemiological evidence of carcinogenic risks from medical imaging. This paper critically examines such claims, and concludes that the evidence cited does not provide direct evidence of low-dose carcinogenicity. These claims themselves have adverse public health impacts by frightening the public away from medically justified exams. It is time for the medical and scientific communities to be more assertive in responding to sensational claims of health risks.
Collapse
Affiliation(s)
- Brant A. Ulsh
- Principal Health Physicist, M.H. Chew & Associates, Livermore, CA
| |
Collapse
|
13
|
A comparative study of collimation in bedside chest radiography for preterm infants in two teaching hospitals. Eur J Radiol Open 2015; 2:118-22. [PMID: 26937444 PMCID: PMC4750616 DOI: 10.1016/j.ejro.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022] Open
Abstract
Potential factors influencing non-optimal image collimation in the setting of bedside chest X-ray in preterm infants were investigated. A comparable rate of optimal images was observed in two hospitals. Size, weight or disease severity had no influence on collimation quality. Unrelated to the years of experience a large variation of the technician in correct collimation was noted (18–86%). Individualized quality control and education is necessary.
Objective Unnecessary exposure of the abdomen, arms or head may lead to a substantial increase of the radiation dose in portable chest X-rays on the neonatal intensive care unit. The objective was to identify potential factors influencing inappropriate exposure of non-thoracic structures in two teaching hospitals. Methods The study analysed 200 consecutive digital chest radiographs in 20 preterm neonates (mean gestation 25 ± 1 weeks). Demographical data, tube settings and exposure parameters were recorded. To grade the collimation, we used a scoring system with a maximum of 12 exposed non-thoracic structures. Length of gestation, age, the radiographer, years of experience in performing X-rays and the number of in situ catheters or lines, were correlated with collimation quality. Results There was no significant difference between the rates of optimal images obtained in the two hospitals (0.32 vs 0.39, n.s.). Scores showed that most suboptimal images had only mildly reduced image quality (1.40 ± 1.38 vs 1.20 ± 1.43, n.s.). Length of gestation or presence of surgical drains, catheters and tubes had no obvious effects on the exposure of non-thoracic structures. Large intra-individual variation in optimal collimation (14–86%) was noted for the radiographers in both hospitals; this was unrelated to their respective years of experience. Conclusion In our study, the only identifiable factor influencing the collimation of portable chest radiographs in preterm infants was the radiographer’s dedication and awareness. There were no apparent differences between the hospitals investigated. Exposure of non-thoracic structures was relatively frequent and mainly involved the proximal humeri.
Collapse
|
14
|
Siegel DA, King J, Tai E, Buchanan N, Ajani UA, Li J. Cancer incidence rates and trends among children and adolescents in the United States, 2001-2009. Pediatrics 2014; 134:e945-55. [PMID: 25201796 PMCID: PMC4536809 DOI: 10.1542/peds.2013-3926] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Cancer continues to be the leading disease-related cause of death among children and adolescents in the United States. More current information is needed to describe recent cancer trends and identify demographic and geographic variations. METHODS We analyzed data from the National Program of Cancer Registries and Surveillance, Epidemiology, and End Results statewide registries representing 94.2% of the US population to identify cancers diagnosed among persons aged 0 to 19 years during 2001-2009. Age-adjusted rates and annual percentage change for trends were calculated. Data were stratified by age, gender, race, ethnicity, and geography. RESULTS We identified 120,137 childhood and adolescent cancer cases during 2001-2009 with an age-adjusted incidence rate of 171.01 per million. The overall rate of all cancers combined remained stable over time (annual percent change [APC], 0.3%; 95% confidence interval [CI], -0.1 to 0.7). There was an increase in the overall cancer trend among African American children and adolescents (APC, 1.3%; 95% CI, 0.2 to 2.5). An increasing trend for thyroid cancer was observed among both genders (APC, 4.9%; 95% CI, 3.2 to 6.6) and specifically among adolescents and those in the Northeast, South, and West regions of the United States. Renal carcinoma incidence was increasing significantly overall (APC, 5.4%; 95% CI, 2.8 to 8.1). Extracranial and extragonadal germ cell tumors and melanoma were both significantly decreasing. CONCLUSIONS This study reports the novel finding that renal carcinoma rates are increasing among children and adolescents. This study confirms that thyroid cancer rates are increasing and further describes rising cancer rates among African Americans.
Collapse
Affiliation(s)
- David A. Siegel
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | | | - Eric Tai
- Comprehensive Cancer Control Branch
| | - Natasha Buchanan
- Epidemiology and Applied Research Branch, Division of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion
| | - Umed A. Ajani
- Offices of Surveillance, Epidemiology, and Laboratory Services (OSELS), Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jun Li
- Epidemiology and Applied Research Branch, Division of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion, and
| |
Collapse
|
15
|
Maglinte DDT, Hale DS, Sandrasegaran K. Comparison between dynamic cystocolpoproctography and dynamic pelvic floor MRI: pros and cons: which is the "functional" examination for anorectal and pelvic floor dysfunction? ACTA ACUST UNITED AC 2014; 38:952-73. [PMID: 22446896 DOI: 10.1007/s00261-012-9870-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
"Functional" imaging of anorectal and pelvic floor dysfunction has assumed an important role in the diagnosis and management of these disorders. Although defecography has been widely practiced for decades to evaluate the dynamics of rectal emptying, debate concerning its clinical relevance, how it should be done and interpreted continues. Due to the recognition of the association of defecatory disorders with pelvic organ prolapse in women, the need to evaluate the pelvic floor as a unit has arisen. To meet this need, defecography has been extended to include not only evaluation of defecation disorders but also the rest of the pelvic floor by opacifying the small bowel, vagina, and the urinary bladder. The term "dynamic cystocolpoproctography" (DCP) has been appropriately applied to this examination. Rectal emptying performed with DCP provides the maximum stress to the pelvic floor resulting in complete levator ani relaxation. In addition to diagnosing defecatory disorders, this method of examination demonstrates maximum pelvic organ descent and provides organ-specific quantification of organ prolapse, information that is only inferred by means of physical examination. It has been found to be of clinical value in patients with defecation disorders and the diagnosis of associated prolapse in other compartments that are frequently unrecognized by history taking and the limitations of physical examination. Pelvic floor anatomy is complex and DCP does not show the anatomical details pelvic magnetic resonance imaging (MRI) provides. Technical advances allowing acquisition of dynamic rapid MRI sequences has been applied to pelvic floor imaging. Early reports have shown that pelvic MRI may be a useful tool in pre-operative planning of these disorders and may lead to a change in surgical therapy. Predictions of hypothetical increase cancer incidence and deaths in patients exposed to radiation, the emergence of pelvic floor MRI in addition to questions relating to the clinical significance of DCP findings have added to these controversies. This review analyses the pros and cons between DCP and dynamic pelvic floor MRI, addresses imaging and interpretive controversies, and their relevance to clinical management.
Collapse
Affiliation(s)
- Dean D T Maglinte
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University Hospital, 550 N, University Boulevard, UH0279, Indianapolis, IN, 46202-5253, USA,
| | | | | |
Collapse
|
16
|
Rouster-Stevens KA, Ardoin SP, Cooper AM, Becker ML, Dragone LL, Huttenlocher A, Jones KB, Kolba KS, Moorthy LN, Nigrovic PA, Stinson JN, Ferguson PJ. Choosing Wisely: The American College of Rheumatology's Top 5 for Pediatric Rheumatology. Arthritis Care Res (Hoboken) 2014; 66:649-57. [DOI: 10.1002/acr.22238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/14/2013] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Ashley M. Cooper
- University of Texas Southwestern Medical School, Dallas, and Children's Mercy Hospitals and Clinics; Kansas City Missouri
| | - Mara L. Becker
- Children's Mercy Hospitals and Clinics; Kansas City Missouri
| | | | | | | | - Karen S. Kolba
- Pacific Arthritis Center Medical Group; Santa Maria California
| | | | - Peter A. Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital; Boston Massachusetts
| | | | | | | |
Collapse
|
17
|
|
18
|
Wakeford R. The risk of childhood leukaemia following exposure to ionising radiation--a review. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2013; 33:1-25. [PMID: 23296257 DOI: 10.1088/0952-4746/33/1/1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since the early years of follow-up of the Japanese atomic-bomb survivors, it has been apparent that childhood leukaemia has a particular sensitivity to induction by ionising radiation, the excess relative risk (ERR) being expressed as a temporal wave with time since exposure. This pattern has been generally confirmed by studies of children treated with radiotherapy. Case-control studies of childhood leukaemia and antenatal exposure to diagnostic x-rays, a recent large cohort study of leukaemia following CT examinations of young people, and a recent large case-control study of natural background γ-radiation and childhood leukaemia have found evidence of raised risks following low-level exposure. These findings indicate that an ERR/Sv for childhood leukaemia of ~50, which may be derived from risk models based upon the Japanese atomic-bomb survivors, is broadly applicable to low dose or low dose-rate exposure circumstances.
Collapse
Affiliation(s)
- Richard Wakeford
- Dalton Nuclear Institute, The University of Manchester, Pariser Building-G Floor, Sackville Street, Manchester M13 9PL, UK.
| |
Collapse
|
19
|
Ma S, Kong B, Liu B, Liu X. Biological effects of low-dose radiation from computed tomography scanning. Int J Radiat Biol 2013; 89:326-33. [PMID: 23216318 DOI: 10.3109/09553002.2013.756595] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE With the widespread use of computed tomography (CT), the risks of low-dose radiation from CT have been increasingly highlighted. This study aims to illustrate the CT-induced biological effects and analyze the potential beneficial or harmful outcomes so as to provide radiologists with reasonable advice on CT usage. MATERIALS AND METHODS The related literature was analyzed according to the topics of stochastic effect, hereditary effect, deterministic effect, accumulative injuries, hormesis and adaptive response; population epidemiology data were also analyzed. RESULTS CT accounts for 9% of X-ray examinations and approximately 40-67% of medical-related radiation, the dose is within the range of low-dose radiation (LDR). Two opposite viewpoints exist nowadays regarding the biological effects of CT scanning: They are either harmful or harmless. Approximately 0.6% and 1.5% of the cumulative cancer risk could be attributed to diagnostic X-rays in the UK and Germany, respectively. The probability of CT scans induced-cancer is about 0.7% and CT angiography's risk is around 0.13%. It is estimated that approximately 29,000 cancers could be related to CT scans in the USA every year. Meanwhile, another investigation of 25,104 patients who underwent 45,632 CT scans in 4 years showed that the majority of CT-induced cancers were accidents rather than certainties of frequent CT scans. CONCLUSION Although the LDR effects of CT are still controversial, the current problems include the high frequency-use and abuse of CT scans, the increase of radiation dose and accumulative dose in high-accuracy CT, and the poor understanding of carcinogenic risks. The underlying biological basis needs further exploring and the ratio of risks and benefits should be considered.
Collapse
Affiliation(s)
- Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| | | | | | | |
Collapse
|
20
|
|
21
|
Beer M, Wirth C, Neubauer H, Wirbelauer J. Bildgebung auf der Kinderintensivstation. Med Klin Intensivmed Notfmed 2011; 106:103-10. [DOI: 10.1007/s00063-011-0056-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 10/15/2022]
|