1
|
Jiang M, Yan Q, Zhao Y, Chiu B. Segmentation of Carotid Arteries From Three-Dimensional Black-Blood Magnetic Resonance Imaging With Sparse Annotation Using a Multi-Dimensional Hybrid Model. IEEE J Biomed Health Inform 2025; 29:3549-3562. [PMID: 40030428 DOI: 10.1109/jbhi.2024.3513217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Quantification of carotid atherosclerosis is important in monitoring patients at risk of cardiovascular events and in evaluating therapies. High-resolution 3D carotid magnetic resonance imaging (MRI) has been developed to provide extended coverage of the carotid arteries. However, the extended coverage poses a challenge as several hundreds of 2D axial images are required to be segmented for analysis. We propose a multi-dimensional hybrid framework that requires only a sparse set of manual segmentation. Dense surrogate ground truth boundaries required to train the framework are automatically generated by propagating the sparse manual segmentation using the proposed region of interest (ROI) U-Net. Furthermore, the Point U-Net was developed to generate surrogate ground truth for carotid branches without manual segmentation. The proposed framework leverages the advantages of 3D and 2D convolution neural networks (CNNs) to segment the outer wall and lumen from 3D MRI. The 3D multiscale U-Net provides a rough outer wall segmentation, which serves as the ROI to guide outer wall and lumen segmentation by the 2D ROI U-Net. The 3D Multiscale U-Net localizes the ROI automatically, bypassing the need for manual ROI identification. The 3D Multiscale U-Net was further improved by a 3D inception module installed at the bottleneck and the novel loss functions that promote longitudinal continuity and minimize the overlap of the internal and external carotid arteries. Extensive evaluation on the publicly available Carotid Artery Vessel Wall Segmentation challenge dataset shows that our approach outperforms the top-ranked solution in the challenge and state-of-the-art segmentation methods.
Collapse
|
2
|
Akcicek EY, Hashemizadeh K, Akcicek H, Kim SE, Hadley JR, Roberts J, Wang X, Guo Y, Balu N, McNally JS, Parker DL, Yuan C, Ma X. Qualitative and quantitative reproducibility of 3D MERGE and SNAP sequences for carotid vessel wall imaging across Siemens and Philips 3T scanners. Quant Imaging Med Surg 2025; 15:3111-3122. [PMID: 40235783 PMCID: PMC11994559 DOI: 10.21037/qims-24-2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Background Three-dimentional (3D) vessel wall magnetic resonance imaging (MRI) sequences have emerged as new imaging tools for evaluating carotid atherosclerosis. However, their reproducibility across different vendors has not yet been investigated, which not only restricts their use in multicenter studies but also hinders their broader application in clinical practice. In this study, we aim to assess the qualitative and quantitative reproducibility on the same subjects using matched 3D carotid vessel wall MRI sequences on both Siemens and Philips scanners, specifically, 3D motion-sensitized driven equilibrium prepared rapid gradient echo (MERGE) and simultaneous non-contrast angiography and plaque (SNAP) imaging which are two representative 3D vessel wall MRI sequences with superior delineation of vessel wall morphology and carotid plaque. Methods As a cross-sectional study, six volunteers (1 female and 5 males, age 22-67 years) were scanned at 3T MRI machines of both vendors. Image quality was evaluated by two experienced reviewers using a 4-point scale, and quantitative measurements, including mean/maximum wall thickness and normalized wall/lumen index, were calculated from segmentation masks generated by the 3D localization, analysis, and thickness and tissue evaluation (LATTE) framework and a novel 3D thickness measurement using Laplacian method. Results There was no significant difference in image quality scores between Siemens and Philips platforms, except in the external carotid artery region. High consistency [intra-class correlation coefficient (ICC) >0.75] was obtained between the two platforms for quantitative metrics. Images on one carotid patient on Siemens show good visualization of vessel wall and plaque morphology and detection of intraplaque hemorrhage. Conclusions 3D MERGE and SNAP images have sufficient image quality and consistent quantitative measurements on Siemens and Philips scanners, despite lower image quality in Siemens platforms, probably due to suboptimal coil configuration or image processing. This suggests the feasibility of evaluating carotid atherosclerosis using matched 3D carotid vessel wall MRI protocols across different MRI vendors.
Collapse
Affiliation(s)
- Ebru Yaman Akcicek
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Kazem Hashemizadeh
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Halit Akcicek
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Seong-Eun Kim
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - J. Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - John Roberts
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Xuan Wang
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Yin Guo
- Department of Radiology, University of Washington, Washington, DC, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Washington, DC, USA
| | - J. Scott McNally
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chun Yuan
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Pakizer D, Kozel J, Elmers J, Feber J, Michel P, Školoudík D, Sirimarco G. Diagnostics Accuracy of Magnetic Resonance Imaging in Detection of Atherosclerotic Plaque Characteristics in Carotid Arteries Compared to Histology: A Systematic Review. J Magn Reson Imaging 2025; 61:1067-1093. [PMID: 38981139 PMCID: PMC11803704 DOI: 10.1002/jmri.29522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Carotid plaque composition represents one of the main risk factors of future ischemic stroke. MRI provides excellent soft tissue contrast that can distinguish plaque characteristics. Our objective was to analyze the diagnostic accuracy of MRI imaging in the detection of carotid plaque characteristics compared to histology in patients with symptomatic and asymptomatic carotid atherosclerosis through a systematic review. After prospective registration in PROSPERO (ID CRD42022329690), Medline Ovid, Embase.com, Cochrane Library, and Web of Science Core were searched without any search limitation up to May 27, 2022 to identify eligible articles. Of the 8168 studies, 53 (37 × 1.5 T MRI, 17 × 3 T MRI) evaluated MRI accuracy in the detection of 13 specific carotid plaque characteristics in 169 comparisons. MRI demonstrated high diagnostic accuracy for detection of calcification (3 T MRI: mean sensitivity 92%/mean specificity 90%; 1.5 T MRI: mean sensitivity 81%/mean specificity 91%), fibrous cap (1.5 T: 89%/87%), unstable plaque (1.5 T: 89%/87%), intraplaque hemorrhage (1.5 T: 86%/88%), and lipid-rich necrotic core (1.5 T: 89%/79%). MRI also proved to have a high level of tissue discrimination for the carotid plaque characteristics investigated, allowing potentially for a better risk assessment and follow-up of patients who may benefit from more aggressive treatments. These results emphasize the role of MRI as the first-line imaging modality for comprehensive assessment of carotid plaque morphology, particularly for unstable plaque. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- David Pakizer
- Centre for Health Research, Department of Clinical Neurosciences, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Jiří Kozel
- Centre for Health Research, Department of Clinical Neurosciences, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Jolanda Elmers
- Medical LibraryLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Janusz Feber
- Centre for Health Research, Department of Clinical Neurosciences, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Eastern OntarioUniversity of OttawaOttawaOntarioCanada
| | - Patrik Michel
- Stroke Center, Service of Neurology, Department of Clinical NeurosciencesLausanne University HospitalLausanneSwitzerland
| | - David Školoudík
- Centre for Health Research, Department of Clinical Neurosciences, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Gaia Sirimarco
- Stroke Center, Service of Neurology, Department of Clinical NeurosciencesLausanne University HospitalLausanneSwitzerland
- Neurology Unit, Department of Internal MedicineRiviera Chablais HospitalRennazSwitzerland
| |
Collapse
|
4
|
Kassem M, Nies KPH, Boswijk E, van der Pol J, Aizaz M, Gijbels MJJ, Li D, Bucerius J, Mess WH, Wildberger JE, van Oostenbrugge RJ, Moonen RPM, Fan Z, Kooi ME. Quantification of carotid plaque composition with a multi-contrast atherosclerosis characterization (MATCH) MRI sequence. Front Cardiovasc Med 2023; 10:1227495. [PMID: 37680565 PMCID: PMC10481960 DOI: 10.3389/fcvm.2023.1227495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023] Open
Abstract
Background and purpose Carotid atherosclerotic plaques with a large lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), and a thin or ruptured fibrous cap are associated with increased stroke risk. Multi-sequence MRI can be used to quantify carotid atherosclerotic plaque composition. Yet, its clinical implementation is hampered by long scan times and image misregistration. Multi-contrast atherosclerosis characterization (MATCH) overcomes these limitations. This study aims to compare the quantification of plaque composition with MATCH and multi-sequence MRI. Methods MATCH and multi-sequence MRI were used to image 54 carotid arteries of 27 symptomatic patients with ≥2 mm carotid plaque on a 3.0 T MRI scanner. The following sequence parameters for MATCH were used: repetition time/echo time (TR/TE), 10.1/4.35 ms; field of view, 160 mm × 160 mm × 2 mm; matrix size, 256 × 256; acquired in-plane resolution, 0.63 mm2× 0.63 mm2; number of slices, 18; and flip angles, 8°, 5°, and 10°. Multi-sequence MRI (black-blood pre- and post-contrast T1-weighted, time of flight, and magnetization prepared rapid acquisition gradient echo; acquired in-plane resolution: 0.63 mm2 × 0.63 mm2) was acquired according to consensus recommendations, and image quality was scored (5-point scale). The interobserver agreement in plaque composition quantification was assessed by the intraclass correlation coefficient (ICC). The sensitivity and specificity of MATCH in identifying plaque composition were calculated using multi-sequence MRI as a reference standard. Results A significantly lower image quality of MATCH compared to that of multi-sequence MRI was observed (p < 0.05). The scan time for MATCH was shorter (7 vs. 40 min). Interobserver agreement in quantifying plaque composition on MATCH images was good to excellent (ICC ≥ 0.77) except for the total volume of calcifications and fibrous tissue that showed moderate agreement (ICC ≥ 0.61). The sensitivity and specificity of detecting plaque components on MATCH were ≥89% and ≥91% for IPH, ≥81% and 85% for LRNC, and ≥71% and ≥32% for calcifications, respectively. Overall, good-to-excellent agreement (ICC ≥ 0.76) of quantifying plaque components on MATCH with multi-sequence MRI as the reference standard was observed except for calcifications (ICC = 0.37-0.38) and fibrous tissue (ICC = 0.59-0.70). Discussion and conclusion MATCH images can be used to quantify plaque components such as LRNC and IPH but not for calcifications. Although MATCH images showed a lower mean image quality score, short scan time and inherent co-registration are significant advantages.
Collapse
Affiliation(s)
- Mohamed Kassem
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Kelly P. H. Nies
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ellen Boswijk
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Jochem van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mueez Aizaz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marion J. J. Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jan Bucerius
- Department of Nuclear Medicine, Georg-August University Göttingen, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Werner H. Mess
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Joachim E. Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Robert J. van Oostenbrugge
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Zhaoyang Fan
- Department of Radiology, University of Southern California, Los Angeles, CA, United States
| | - M. Eline Kooi
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
5
|
Benson JC, Saba L, Bathla G, Brinjikji W, Nardi V, Lanzino G. MR Imaging of Carotid Artery Atherosclerosis: Updated Evidence on High-Risk Plaque Features and Emerging Trends. AJNR Am J Neuroradiol 2023; 44:880-888. [PMID: 37385681 PMCID: PMC10411837 DOI: 10.3174/ajnr.a7921] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/14/2023] [Indexed: 07/01/2023]
Abstract
MR imaging is well-established as the criterion standard for carotid artery atherosclerosis imaging. The capability of MR imaging to differentiate numerous plaque components has been demonstrated, including those features that are associated with a high risk of sudden changes, thrombosis, or embolization. The field of carotid plaque MR imaging is constantly evolving, with continued insight into the imaging appearance and implications of various vulnerable plaque characteristics. This article will review the most up-to-date knowledge of these high-risk plaque features on MR imaging and will delve into 2 major emerging topics: the role of vulnerable plaques in cryptogenic strokes and the potential use of MR imaging to modify carotid endarterectomy treatment guidelines.
Collapse
Affiliation(s)
- J C Benson
- From the Departments of Radiology (J.C.B., G.B., W.B.)
| | - L Saba
- Department of Medical Sciences (L.S.), University of Cagliari, Cagliari, Italy
| | - G Bathla
- From the Departments of Radiology (J.C.B., G.B., W.B.)
| | - W Brinjikji
- From the Departments of Radiology (J.C.B., G.B., W.B.)
| | - V Nardi
- Cardiovascular Medicine (V.N.)
| | - G Lanzino
- Neurosurgery (G.L.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Varadarajan V, Gidding S, Wu C, Carr J, Lima JA. Imaging Early Life Cardiovascular Phenotype. Circ Res 2023; 132:1607-1627. [PMID: 37289903 PMCID: PMC10501740 DOI: 10.1161/circresaha.123.322054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
The growing epidemics of obesity, hypertension, and diabetes, in addition to worsening environmental factors such as air pollution, water scarcity, and climate change, have fueled the continuously increasing prevalence of cardiovascular diseases (CVDs). This has caused a markedly increasing burden of CVDs that includes mortality and morbidity worldwide. Identification of subclinical CVD before overt symptoms can lead to earlier deployment of preventative pharmacological and nonpharmacologic strategies. In this regard, noninvasive imaging techniques play a significant role in identifying early CVD phenotypes. An armamentarium of imaging techniques including vascular ultrasound, echocardiography, magnetic resonance imaging, computed tomography, noninvasive computed tomography angiography, positron emission tomography, and nuclear imaging, with intrinsic strengths and limitations can be utilized to delineate incipient CVD for both clinical and research purposes. In this article, we review the various imaging modalities used for the evaluation, characterization, and quantification of early subclinical cardiovascular diseases.
Collapse
Affiliation(s)
- Vinithra Varadarajan
- Division of Cardiology, Department of Medicine Johns Hopkins University, Baltimore, MD
| | | | - Colin Wu
- Department of Medicine, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Jeffrey Carr
- Department Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
| | - Joao A.C. Lima
- Division of Cardiology, Department of Medicine Johns Hopkins University, Baltimore, MD
| |
Collapse
|
7
|
David E, Martinelli O, Pacini P, Di Serafino M, Huang P, Dolcetti V, Del Gaudio G, Barr RG, Renda M, Lucarelli GT, Di Marzo L, Clevert DA, Solito C, Di Bella C, Cantisani V. New Technologies in the Assessment of Carotid Stenosis: Beyond the Color-Doppler Ultrasound-High Frame Rate Vector-Flow and 3D Arterial Analysis Ultrasound. Diagnostics (Basel) 2023; 13:diagnostics13081478. [PMID: 37189578 DOI: 10.3390/diagnostics13081478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Atherosclerotic plaque in the carotid artery is the main cause of ischemic stroke, with a high incidence rate among people over 65 years. A timely and precise diagnosis can help to prevent the ischemic event and decide patient management, such as follow up, medical, or surgical treatment. Presently, diagnostic imaging techniques available include color-Doppler ultrasound, as a first evaluation technique, computed tomography angiography, which, however, uses ionizing radiation, magnetic resonance angiography, still not in widespread use, and cerebral angiography, which is an invasively procedure reserved for therapeutically purposes. Contrast-enhanced ultrasound is carving out an important and emerging role which can significantly improve the diagnostic accuracy of an ultrasound. Modern ultrasound technologies, still not universally utilized, are opening new horizons in the arterial pathologies research field. In this paper, the technical development of various carotid artery stenosis diagnostic imaging modalities and their impact on clinical efficacy is thoroughly reviewed.
Collapse
Affiliation(s)
- Emanuele David
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital "Policlinico G. Rodolico", University of Catania, 95123 Catania, Italy
- Radiology Unit, Papardo-Hospital, 98158 Messina, Italy
| | - Ombretta Martinelli
- Department of Surgery "Paride Stefanini", Vascular and Endovascular Surgery Division, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Di Serafino
- Department of General and Emergency Radiology, "Antonio Cardarelli" Hospital, 80131 Naples, Italy
| | - Pintong Huang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 242332, China
| | - Vincenzo Dolcetti
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Giovanni Del Gaudio
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH 44272, USA
- Southwoods Imaging, Youngstown, OH 44512, USA
| | - Maurizio Renda
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe T Lucarelli
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Di Marzo
- Department of Surgery "Paride Stefanini", Vascular and Endovascular Surgery Division, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Dirk A Clevert
- Interdisciplinary Ultrasound-Center, Department of Radiology, University of Munich, Grosshadern Campus, 81377 Munich, Germany
| | - Carmen Solito
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Chiara Di Bella
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Tao L, Wang YH, Shang ZY, Yang BQ, Chen HS. Vulnerable plaque of the petrous internal carotid artery in embolic stroke of undetermined source. Eur J Neurol 2023; 30:648-658. [PMID: 36448742 DOI: 10.1111/ene.15655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND PURPOSE The association between nonstenotic plaque at the petrous internal carotid artery (ICA) and embolic stroke of undetermined source (ESUS) remains unknown. We aimed to test the hypothesis that the presence of a larger build-up of petrous plaque is more prevalent in the ipsilateral versus the contralateral side among ESUS patients without plaque in the intracranial and proximal ICA. METHODS From a total of 243 patients with ESUS and 160 patients with small-vessel disease (SVD) without proximal ICA plaque, we enrolled 88 ESUS and 103 SVD patients without ipsilateral nonstenotic intracranial and proximal ICA plaque in the present study. Targeting the petrous segment of the ICA on two sides, plaque burden including plaque thickness, lumen area, vessel area, wall area, and percentage of luminal stenosis, and composition features (presence/absence of the ruptured fibrous cap, ulcer plaque, thrombus, discontinuity of plaque surface [DPS], intraplaque hemorrhage and complicated plaque) were assessed by high-resolution magnetic resonance imaging. RESULTS We found a higher prevalence of petrous plaque thickness ≥3.5 mm ipsilateral versus contralateral to the stroke (25/88 [28.4%] vs. 12/88 [13.6%], odds ratio [OR] 3.60, 95% confidence interval [CI] 1.34-9.70), but this imbalance was not seen in SVD. In patients with plaque thickness ≥3.5 mm, the presence of DPS (OR 4.05, 95% CI 1.11-14.78) and complicated plaque (OR 5.00, 95% CI 1.10-22.82) was more closely related to an index ESUS, a finding that was not evident in the subgroup with petrous plaque <3.5 mm (p for interaction = 0.027). CONCLUSIONS The present study provided the first evidence supporting a potential etiological role of vulnerable petrous plaque in ESUS.
Collapse
Affiliation(s)
- Lin Tao
- Department of Neurology, General Hospital of Northern Theater Command, Shen Yang, China
| | - Yi-Han Wang
- Department of Neurology, General Hospital of Northern Theater Command, Shen Yang, China
| | - Zi-Yang Shang
- Department of Neurology, General Hospital of Northern Theater Command, Shen Yang, China
| | - Ben-Qiang Yang
- Department of Radiology, General Hospital of Northern Theater Command, Shen Yang, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shen Yang, China
| |
Collapse
|
9
|
Zhang Y, Taylor E, Huang N, Hamilton J, Cheng JX. Survival intravascular photoacoustic imaging of lipid-rich plaque in cholesterol fed rabbits. TRANSLATIONAL BIOPHOTONICS 2022; 4:e202200012. [PMID: 38283396 PMCID: PMC10812843 DOI: 10.1002/tbio.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022] Open
Abstract
Intravascular photoacoustic (IVPA) imaging is a promising modality for quantitative assessment of lipid-laden atherosclerotic plaques. Yet, survival IVPA imaging of the same plaque in the same animal is not demonstrated. Here, using a sheathed IVUS/PA catheter of 0.9 mm in diameter, we demonstrate MRI-guided survival IVPA imaging of same plaque in an aorta of a well-established rabbit model mimicking atherosclerosis in human patients. The IVUS/PA results were confirmed by histology. These advances open the opportunity to evaluate the effectiveness of a therapy that aims to reduce the size of atherosclerotic plaques and demonstrates the potential of translating the IVPA catheter into clinic for detection of lipid-rich plaques that are at high risk for thrombosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physics, Boston University, Boston, 02215, USA
| | - Erik Taylor
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, 02118, USA
| | - Nasi Huang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, 02118, USA
| | - James Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, 02118, USA
| | - Ji-Xin Cheng
- Department of Physics, Boston University, Boston, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, 02215, USA
| |
Collapse
|
10
|
Kim JH, Kwak HS, Hwang SB, Chung GH. Differential Diagnosis of Intraplaque Hemorrhage and Dissection on High-Resolution MR Imaging in Patients with Focal High Signal of the Vertebrobasilar Artery on TOF Imaging. Diagnostics (Basel) 2021; 11:1024. [PMID: 34204962 PMCID: PMC8230252 DOI: 10.3390/diagnostics11061024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Intraplaque hemorrhage (IPH) and dissection in the vertebrobasilar artery (VBA) on time of flight (TOF) source imaging are seen as focal eccentric high-signal intensity. The purpose of this study is to identify IPH and dissection in the VBA using high-resolution magnetic resonance imaging (HR-MRI). METHODS A total of 78 patients (VBA IPH: 55; dissection: 23) with focal high-signal intensity in the VBA on simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) of HR-MRI were included in this study. The focal high-signal intensity in the VBA on SNAP was defined as >200% than that of the adjacent muscle. We analyzed the signal intensity ratio (area of focal high signal intensity area/lumen) on TOF imaging and black blood (BB) T2-weighted imaging. RESULTS The VBA IPH group was older than the dissection group and had more hypertension. Signal intensity of a false lumen in patients with dissection on TOF imaging was significantly higher than that of VBA IPH (p < 0.001). The signal intensity ratio between lumen and lesion on TOF imaging was significantly higher in the dissection group (p < 0.001). The signal intensity of a false lumen in patients with dissection on BB T2-weighted imaging was significantly lower than that of VBA IPH (p < 0.001). The signal intensity ratio between lumen and lesion on BB T2-weighted imaging was significantly higher in the VBA IPH group (p < 0.001). CONCLUSIONS TOF imaging and BB T2-weighted imaging on HR-MRI in patients with focal eccentric high-signal intensity on TOF imaging can distinguish between VBA IPH and dissection.
Collapse
Affiliation(s)
| | - Hyo Sung Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54896, Korea; (J.H.K.); (S.B.H.); (G.H.C.)
| | | | | |
Collapse
|
11
|
Yuan C, Miller Z, Zhao XQ. Magnetic Resonance Imaging: Cardiovascular Applications for Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Claessen BE, Guedeney P, Gibson CM, Angiolillo DJ, Cao D, Lepor N, Mehran R. Lipid Management in Patients Presenting With Acute Coronary Syndromes: A Review. J Am Heart Assoc 2020; 9:e018897. [PMID: 33289416 PMCID: PMC7955383 DOI: 10.1161/jaha.120.018897] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite many improvements in its prevention and management, acute coronary syndrome (ACS) remains a major cause of morbidity and mortality in the developed world. Lipid management is an important part of secondary prevention after ACS, but many patients currently remain undertreated and do not attain guideline‐recommended levels of low‐density lipoprotein cholesterol reduction. This review details the current state of evidence on lipid management in patients presenting with ACS, provides directions for identification of patients who may benefit from early escalation of lipid‐lowering therapy, and discusses novel lipid‐lowering medication that is currently under investigation in clinical trials. Moreover, a treatment algorithm aimed at attaining guideline‐recommended low‐density lipoprotein cholesterol levels is proposed. Despite important advances in the initial treatment and secondary prevention of ACS, ≈20% of ACS survivors experience a subsequent ischemic cardiovascular event within 24 months, and 5‐year mortality ranges from 19% to 22%. Knowledge of the current state of evidence‐based lipid management after ACS is of paramount importance to improve outcomes after ACS.
Collapse
Affiliation(s)
- Bimmer E Claessen
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY.,Noordwest Ziekenhuisgroep Alkmaar the Netherlands
| | - Paul Guedeney
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY.,ACTION Study Group Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche Scientifique_1166 Cardiology Institute Pitié Salpêtrière Hospital ParisSorbonne University Paris France
| | | | | | - Davide Cao
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY
| | - Norman Lepor
- Cedars-Sinai Heart InstituteGeffen School of Medicine-University of Califonia - Los Angeles Los Angeles CA
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY
| |
Collapse
|
13
|
Kassem M, Florea A, Mottaghy FM, van Oostenbrugge R, Kooi ME. Magnetic resonance imaging of carotid plaques: current status and clinical perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1266. [PMID: 33178798 PMCID: PMC7607136 DOI: 10.21037/atm-2020-cass-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rupture of a vulnerable carotid plaque is one of the leading causes of stroke. Carotid magnetic resonance imaging (MRI) is able to visualize all the main hallmarks of plaque vulnerability. Various MRI sequences have been developed in the last two decades to quantify carotid plaque burden and composition. Often, a combination of multiple sequences is used. These MRI techniques have been extensively validated with histological analysis of carotid endarterectomy specimens. High agreement between the MRI and histological measures of plaque burden, intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous cap (FC) status, inflammation and neovascularization has been demonstrated. Novel MRI sequences allow to generate three-dimensional isotropic images with a large longitudinal coverage. Other new sequences can acquire multiple contrasts using a single sequence leading to a tremendous reduction in scan time. IPH can be easily identified as a hyperintense signal in the bulk of the plaque on strongly T1-weighted images, such as magnetization-prepared rapid acquisition gradient echo images, acquired within a few minutes with a standard neurovascular coil. Carotid MRI can also be used to evaluate treatment effects. Several meta-analyses have demonstrated a strong predictive value of IPH, LRNC, thinning or rupture of the FC for ischemic cerebrovascular events. Recently, in a large meta-analysis based on individual patient data of asymptomatic and symptomatic individuals with carotid artery stenosis, it was shown that IPH on MRI is an independent risk predictor for stroke, stronger than any known clinical risk parameter. Expert recommendations on carotid plaque MRI protocols have recently been described in a white paper. The present review provides an overview of the current status and applications of carotid plaque MR imaging and its future potential in daily clinical practice.
Collapse
Affiliation(s)
- Mohamed Kassem
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Alexandru Florea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Robert van Oostenbrugge
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, MUMC+, Maastricht, The Netherlands
| | - M Eline Kooi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
14
|
Soule E, Nguyen QH, Dervishi M, Matteo J, Ozdemir S. Hot Aortic Nodules. Cureus 2020; 12:e10479. [PMID: 33083181 PMCID: PMC7567324 DOI: 10.7759/cureus.10479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Morbidity of the dreaded thrombotic complications of atherosclerosis such as cerebrovascular accident and myocardial infarction may be severe. Early detection of fulminant disease is therefore important for risk stratification and selecting a treatment strategy. In this report we present four patients in which 18-fluorodeoxyglucose uptake was identified in atherosclerotic plaques at positron emission tomography, performed for other indications. The study aims to showcase the potential implications of 18-fluorodeoxyglucose avid plaques, which may be otherwise overlooked at positron emission tomography. Early detection may aid in prevention of complications of atherosclerotic cardiovascular disease through aggressive lifestyle modification, as well as pharmacologic or other intervention, such as endovascular atherectomy.
Collapse
|
15
|
Aizaz M, Moonen RPM, van der Pol JAJ, Prieto C, Botnar RM, Kooi ME. PET/MRI of atherosclerosis. Cardiovasc Diagn Ther 2020; 10:1120-1139. [PMID: 32968664 DOI: 10.21037/cdt.2020.02.09] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial infarction and stroke are the most prevalent global causes of death. Each year 15 million people worldwide die due to myocardial infarction or stroke. Rupture of a vulnerable atherosclerotic plaque is the main underlying cause of stroke and myocardial infarction. Key features of a vulnerable plaque are inflammation, a large lipid-rich necrotic core (LRNC) with a thin or ruptured overlying fibrous cap, and intraplaque hemorrhage (IPH). Noninvasive imaging of these features could have a role in risk stratification of myocardial infarction and stroke and can potentially be utilized for treatment guidance and monitoring. The recent development of hybrid PET/MRI combining the superior soft tissue contrast of MRI with the opportunity to visualize specific plaque features using various radioactive tracers, paves the way for comprehensive plaque imaging. In this review, the use of hybrid PET/MRI for atherosclerotic plaque imaging in carotid and coronary arteries is discussed. The pros and cons of different hybrid PET/MRI systems are reviewed. The challenges in the development of PET/MRI and potential solutions are described. An overview of PET and MRI acquisition techniques for imaging of atherosclerosis including motion correction is provided, followed by a summary of vessel wall imaging PET/MRI studies in patients with carotid and coronary artery disease. Finally, the future of imaging of atherosclerosis with PET/MRI is discussed.
Collapse
Affiliation(s)
- Mueez Aizaz
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Rik P M Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jochem A J van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Ruytenberg T, Webb A, Zivkovic I. A flexible five-channel shielded-coaxial-cable (SCC) transceive neck coil for high-resolution carotid imaging at 7T. Magn Reson Med 2020; 84:1672-1677. [PMID: 32052472 PMCID: PMC7317455 DOI: 10.1002/mrm.28215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/25/2020] [Indexed: 11/13/2022]
Abstract
Purpose Imaging the carotid arteries at 7T ideally requires a flexible multichannel array that allows B1‐shimming and conforms to different neck sizes. The major challenge is to minimize coupling between closely spaced coils and to make the coupling relatively insensitive to loading conditions. Methods We have designed a five‐channel flexible transceive array composed of shielded‐coaxial‐cable coils placed on the anterior part of the neck and conforming to the anatomy. In vivo imaging of the carotid arteries in three subjects has been performed. Results The measured noise correlation matrices show the decoupling level between the individual elements to be −12.5 dB and better. Anatomical localizer imaging of the carotids shows both carotids in every subject well visualized after B1‐shimming. In vivo black‐blood, carotid images were acquired with very high in‐plane spatial resolution (0.25 × 0.25 mm2) with clear depiction of the vessel walls. Conclusions The flexibility of the proposed coil has been demonstrated by imaging subjects with different neck circumferences. To the best of our knowledge, the in‐plane resolution of 0.25 × 0.25 mm2 is the highest reported at 7T.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Carle Foundation Hospital, Urbana, IL, USA
| | - Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Higashi M, Yamada N, Imakita S, Yutani C, Ishibashi-Ueda H, Iihara K, Naito H. CT-pathologic correlation of non-calcified atherosclerotic arterial plaques: a study using carotid endarterectomy specimens. Br J Radiol 2020; 93:20190901. [PMID: 31999208 DOI: 10.1259/bjr.20190901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Pathologic features of atherosclerotic plaques on CT are not established. We compared CT values among pathologically confirmed plaque constituents and evaluated their ability to distinguish plaque constituents. METHODS 50 histopathological images of carotid endarterectomy samples from 10 males and 2 females (age 54-74 years, average 65.9 years) were examined. We compared pre-operative CT [pre-contrast (CT-P), early post-contrast phase (CT-E), delayed post-contrast phase (CT-D)] of lipid-rich necrotic core (NC) and fibrous tissue (F) plaque components with pathological images. The ability of features to differentiate plaque components using several discrimination techniques were compared. RESULTS CT values of NC and F were 36 ± 13, 45 ± 11 (mean ± standard deviation, Hounsfield unit, HU), 41 ± 17, 69 ± 18, and 44 ± 16, 70 ± 13 in CT-P (p < 0.01), CT-E (p < 0.0001), and CT-D (p < 0.0001), respectively. The threshold, sensitivity, and accuracy for distinguishing NC from F were 44 HU, 74%, and 68%; 55 HU, 85%, and 85%; and 63 HU, 92%, and 84% in CTP, CT-E, and CT-D, respectively. CT-P had lower accuracy than CT-E and CT-D (both p < 0.05), but CT-E and CT-D were similar. CT-E and CT-D yielded 90 and 91% sensitivity and accuracy, respectively in linear discrimination analysis. CONCLUSION In both pre- and post-contrast CT, CT values were lower in NC than F. Although values overlapped, using two-phase post-contrast CTs improved discrimination ability. ADVANCES IN KNOWLEDGE Our findings may help to establish computer-aided diagnosis of vulnerable atherosclerotic plaques in future.
Collapse
Affiliation(s)
- Masahiro Higashi
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naoaki Yamada
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Chikao Yutani
- Department of Pathology, Amagasaki Central Hospital, Amagasaki, Japan.,Department of Pathology, Cardiovascular Center Osaka Gyoumeikan Hospital, Osaka, Japan
| | | | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Science Kyushu University, Fukuoka, Japan
| | - Hiroaki Naito
- Department of Radiology, Nippon Life Hospital, Osaka, Japan
| |
Collapse
|
18
|
Wei H, Zhang M, Li Y, Zhao X, Canton G, Sun J, Xu D, Zhou Z, Chen S, Ferguson MS, Hatsukami TS, Li R, Yuan C. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study. Quant Imaging Med Surg 2020; 10:269-282. [PMID: 31956548 DOI: 10.21037/qims.2019.09.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Conventional reference multi-contrast black-blood (BB) MRI can be used for measuring luminal stenosis severity and plaque components, and its performance has been validated by intra- and inter-reader reproducibility test and histology. Recently, a set of 3D multi-contrast BB sequences have been developed, but its accuracy and reliability have not been well investigated. In this study, we evaluated the performance of 3D multi-contrast MRI (3D-MERGE, T2-VISTA, and SNAP) by comparing it with reference multi-contrast vessel wall MRI and assessing the inter-reader reproducibility. Methods In total, 27 patients were recruited in this study. Twenty-six participants underwent reference and 3D multi-contrast imaging in a 3.0T MR scanner. One participant underwent carotid endarterectomy (CEA) after 3D MR imaging. Two trained reviewers interpreted reference and 3D datasets. Lumen area (LA), wall area (WA), normalized wall index (NWI), maximum wall thickness (MaxWT), and mean wall thickness (MWT) were measured, and the presence of lipid-rich necrotic core (LRNC), intra-plaque hemorrhage (IPH) and calcification (CA) were identified. Inter-reader reproducibility of 3D interpretation was assessed. Results 3D imaging provided comparable measurements with reference imaging in LA (43.81±25.74 vs. 43.35±24.66 mm2) and MaxWT (1.65±1.33 vs. 1.62±1.10 mm), with a lower NWI (0.40±0.15 vs. 0.43±0.11), WA (29.40±21.92 vs. 30.64±16.17 mm2) and MWT (1.09±0.69 vs. 1.14±0.47), and showed good agreement for identification of LRNC (κ=0.66, 95% CI: 0.30-1.00) and CA (κ=0.69, 95% CI: 0.42-0.97), and excellent agreement for IPH (κ=1.00, 95% CI: 1.00-1.00). Inter-reader agreement of 3D analysis was good (LRNC, κ=0.87, 95% CI: 0.61-1.00; CA, κ=0.66, 95% CI: 0.36-0.96; IPH, κ=1.00, 95% CI: 1.00-1.00). Conclusions 3D multi-contrast vessel wall imaging provides comparable performance in morphological measurements and identification of carotid plaque components as reference multi-contrast MRI, with good inter-reader reproducibility.
Collapse
Affiliation(s)
- Hanyu Wei
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Gador Canton
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Dongxiang Xu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Zechen Zhou
- Philips Research North America, Cambridge, MA, USA
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.,Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Taraban MB, Briggs KT, Merkel P, Yu YB. Flow Water Proton NMR: In-Line Process Analytical Technology for Continuous Biomanufacturing. Anal Chem 2019; 91:13538-13546. [DOI: 10.1021/acs.analchem.9b02622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marc B. Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Katharine T. Briggs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Peter Merkel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Y. Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
20
|
Abstract
Carotid atherosclerosis (CAS) is associated with increased cardiovascular risk, and therefore, assessing the genetic versus environmental background of CAS traits is of key importance. Carotid intima-media-thickness and plaque characteristics seem to be moderately heritable, with remarkable differences in both heritability and presence or severity of these traits among ethnicities. Although the considerable role of additive genetic effects is obvious, based on the results so far, there is an important emphasis on non-shared environmental factors as well. We aimed to collect and summarize the papers that investigate twin and family studies assessing the phenotypic variance attributable to genetic associations with CAS. Genes in relation to CAS markers were overviewed with a focus on genetic association studies and genome-wide association studies. Although the role of certain genes is confirmed by studies conducted on large populations and meta-analyses, many of them show conflicting results. A great focus should be on future studies elucidating the exact pathomechanism of these genes in CAS in order to imply them as novel therapeutic targets.
Collapse
|
21
|
Reimann C, Brangsch J, Colletini F, Walter T, Hamm B, Botnar RM, Makowski MR. Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv Drug Deliv Rev 2017; 113:49-60. [PMID: 27639968 DOI: 10.1016/j.addr.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
Abstract
This review summarizes the current status of molecular imaging of the extracellular matrix (ECM) in the context of atherosclerosis. Apart from cellular components, the ECM of the atherosclerotic plaque plays a relevant role during the initiation of atherosclerosis and its' subsequent progression. Important structural and signaling components of the ECM include elastin, collagen and fibrin. However, the ECM not only plays a structural role in the arterial wall but also interacts with different cell types and has important biological signaling functions. Molecular imaging of the ECM has emerged as a new diagnostic tool to characterize biological aspects of atherosclerotic plaques, which cannot be characterized by current clinically established imaging techniques, such as X-ray angiography. Different types of molecular probes can be detected in vivo by imaging modalities such as magnetic resonance imaging (MRI), positron emission tomography (PET) and single photon emission computed tomography (SPECT). The modality specific signaling component of the molecular probe provides information about its spatial location and local concentration. The successful introduction of molecular imaging into clinical practice and guidelines could open new pathways for an earlier detection of disease processes and a better understanding of the disease state on a biological level. Quantitative in vivo molecular parameters could also contribute to the development and evaluation of novel cardiovascular therapeutic interventions and the assessment of response to treatment.
Collapse
Affiliation(s)
| | | | | | - Thula Walter
- Department of Radiology, Charité, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité, Berlin, Germany
| | - Rene M Botnar
- King's College London, Division of Imaging Sciences, United Kingdom; Wellcome Trust and EPSRC Medical Engineering Center, United Kingdom; BHF Centre of Excellence, King's College London, London, United Kingdom; NIHR Biomedical Research Centre, King's College London, London, United Kingdom
| | - Marcus R Makowski
- Department of Radiology, Charité, Berlin, Germany; King's College London, Division of Imaging Sciences, United Kingdom.
| |
Collapse
|
22
|
Kratz JD, Chaddha A, Bhattacharjee S, Goonewardena SN. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications. Cardiovasc Drugs Ther 2016; 30:33-9. [PMID: 26809711 DOI: 10.1007/s10557-016-6649-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.
Collapse
Affiliation(s)
- Jeremy D Kratz
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ashish Chaddha
- Department of Internal Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Somnath Bhattacharjee
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, MI, 48109, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sascha N Goonewardena
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, MI, 48109, USA. .,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Zhou Z, Li R, Zhao X, He L, Wang X, Wang J, Balu N, Yuan C. Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015; 17:41. [PMID: 26013973 PMCID: PMC4446075 DOI: 10.1186/s12968-015-0143-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multi-contrast vessel wall cardiovascular magnetic resonance (CMR) has demonstrated its capability for atherosclerotic plaque morphology measurement and component characterization in different vasculatures. However, limited coverage and partial volume effect with conventional two-dimensional (2D) techniques might cause lesion underestimation. The aim of this work is to evaluate the performance in a) blood suppression and b) vessel wall delineation of three-dimensional (3D) multi-contrast joint intra- and extracranial vessel wall imaging at 3T. METHODS Three multi-contrast 3D black blood (BB) sequences with T1, T2 and heavy T1 weighting and a custom designed 36-channel neurovascular coil covering the entire intra- and extracranial vasculature have been used and investigated in this study. Two healthy subjects were recruited for sequence parameter optimization and twenty-five patients were consecutively scanned for image quality and blood suppression assessment. Qualitative image scores of vessel wall delineation as well as quantitative Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) were evaluated at five typical locations ranging from common carotid arteries to middle cerebral arteries. RESULTS The 3D multi-contrast images acquired within 15mins allowed the vessel wall visualization with 0.8 mm isotropic spatial resolution covering intra- and extracranial segments. Quantitative wall and lumen SNR measurements for each sequence showed effective blood suppression at all selected locations (P < 0.0001). Although the wall-lumen CNR varied across measured locations, each sequence provided good or adequate image quality in both intra- and extracranial segments. CONCLUSIONS The proposed 3D multi-contrast vessel wall technique provides isotropic resolution and time efficient solution for joint intra- and extracranial vessel wall CMR.
Collapse
Affiliation(s)
- Zechen Zhou
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| | - Xiaole Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Jinnan Wang
- Department of Radiology, University of Washington, Seattle, WA, USA.
- Philips Research North America, Briarcliff Manor, NY, USA.
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
- Department of Radiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Parolini C, Busnelli M, Ganzetti GS, Dellera F, Manzini S, Scanziani E, Johnson JL, Sirtori CR, Chiesa G. Magnetic resonance imaging visualization of vulnerable atherosclerotic plaques at the brachiocephalic artery of apolipoprotein E knockout mice by the blood-pool contrast agent B22956/1. Mol Imaging 2015; 13. [PMID: 24825406 DOI: 10.2310/7290.2014.00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to identify, by magnetic resonance imaging (MRI), the ability of the blood-pool contrast agent B22956/1 to detect atherosclerotic plaques developing at the brachiocephalic artery of apolipoprotein E knockout (apoE-KO) mice and to possibly identify vulnerable atherosclerotic lesions. After high-fat feeding for 8 or 12 weeks, MRIs of brachiocephalic arteries were acquired before and after B22956/1 administration; then vessels were removed and analyzed by histology. B22956/1 injection caused a rapid increase in plaque signal enhancement and plaque to muscle contrast values, which remained stable up to 70 minutes. A linear correlation between signal enhancement and macrophage content was found 10 minutes after B22956/1 injection (p < .01). Signal enhancement and plaque to muscle contrast values correlated with macrophage content 40 minutes after contrast agent administration (p < .01). Finally, 70 minutes after B22956/1 infusion, plaque to muscle contrast significantly correlated with the percentage of stenosis (p < .005). B22956/1 administration to high fat-fed apoE-KO mice resulted in a rapid enhancement of atherosclerotic plaques and in a great ability to rapidly visualize vulnerable plaques, characterized by a high macrophage content. These results suggest that B22956/1 could represent an interesting tool for the identification of atherosclerotic plaques potentially leading to acute cardiovascular events.
Collapse
|
25
|
Mulder WJM, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med 2015; 6:239sr1. [PMID: 24898749 DOI: 10.1126/scitranslmed.3005101] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioengineering provides unique opportunities to better understand and manage atherosclerotic disease. The field is entering a new era that merges the latest biological insights into inflammatory disease processes with targeted imaging and nanomedicine. Preclinical cardiovascular molecular imaging allows the in vivo study of targeted nanotherapeutics specifically directed toward immune system components that drive atherosclerotic plaque development and complication. The first multicenter trials highlight the potential contribution of multimodality imaging to more efficient drug development. This review describes how the integration of engineering, nanotechnology, and cardiovascular immunology may yield precision diagnostics and efficient therapeutics for atherosclerosis and its ischemic complications.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA. Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Farouc A Jaffer
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Lv P, Lin J, Guo D, Liu H, Tang X, Fu C, Hu J. Detection of carotid artery stenosis: a comparison between 2 unenhanced MRAs and dual-source CTA. AJNR Am J Neuroradiol 2014; 35:2360-5. [PMID: 25104291 DOI: 10.3174/ajnr.a4073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE Dual-source CTA and black-blood MRA are recently developed techniques for evaluating carotid stenosis. The purpose of this study was to compare dual-source CTA with black-blood MRA and conventional TOF MRA in both detecting carotid stenosis by using DSA as a reference standard and demonstrating plaque morphology. MATERIALS AND METHODS Thirty patients with suspected carotid artery stenosis underwent unenhanced MRA by using black-blood and TOF MRA and dual-source CTA. Source images from unenhanced MRAs and dual-source CTA were reconstructed with MIP or curved planar reconstruction. The degree of carotid artery stenosis was measured, and plaque surface morphology at the stenosis was analyzed and compared among different techniques. RESULTS Good correlation was observed for measuring the degree of carotid stenosis among dual-source CTA, black-blood MRA, TOF MRA, and DSA. Sensitivity and specificity for detecting severe stenosis were 100% and 97% with dual-source CTA, 100% and 95% with black-blood MRA, and 79% and 95% with TOF MRA. None of the 3 technologies resulted in stenosis of <50% being overestimated. Plaque surface irregularity or ulceration was more frequently detected with dual-source CTA and black-blood MRA than with TOF MRA and DSA. CONCLUSIONS This preliminary study shows that black-blood MRA is a promising technique, comparable with dual-source CTA and DSA, but better than TOF MRA, in the evaluation of carotid stenosis. Unlike dual-source CTA, black-blood MRA requires no intravenous contrast or radiation.
Collapse
Affiliation(s)
- P Lv
- From the Department of Radiology (P.L., J.L., H.L.), Zhongshan Hospital, Shanghai Medical College of Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - J Lin
- From the Department of Radiology (P.L., J.L., H.L.), Zhongshan Hospital, Shanghai Medical College of Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - D Guo
- Department of Vascular Surgery (D.G., X.T.), Zhongshan Hospital, Fudan University and Institute of Vascular Surgery, Shanghai, China
| | - H Liu
- From the Department of Radiology (P.L., J.L., H.L.), Zhongshan Hospital, Shanghai Medical College of Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - X Tang
- Department of Vascular Surgery (D.G., X.T.), Zhongshan Hospital, Fudan University and Institute of Vascular Surgery, Shanghai, China
| | - C Fu
- Siemens Shenzhen Magnetic Resonance (C.F.), Shenzhen, China
| | - J Hu
- Department of Cardiology (J.H.), Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Seven-Tesla Magnetic Resonance Imaging of Atherosclerotic Plaque in the Significantly Stenosed Carotid Artery. Invest Radiol 2014; 49:749-57. [DOI: 10.1097/rli.0000000000000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Boesen ME, Maior Neto LAS, Pulwicki A, Yerly J, Lebel RM, Frayne R. Fast spin echo imaging of carotid artery dynamics. Magn Reson Med 2014; 74:1103-9. [PMID: 25311135 DOI: 10.1002/mrm.25494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE We propose the use of a retrospectively gated cine fast spin echo (FSE) sequence for characterization of carotid artery dynamics. The aim of this study was to compare cine FSE measures of carotid dynamics with measures obtained on prospectively gated FSE images. METHODS The common carotid arteries in 10 volunteers were imaged using two temporally resolved sequences: (i) cine FSE and (ii) prospectively gated FSE. Three raters manually traced a common carotid artery area for all cardiac phases on both sequences. Measured areas and systolic-diastolic area changes were calculated and compared. Inter- and intra-rater reliability were assessed for both sequences. RESULTS No significant difference between cine FSE and prospectively gated FSE areas were observed (P = 0.36). Both sequences produced repeatable cross-sectional area measurements: inter-rater intraclass correlation coefficient (ICC) = 0.88 on cine FSE images and 0.87 on prospectively gated FSE images. Minimum detectable difference (MDD) in systolic-diastolic area was 4.9 mm(2) with cine FSE and 6.4 mm(2) with prospectively gated FSE. CONCLUSION This cine FSE method produced repeatable dynamic carotid artery measurements with less artifact and greater temporal efficiency compared with prospectively gated FSE.
Collapse
Affiliation(s)
- Mari E Boesen
- Physics and Astronomy, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family Centre, Foothills Medical Centre, AB Health Services, Calgary, Canada
| | | | - Alexandra Pulwicki
- Seaman Family Centre, Foothills Medical Centre, AB Health Services, Calgary, Canada
| | - Jerome Yerly
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family Centre, Foothills Medical Centre, AB Health Services, Calgary, Canada.,Electrical and Computer Engineering, University of Calgary, Calgary, Canada.,Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.,Centre for Biomedical Imaging, Lausanne, Switzerland
| | - R Marc Lebel
- Seaman Family Centre, Foothills Medical Centre, AB Health Services, Calgary, Canada.,Radiology, University of Calgary, Calgary, Canada.,General Electric Healthcare, Calgary, Calgary, Canada
| | - Richard Frayne
- Physics and Astronomy, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family Centre, Foothills Medical Centre, AB Health Services, Calgary, Canada.,Electrical and Computer Engineering, University of Calgary, Calgary, Canada.,Radiology, University of Calgary, Calgary, Canada.,Clinical Neurosciences, University of Calgary, Calgary, Canada
| |
Collapse
|
29
|
Affiliation(s)
- Farouc A Jaffer
- Massachusetts General Hospital, Harvard Medical School, Cardiovascular Research Center, Boston, Massachusetts, USA
| | - Johan W Verjans
- Massachusetts General Hospital, Harvard Medical School, Cardiovascular Research Center, Boston, Massachusetts, USA Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|