1
|
Barak-Corren Y, Gupta M, Dori Y, Tang J, Smith CL, Rome JJ, Gillespie MJ, Jolley MA, O’Byrne ML, Callahan R. Real-Time Assessment of Pulmonary Blood Flow in Pulmonary Vein Stenosis Using the Fluoroscopic Flow Calculator. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2025; 4:102639. [PMID: 40308239 PMCID: PMC12038276 DOI: 10.1016/j.jscai.2025.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 05/02/2025]
Abstract
Background Restenosis in pediatric pulmonary vein stenosis (PVS) is common and requires careful monitoring. Lung perfusion scintigraphy (LPS) is often used but involves excess radiation, is resource-intensive, and can cause patient discomfort, with no real-time data available. This study evaluated the fluoroscopic flow calculator (FFC) as a real-time tool for estimating pulmonary blood flow (Qp) using angiograms during catheterization, with the potential to replace or complement LPS. Methods A retrospective cross-sectional study was conducted on patients with PVS who underwent cardiac catheterization between April 1, 2023, and March 31, 2024 at the Children's Hospital of Philadelphia. The study included patients who had a right ventricular angiogram and available LPS data. The FFC tool was used to analyze angiograms and estimate Qp distribution. Accuracy was assessed by comparing FFC predictions to LPS measurements using median absolute error and Bland-Altman analysis. Results The study included 21 procedures involving 18 patients, with a median age of 17 months. The FFC tool provided accurate predictions of Qp distribution, with a median absolute error of 3%. In 76% of cases, the predicted flow split was within 5% of the LPS measurement, and all cases were within 7%. Bland-Altman analysis revealed a minimal bias of +0.3%, with no systematic bias at the extremes of the flow-split distribution. Conclusions The FFC tool shows promise in estimating Qp distribution during cardiac catheterization in PVS patients. Further research is needed to refine the FFC method, particularly incorporating segmental lung information, and to evaluate its real-time use during catheterization.
Collapse
Affiliation(s)
- Yuval Barak-Corren
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mudit Gupta
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yoav Dori
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica Tang
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher L. Smith
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan J. Rome
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew J. Gillespie
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew A. Jolley
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Pediatric Cardiac Anesthesia, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesia and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael L. O’Byrne
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Clinical Futures, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cardiovascular Outcomes, Quality, and Evaluative Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Callahan
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Zablah JE, Vargas-Acevedo C, da BarbosaRosa N, Shishvan OR, Saulnier G, Isaacson D, Morgan GJ, Mueller JL. Feasibility of Electric Impedance Tomography in the Assessment of Lung Perfusion and Ventilation in Congenital Pulmonary Vein Stenosis. Pediatr Cardiol 2025:10.1007/s00246-025-03816-6. [PMID: 40025176 DOI: 10.1007/s00246-025-03816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Pulmonary vein stenosis (PVS) is a complex disease that requires repeated percutaneous interventions. Electrical impedance tomography (EIT) is a functional imaging technique that provides real-time images of pulmonary perfusion and ventilation. We aimed to determine the feasibility of EIT to evaluate ventilation/perfusion in PVS before and after catheter-based interventions. EIT was conducted in patients with PVS using the ACT5 EIT system. Lung regions were segmented from the perfusion images, and time-dependent blood volume curves were computed voxel-wise and by lung region. The distribution of pulmonary blood flow (PBF) was computed from EIT images and compared pre and post intervention. Finally, a blinded interventional cardiologist reviewed the results to evaluate three findings: (1) side and extent of PVS, (2) perfusion, and (3) ventilation. During the study period, twelve patients were included. Of these, seven were female (58.3%) with a median age of 3.5 years. Six patients had history of prematurity, and four had history of previous surgical PVS intervention. Three patients (25%) had an episode of pulmonary hemorrhage during the current intervention. In general, ventilation/perfusion data were successfully obtained in all cases. EIT correctly depicted all 12 cases of PVS correlating with angiography performed on the same day. EIT is a non-invasive, radiation-free technique that estimates lung perfusion/ventilation and percent distribution of PBF. The subject-based evaluation of EIT correlates to the severity and sidedness of the veins involved. This technology has the potential of providing perfusion/ventilation information in-PVS patients without the need of contrast or radiation.
Collapse
Affiliation(s)
- Jenny E Zablah
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Boulder, CO, USA.
- The Heart Institute, Children'S Hospital Colorado, 13123 E 16 Ave., B100, Aurora, CO, 80045, USA.
| | - Catalina Vargas-Acevedo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Boulder, CO, USA
- The Heart Institute, Children'S Hospital Colorado, 13123 E 16 Ave., B100, Aurora, CO, 80045, USA
| | | | - Omid Rajabi Shishvan
- Department of Electrical and Computer Engineering, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | - Gary Saulnier
- Department of Electrical and Computer Engineering, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | - David Isaacson
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Gareth J Morgan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Boulder, CO, USA
- The Heart Institute, Children'S Hospital Colorado, 13123 E 16 Ave., B100, Aurora, CO, 80045, USA
| | - Jennifer L Mueller
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Mathematics, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Tanimoto A, Guillerman RP, Crotty E, Schapiro A. Neonatal and Pediatric Pulmonary Vascular Disease. Radiol Clin North Am 2025; 63:265-277. [PMID: 39863379 DOI: 10.1016/j.rcl.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Pediatric patients are affected by a wide variety of pulmonary vascular diseases ranging from congenital anomalies diagnosed at birth to acquired diseases that present later in childhood and into adolescence. While some pulmonary vascular diseases present similarly to those seen in adults, other forms are unique to children. Knowledge of the characteristic imaging features of these diseases is essential to facilitate prompt diagnosis and guide clinical management.
Collapse
Affiliation(s)
- Aki Tanimoto
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - R Paul Guillerman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eric Crotty
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Andrew Schapiro
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Hsien S, Krishnan U, Petit CJ. Interventions for Pulmonary Vein Stenosis. Interv Cardiol Clin 2024; 13:431-438. [PMID: 38839175 DOI: 10.1016/j.iccl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Pulmonary vein stenosis (PVS) is a rare and unique disease of infants and young children. PVS is attended by high morbidity and mortality, and for many decades, effective therapy eluded the practitioner. However, in the most recent era, interventional techniques when employed in combination with systemic (primary) therapy have had a remarkable impact on outcomes in these at-risk children. Despite apparent complete relief of PVS in a discrete region of a pulmonary vein, stenosis reliably recurs and progresses. In this review, we discuss the current state-of-the-art interventional techniques, through the lens of our collective experiences and practices.
Collapse
Affiliation(s)
- Sophia Hsien
- Division of Pediatric Cardiology, New York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA
| | - Usha Krishnan
- Division of Pediatric Cardiology, New York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA
| | - Christopher J Petit
- Division of Pediatric Cardiology, New York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Barak-Corren Y, Herz C, Lasso A, Dori Y, Tang J, Smith CL, Callahan R, Rome JJ, Gillespie MJ, Jolley MA, O’Byrne ML. Calculating Relative Lung Perfusion Using Fluoroscopic Sequences and Image Analysis: The Fluoroscopic Flow Calculator. Circ Cardiovasc Interv 2024; 17:e013204. [PMID: 38152881 PMCID: PMC10872906 DOI: 10.1161/circinterventions.123.013204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Maldistribution of pulmonary blood flow in patients with congenital heart disease impacts exertional performance and pulmonary artery growth. Currently, measurement of relative pulmonary perfusion can only be performed outside the catheterization laboratory. We sought to develop a tool for measuring relative lung perfusion using readily available fluoroscopy sequences. METHODS A retrospective cohort study was conducted on patients with conotruncal anomalies who underwent lung perfusion scans and subsequent cardiac catheterizations between 2011 and 2022. Inclusion criteria were nonselective angiogram of pulmonary vasculature, oblique angulation ≤20°, and an adequate view of both lung fields. A method was developed and implemented in 3D Slicer's SlicerHeart extension to calculate the amount of contrast that entered each lung field from the start of contrast injection and until the onset of levophase. The predicted perfusion distribution was compared with the measured distribution of pulmonary blood flow and evaluated for correlation, accuracy, and bias. RESULTS In total, 32% (79/249) of screened studies met the inclusion criteria. A strong correlation between the predicted flow split and the measured flow split was found (R2=0.83; P<0.001). The median absolute error was 6%, and 72% of predictions were within 10% of the true value. Bias was not systematically worse at either extreme of the flow distribution. The prediction was found to be more accurate for either smaller and younger patients (age 0-2 years), for right ventricle injections, or when less cranial angulations were used (≤20°). In these cases (n=40), the prediction achieved R2=0.87, median absolute error of 5.5%, and 78% of predictions were within 10% of the true flow. CONCLUSIONS The current study demonstrates the feasibility of a novel method for measuring relative lung perfusion using conventional angiograms. Real-time measurement of lung perfusion at the catheterization laboratory has the potential to reduce unnecessary testing, associated costs, and radiation exposure. Further optimization and validation is warranted.
Collapse
Affiliation(s)
- Yuval Barak-Corren
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christian Herz
- Division of Pediatric Cardiac Anesthesia, The Children’s Hospital of Philadelphia and Department of Anesthesia and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen’s University, Kingston, ON
| | | | - Jessica Tang
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christopher L Smith
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ryan Callahan
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jonathan J Rome
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew J Gillespie
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew A Jolley
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Pediatric Cardiac Anesthesia, The Children’s Hospital of Philadelphia and Department of Anesthesia and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Michael L O’Byrne
- Division of Cardiology, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Clinical Futures, The Children’s Hospital of Philadelphia, Pennsylvania, Philadelphia, PA
- Leonard Davis Institute and Center for Cardiovascular Outcomes, Quality, and Evaluative Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA
| |
Collapse
|
6
|
Perrone MA, Cimini A, Ricci M, Pizzoferro M, Garganese MC, Raponi M, Schillaci O. Myocardial Functional Imaging in Pediatric Nuclear Cardiology. J Cardiovasc Dev Dis 2023; 10:361. [PMID: 37754790 PMCID: PMC10531976 DOI: 10.3390/jcdd10090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
The role of nuclear medicine in pediatric cardiology has grown rapidly over the years, providing useful functional and prognostic information and playing a complementary role to morphological imaging in the evaluation of myocardial perfusion, cardiovascular inflammation and infections, and cardiac sympathetic innervation. The aim of this narrative review is to summarize and highlight the most important evidence on pediatric nuclear cardiology, describing clinical applications and the possibilities, advantages, and limitations of nuclear medicine techniques. Moreover, a special focus will be given to the minimization of radiation exposure in pediatric nuclear cardiology imaging, a critical topic in children.
Collapse
Affiliation(s)
- Marco Alfonso Perrone
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy
| | - Maria Ricci
- Nuclear Medicine Unit, Cardarelli Hospital, 86100 Campobasso, Italy
| | - Milena Pizzoferro
- Division of Nuclear Medicine, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | | | - Massimiliano Raponi
- Health Directorate, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
7
|
Callahan R, Morray BH, Hirsch R, Petit CJ. Management of Pediatric Pulmonary Vein Stenosis. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100391. [PMID: 39131478 PMCID: PMC11307749 DOI: 10.1016/j.jscai.2022.100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 08/13/2024]
Abstract
Pediatric intraluminal pulmonary vein stenosis has evolved into a chronic illness, with improving survival. Although significant knowledge gaps remain, medical providers have found success in the management of patients with pulmonary vein stenosis using a comprehensive multimodality treatment strategy. This review discusses the core principles employed by 4 centers dedicated to improving pulmonary vein stenosis outcomes, including how to make the diagnosis, educating the family, treatment strategy, the importance of surveillance, and the management of symptoms and comorbidities.
Collapse
Affiliation(s)
- Ryan Callahan
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian H. Morray
- Division of Pediatric Cardiology, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, Washington
| | - Russel Hirsch
- Heart Institute, Cincinnati Children’s Hospital and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Christopher J. Petit
- Division of Pediatric Cardiology, Morgan Stanley Children’s Hospital, NewYork-Presbyterian Hospital and Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
8
|
Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, Villemain O. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr 2022; 10:909994. [PMID: 35874576 PMCID: PMC9301385 DOI: 10.3389/fped.2022.909994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear imaging plays a unique role within diagnostic imaging since it focuses on cellular and molecular processes. Using different radiotracers and detection techniques such as the single photon emission scintigraphy or the positron emission tomography, specific parameters can be assessed: myocardial perfusion and viability, pulmonary perfusion, ventricular function, flow and shunt quantification, and detection of inflammatory processes. In pediatric and congenital cardiology, nuclear imaging can add complementary information compared to other imaging modalities such as echocardiography or magnetic resonance imaging. In this state-of-the-art paper, we appraise the different techniques in pediatric nuclear imaging, evaluate their advantages and disadvantages, and discuss the current clinical applications.
Collapse
Affiliation(s)
- Maelys Venet
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mark K. Friedberg
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jerome Baranger
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Zakaria Jalal
- Department of Congenital and Pediatric Cardiology, Hôpital du Haut-Lévêque, CHU de Bordeaux, Bordeaux-Pessac, France
| | - Ghoufrane Tlili
- Department of Nuclear Medicine, Hôpital du Haut-Lévêque, CHU de Bordeaux, Bordeaux-Pessac, France
| | - Olivier Villemain
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Extravascular MDCT Findings of Pulmonary Vein Stenosis in Children with Cardiac Septal Defect. CHILDREN-BASEL 2021; 8:children8080667. [PMID: 34438558 PMCID: PMC8394993 DOI: 10.3390/children8080667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023]
Abstract
Purpose: To retrospectively investigate the extravascular thoracic MDCT angiography findings of pulmonary vein stenosis (PVS) in children with a cardiac septal defect. Materials and Methods: Pediatric patients (age ≤ 18 years) with cardiac septal defect and PVS, confirmed by echocardiogram and/or conventional angiography, who underwent thoracic MDCT angiography studies from April 2009 to April 2021 were included. Two pediatric radiologists independently evaluated thoracic MDCT angiography studies for the presence of extravascular thoracic abnormalities in: (1) lung and airway (ground-glass opacity (GGO), consolidation, pulmonary nodule, mass, cyst, septal thickening, fibrosis, and bronchiectasis); (2) pleura (pleural thickening, pleural effusion, and pneumothorax); and (3) mediastinum (mass and lymphadenopathy). Interobserver agreement between the two independent pediatric radiology reviewers was evaluated with kappa statistics. Results: The final study group consisted of 20 thoracic MDCT angiography studies from 20 consecutive individual pediatric patients (13 males (65%) and 7 females (35%); mean age: 7.5 months; SD: 12.7; range: 2 days to 7 months) with cardiac septal defect and PVS. The characteristic extravascular thoracic MDCT angiography findings were GGO (18/20; 90%), septal thickening (9/20; 45%), pleural thickening (16/20; 80%), and ill-defined, mildly heterogeneously enhancing, non-calcified soft tissue mass (9/20; 45%) following the contours of PVS in the mediastinum. There was a high interobserver kappa agreement between two independent reviewers for detecting extravascular abnormalities on thoracic MDCT angiography studies (k = 0.99). Conclusion: PVS in children with a cardiac septal defect has a characteristic extravascular thoracic MDCT angiography finding. In the lungs and pleura, GGO, septal thickening, and pleural thickening are frequently seen in children with cardiac septal defect and PVS. In the mediastinum, a mildly heterogeneously enhancing, non-calcified soft tissue mass in the distribution of PVS in the mediastinum is seen in close to half of the pediatric patients with cardiac septal defect and PVS.
Collapse
|
10
|
Pulmonary vein stenosis: Treatment and challenges. J Thorac Cardiovasc Surg 2021; 161:2169-2176. [DOI: 10.1016/j.jtcvs.2020.05.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 11/15/2022]
|
11
|
Prognostic Significance of Computed Tomography Findings in Pulmonary Vein Stenosis. CHILDREN-BASEL 2021; 8:children8050402. [PMID: 34067561 PMCID: PMC8155841 DOI: 10.3390/children8050402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
(1) Pulmonary vein stenosis (PVS) can be a severe, progressive disease with lung involvement. We aimed to characterize findings by computed tomography (CT) and identify factors associated with death; (2) Veins and lung segments were classified into five locations: right upper, middle, and lower; and left upper and lower. Severity of vein stenosis (0–4 = no disease–atresia) and lung segments (0–3 = unaffected–severe) were scored. A PVS severity score (sum of all veins + 2 if bilateral disease; maximum = 22) and a total lung severity score (sum of all lung segments; maximum = 15) were reported; (3) Of 43 CT examinations (median age 21 months), 63% had bilateral disease. There was 30% mortality by 4 years after CT. Individual-vein PVS severity was associated with its corresponding lung segment severity (p < 0.001). By univariate analysis, PVS severity score >11, lung cysts, and total lung severity score >6 had higher hazard of death; and perihilar induration had lower hazard of death; (4) Multiple CT-derived variables of PVS severity and lung disease have prognostic significance. PVS severity correlates with lung disease severity.
Collapse
|
12
|
Outcomes in Establishing Individual Vessel Patency for Pediatric Pulmonary Vein Stenosis. CHILDREN-BASEL 2021; 8:children8030210. [PMID: 33802089 PMCID: PMC8000090 DOI: 10.3390/children8030210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to determine what patient and pulmonary vein characteristics at the diagnosis of intraluminal pulmonary vein stenosis (PVS) are predictive of individual vein outcomes. A retrospective, single-center, cohort sub-analysis of individual pulmonary veins of patients enrolled in the clinical trial NCT00891527 using imatinib mesylate +/− bevacizumab as adjunct therapy for the treatment of multi-vessel pediatric PVS between March 2009 and December 2014 was performed. The 72-week outcomes of the individual veins are reported. Among the 48 enrolled patients, 46 patients and 182 pulmonary veins were included in the study. Multivariable analysis demonstrated that patients with veins without distal disease at baseline (odds ratio, OR 3.69, 95% confidence interval, CI [1.52, 8.94], p = 0.004), location other than left upper vein (OR 2.58, 95% CI [1.07, 6.19], p = 0.034), or veins in patients ≥ 1 y/o (OR 5.59, 95% CI [1.81, 17.3], p = 0.003) were at higher odds of having minimal disease at the end of the study. Veins in patients who received a higher percentage of eligible drug doses required fewer reinterventions (IRR 0.76, 95% CI [0.68, 0.85], p < 0.001). The success of a multi-modal treatment approach to aggressive PVS depends on the vein location, disease severity, and drug dose intensity.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Pulmonary vein stenosis (PVS) is a rare entity that until the last 2 decades was seen primarily in infants and children. Percutaneous and surgical interventions have limited success due to relentless restenosis, and mortality remains high. In adults, acquired PVS following ablation for atrial fibrillation has emerged as a new syndrome. This work will review these two entities with emphasis on current treatment. RECENT FINDINGS Greater emphasis on understanding and addressing the mechanism of restenosis for congenital PVS has led to the use of drug-eluting stents (DES) and systemic drug therapy to target neo-intimal growth. Frequent reinterventions are positively affecting outcomes. Longer-term outcomes of percutaneous treatment for acquired PVS are emerging. Treatment of congenital PVS continues to be plagued by restenosis. DES show promise, but frequent reinterventions are required. Larger upstream vein diameter predicts success for congenital and acquired PVS interventions. Efforts to induce/maintain vessel growth are important for future treatment strategies.
Collapse
Affiliation(s)
- Patcharapong Suntharos
- Division of Pediatric Cardiology, Nicklaus Children's Hospital, 3100 SW 62nd Avenue, Miami, FL, 33155, USA
| | - Lourdes R Prieto
- Division of Pediatric Cardiology, Nicklaus Children's Hospital, 3100 SW 62nd Avenue, Miami, FL, 33155, USA.
| |
Collapse
|
14
|
Moradi F, Morris TA, Hoh CK. Perfusion Scintigraphy in Diagnosis and Management of Thromboembolic Pulmonary Hypertension. Radiographics 2020; 39:169-185. [PMID: 30620694 DOI: 10.1148/rg.2019180074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a life-threatening complication of acute pulmonary embolism (PE). Because the treatment of CTEPH is markedly different from that of other types of pulmonary hypertension, lung ventilation-perfusion (V/Q) scintigraphy is recommended for the workup of patients with unexplained pulmonary hypertension. Lung V/Q scintigraphy is superior to CT pulmonary angiography for detecting CTEPH. Perfusion defect findings of CTEPH can be different from those of acute PE. Familiarity with the patterns of perfusion defects seen during the initial workup of CTEPH and the expected posttreatment changes seen at follow-up imaging is essential for accurate interpretation of V/Q scintigraphy findings. ©RSNA, 2019.
Collapse
Affiliation(s)
- Farshad Moradi
- From the Department of Radiology, Division of Nuclear Medicine (F.M., C.K.H.); and Division of Pulmonary, Critical Care, and Sleep Medicine (T.A.M.), University of California, San Diego, San Diego, Calif
| | - Timothy A Morris
- From the Department of Radiology, Division of Nuclear Medicine (F.M., C.K.H.); and Division of Pulmonary, Critical Care, and Sleep Medicine (T.A.M.), University of California, San Diego, San Diego, Calif
| | - Carl K Hoh
- From the Department of Radiology, Division of Nuclear Medicine (F.M., C.K.H.); and Division of Pulmonary, Critical Care, and Sleep Medicine (T.A.M.), University of California, San Diego, San Diego, Calif
| |
Collapse
|
15
|
Nasr VG, Callahan R, Wichner Z, Odegard KC, DiNardo JA. Intraluminal Pulmonary Vein Stenosis in Children. Anesth Analg 2019; 129:27-40. [DOI: 10.1213/ane.0000000000003924] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Callahan R, Kieran MW, Baird CW, Colan SD, Gauvreau K, Ireland CM, Marshall AC, Sena LM, Vargas SO, Jenkins KJ. Adjunct Targeted Biologic Inhibition Agents to Treat Aggressive Multivessel Intraluminal Pediatric Pulmonary Vein Stenosis. J Pediatr 2018; 198:29-35.e5. [PMID: 29576325 DOI: 10.1016/j.jpeds.2018.01.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To evaluate the use of imatinib mesylate with or without bevacizumab targeting neoproliferative myofibroblast-like cells with tyrosine kinase receptor expression, as adjuncts to modern interventional therapies for the treatment of multivessel intraluminal pulmonary vein stenosis (PVS). We describe the 48- and 72-week outcomes among patients receiving imatinib mesylate with or without bevacizumab for multivessel intraluminal PVS. STUDY DESIGN This single-arm, prospective, open-label US Food and Drug Administration approved trial enrolled patients with ≥2 affected pulmonary veins after surgical or catheter-based relief of obstruction between March 2009 and December 2014. Drug therapy was discontinued at 48 weeks, or after 24 weeks of stabilization, whichever occurred later. RESULTS Among 48 enrolled patients, 5 had isolated PVS, 26 congenital heart disease, 5 lung disease, and 12 both. After the 72-week follow-up, 16 patients had stabilized, 27 had recurred locally without stabilization, and 5 had progressed. Stabilization was associated with the absence of lung disease (P = .03), a higher percentage of eligible drug doses received (P = .03), and was not associated with age, diagnosis, disease laterality, or number of veins involved. Survival to 72 weeks was 77% (37 of 48). Adverse events were common (n = 1489 total), but only 16 were definitely related to drug treatment, none of which were serious. CONCLUSION Survival to 72 weeks was 77% in a referral population with multivessel intraluminal PVS undergoing multimodal treatment, including antiproliferative tyrosine kinase blockade. Toxicity specific to tyrosine kinase blockade was minimal.
Collapse
Affiliation(s)
- Ryan Callahan
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA.
| | - Mark W Kieran
- Division of Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA; Department of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Christopher W Baird
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Kimberlee Gauvreau
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Christina M Ireland
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Audrey C Marshall
- Department of Cardiology, Floating Hospital for Children at Tufts Medical Center, Boston, MA
| | - Laureen M Sena
- Department of Radiology, UMass Memorial Medical Center, Boston, MA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Kathy J Jenkins
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Hassani C, Saremi F. Comprehensive Cross-sectional Imaging of the Pulmonary Veins. Radiographics 2018; 37:1928-1954. [PMID: 29131765 DOI: 10.1148/rg.2017170050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pulmonary veins carry oxygenated blood from the lungs to the heart, but their importance to the radiologist extends far beyond this seemingly straightforward function. The anatomy of the pulmonary veins is variable among patients, with several noteworthy variant and anomalous patterns, including supernumerary pulmonary veins, a common ostium, anomalous pulmonary venous return, and levoatriocardinal veins. Differences in pulmonary vein anatomy and the presence of variant or anomalous anatomy can be of critical importance, especially for preoperative planning of pulmonary and cardiac surgery. The enhancement or lack of enhancement of the pulmonary veins can be a clue to clinically important disease, and the relationship of masses to the pulmonary veins can herald cardiac invasion. The pulmonary veins are also an integral part of thoracic interventions, including lung transplantation, pneumonectomy, and radiofrequency ablation for atrial fibrillation. This fact creates a requirement for radiologists to have knowledge of the pre- and postoperative imaging appearances of the pulmonary veins. Many of these procedures are associated with important potential complications involving the pulmonary veins, for which diagnostic imaging plays a critical role. A thorough knowledge of the pulmonary veins and a proper radiologic approach to their evaluation is critical for the busy radiologist who must incorporate the pulmonary veins into a routine "search pattern" at computed tomography (CT) and magnetic resonance imaging. This article is a comprehensive CT-based imaging review of the pulmonary veins, including their embryology, anatomy (typical and anomalous), surgical implications, pulmonary vein thrombosis, pulmonary vein stenosis, pulmonary vein pseudostenosis, and the relationship of tumors to the pulmonary veins. Online supplemental material is available for this article. ©RSNA, 2017.
Collapse
Affiliation(s)
- Cameron Hassani
- From the Department of Radiology, Keck Hospital of the University of Southern California, 1500 San Pablo St, Los Angeles, CA 90033
| | - Farhood Saremi
- From the Department of Radiology, Keck Hospital of the University of Southern California, 1500 San Pablo St, Los Angeles, CA 90033
| |
Collapse
|
18
|
|