1
|
Ismail M, Lalani T, Kielar A, Hong C, Yacoub J, Lim C, Surabhi V, Shanbhogue K, Nandwana S, Liu X, Santillan C, Bashir MR, Lee J. Lessons learned: strategies for implementing and the ongoing use of LI-RADS in your practice. Abdom Radiol (NY) 2025; 50:2053-2065. [PMID: 39438286 PMCID: PMC11991978 DOI: 10.1007/s00261-024-04643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The establishment of the Liver Imaging Reporting and Data System (LI-RADS) in 2011 provided a comprehensive approach to standardized imaging, interpretation, and reporting of liver observations in patients diagnosed with or at risk for hepatocellular carcinoma (HCC). Each set of algorithms provides criteria pertinent to the various components of HCC management including surveillance, diagnosis, staging, and treatment response supported by a detailed lexicon of terms applicable to a wide range of liver imaging scenarios. Before its widespread adoption, the variability in the terminology of diagnostic criteria and definitions of imaging features led to significant challenges in patient management and made it difficult to replicate findings or apply them consistently. The integration of LI-RADS into the clinical setting has enhanced the efficiency and clarity of communication between radiologists, referring providers, and patients by employing a uniform language that averts miscommunications. LI-RADS has been strengthened with its integration into the American Association for Study of Liver Diseases practice guidelines. We will provide the background on the initial development of LI-RADS and reasons for development to serve as a starting point for conveying the system's benefits and evolution over the years. We will also suggest strategies for the implementation and maintenance of a LI-RADS program will be discussed.
Collapse
Affiliation(s)
- Mohammed Ismail
- The Ohio State University, Columbus, USA.
- The Ohio State University Wexner Medical Center, Columbus, USA.
| | - Tasneem Lalani
- University of Massachusetts Chan Medical School, Worcester, USA
| | | | - Cheng Hong
- University of California San Francisco Medical Center, San Francisco, USA
| | - Joseph Yacoub
- MedStar Georgetown University Hospital, Washington D.C., USA
| | - Christopher Lim
- University of Toronto, Toronto, Canada
- Sunnybrook Health Science Centre, Toronto, Canada
| | | | | | | | | | | | | | - James Lee
- University of Kentucky, Lexington, USA.
| |
Collapse
|
2
|
Lee S, Kim YY, Shin J, Shin H, Sirlin CB, Chernyak V. Performance of LI-RADS category 5 vs combined categories 4 and 5: a systemic review and meta-analysis. Eur Radiol 2024; 34:7025-7040. [PMID: 38809263 DOI: 10.1007/s00330-024-10813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE Computed tomography (CT)/magnetic resonance imaging (MRI) Liver Imaging Reporting and Data System (LI-RADS, LR) category 5 has high specificity and modest sensitivity for diagnosis of hepatocellular carcinoma (HCC). The purpose of this study was to compare the diagnostic performance of LR-5 vs combined LR-4 and LR-5 (LR-4/5) for HCC diagnosis. METHODS MEDLINE and EMBASE databases through January 03, 2023 were searched for studies reporting the performance of LR-5 and combined LR-4/5 for HCC diagnosis, using CT/MRI LI-RADS version 2014, 2017, or 2018. A bivariate random-effects model was used to calculate the pooled per-observation diagnostic performance. Subgroup analysis was performed based on imaging modalities and type of MRI contrast material. RESULTS Sixty-nine studies (15,108 observations, 9928 (65.7%) HCCs) were included. Compared to LR-5, combined LR-4/5 showed significantly higher pooled sensitivity (83.0% (95% CI [80.3-85.8%]) vs 65.7% (95% CI [62.4-69.1%]); p < 0.001), lower pooled specificity (75.0% (95% CI [70.5-79.6%]) vs 91.7% (95% CI [90.2-93.1%]); p < 0.001), lower pooled positive likelihood ratio (3.60 (95% CI [3.06-4.23]) vs 6.18 (95% CI [5.35-7.14]); p < 0.001), and lower pooled negative likelihood ratio (0.22 (95% CI [0.19-0.25]) vs 0.38 (95% CI [0.35-0.41]) vs; p < 0.001). Similar results were seen in all subgroups. CONCLUSIONS Our meta-analysis showed that combining LR-4 and LR-5 would increase sensitivity but decrease specificity, positive likelihood ratio, and negative likelihood ratio. These findings may inform management guidelines and individualized management. CLINICAL RELEVANCE STATEMENT This meta-analysis estimated the magnitude of changes in the sensitivity and specificity of imaging criteria when LI-RADS categories 4 and 5 were combined; these findings can inform management guidelines and individualized management. KEY POINTS There is no single worldwide reporting system for liver imaging, partly due to regional needs. Combining LI-RADS categories 4 and 5 increased sensitivity and decreased specificity and positive and negative likelihood ratios. Changes in the sensitivity and specificity of imaging criteria can inform management guidelines and individualized management.
Collapse
Affiliation(s)
- Sunyoung Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeun-Yoon Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaeseung Shin
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyejung Shin
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Victoria Chernyak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Goins SM, Jiang H, van der Pol CB, Salameh JP, Lam E, Adamo RG, McInnes MDF, Costa AF, Clarke C, Choi SH, Fraum TJ, Ludwig DR, Song B, Joo I, Kierans AS, Kim SY, Kwon H, Podgórska J, Rosiak G, Bashir MR. Comparative Performance of 2018 LI-RADS versus Modified LIRADS (mLI-RADS): An Individual Participant Data Meta-Analysis. J Magn Reson Imaging 2024; 60:1082-1091. [PMID: 38038346 DOI: 10.1002/jmri.29167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND LI-RADS version 2018 (v2018) is used for non-invasive diagnosis of hepatocellular carcinoma (HCC). A recently proposed modification (known as mLI-RADS) demonstrated improved sensitivity while maintaining specificity and positive predictive value (PPV) of LI-RADS category 5 (definite HCC) for HCC. However, mLI-RADS requires multicenter validation. PURPOSE To evaluate the performance of v2018 and mLI-RADS for liver lesions in a large, heterogeneous, multi-national cohort of patients at risk for HCC. STUDY TYPE Systematic review and meta-analysis using individual participant data (IPD) [Study Protocol: https://osf.io/duys4]. POPULATION 2223 observations from 1817 patients (includes all LI-RADS categories; females = 448, males = 1361, not reported = 8) at elevated risk for developing HCC (based on LI-RADS population criteria) from 12 retrospective studies. FIELD STRENGTH/SEQUENCE 1.5T and 3T; complete liver MRI with gadoxetate disodium, including axial T2w images and dynamic axial fat-suppressed T1w images precontrast and in the arterial, portal venous, transitional, and hepatobiliary phases. Diffusion-weighted imaging was used when available. ASSESSMENT Liver observations were categorized using v2018 and mLI-RADS. The diagnostic performance of each system's category 5 (LR-5 and mLR-5) for HCC were compared. STATISTICAL TESTS The Quality Assessment of Diagnostic Accuracy Studies version 2 (QUADAS-2 was applied to determine risk of bias and applicability. Diagnostic performances were assessed using the likelihood ratio test for sensitivity and specificity and the Wald test for PPV. The significance level was P < 0.05. RESULTS 17% (2/12) of the studies were considered low risk of bias (244 liver observations; 164 patients). When compared to v2018, mLR-5 demonstrated higher sensitivity (61.3% vs. 46.5%, P < 0.001), similar PPV (85.3% vs. 86.3%, P = 0.89), and similar specificity (85.8% vs. 90.8%, P = 0.16) for HCC. DATA CONCLUSION This study confirms mLR-5 has higher sensitivity than LR-5 for HCC identification, while maintaining similar PPV and specificity, validating the mLI-RADS proposal in a heterogeneous, international cohort. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Stacy M Goins
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Christian B van der Pol
- Juravinski Hospital and Cancer Centre, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Paul Salameh
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Eric Lam
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robert G Adamo
- Faculty of Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew D F McInnes
- Departments of Radiology and Epidemiology uOttawa, The Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, Ontario, Canada
| | - Andreu F Costa
- Department of Diagnostic Radiology, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christopher Clarke
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Daniel R Ludwig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ijin Joo
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | | | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Heejin Kwon
- Department of Radiology, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Joanna Podgórska
- Second Radiology Department, Warsaw Medical University, Warsaw, Poland
| | - Grzegorz Rosiak
- Second Radiology Department, Warsaw Medical University, Warsaw, Poland
| | - Mustafa R Bashir
- Departments of Radiology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Lee S, Kim YY, Shin J, Roh YH, Choi JY, Chernyak V, Sirlin CB. Liver Imaging Reporting and Data System version 2018 category 5 for diagnosing hepatocellular carcinoma: an updated meta-analysis. Eur Radiol 2024; 34:1502-1514. [PMID: 37656177 DOI: 10.1007/s00330-023-10134-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE We performed an updated meta-analysis to determine the diagnostic performance of Liver Imaging Reporting and Data System (LI-RADS, LR) 5 category for hepatocellular carcinoma (HCC) using LI-RADS version 2018 (v2018), and to evaluate differences by imaging modalities and type of MRI contrast material. METHODS The MEDLINE and Embase databases were searched for studies reporting the performance of LR-5 using v2018 for diagnosing HCC. A bivariate random-effects model was used to calculate the pooled per-observation sensitivity and specificity. Subgroup analysis was performed based on imaging modalities and type of MRI contrast material. RESULTS Forty-eight studies qualified for the meta-analysis, comprising 9031 patients, 10,547 observations, and 7216 HCCs. The pooled per-observation sensitivity and specificity of LR-5 for diagnosing HCC were 66% (95% CI, 61-70%) and 91% (95% CI, 89-93%), respectively. In the subgroup analysis, MRI with extracellular agent (ECA-MRI) showed significantly higher pooled sensitivity (77% [95% CI, 70-82%]) than CT (66% [95% CI, 58-73%]; p = 0.023) or MRI with gadoxetate (Gx-MRI) (65% [95% CI, 60-70%]; p = 0.001), but there was no significant difference between ECA-MRI and MRI with gadobenate (gadobenate-MRI) (73% [95% CI, 61-82%]; p = 0.495). Pooled specificities were 88% (95% CI, 80-93%) for CT, 92% (95% CI, 86-95%) for ECA-MRI, 93% (95% CI, 91-95%) for Gx-MRI, and 91% (95% CI, 84-95%) for gadobenate-MRI without significant differences (p = 0.084-0.803). CONCLUSIONS LI-RADS v2018 LR-5 provides high specificity for HCC diagnosis regardless of modality or contrast material, while ECA-MRI showed higher sensitivity than CT or Gx-MRI. CLINICAL RELEVANCE STATEMENT Refinement of the criteria for improving sensitivity while maintaining high specificity of LR-5 for HCC diagnosis may be an essential future direction. KEY POINTS • The pooled per-observation sensitivity and specificity of LR-5 for diagnosing HCC using LI-RADSv2018 were 66% and 91%, respectively. • ECA-MRI showed higher sensitivity than CT (77% vs 66%, p = 0.023) or Gx-MRI (77% vs 65%, p = 0.001). • LI-RADS v2018 LR-5 provides high specificity (88-93%) for HCC diagnosis regardless of modality or contrast material type.
Collapse
Affiliation(s)
- Sunyoung Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yeun-Yoon Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeseung Shin
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Victoria Chernyak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Oh NE, Choi SH, Kim S, Lee H, Jang HJ, Byun JH, Won HJ, Shin YM. Suboptimal performance of LI-RADS v2018 on gadoxetic acid-enhanced MRI for detecting hepatocellular carcinoma in liver transplant candidates. Eur Radiol 2024; 34:465-474. [PMID: 37532900 DOI: 10.1007/s00330-023-10014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To evaluate the diagnostic performance for hepatocellular carcinoma (HCC) detection of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 on gadoxetic acid-enhanced MRI, comparing liver transplant candidates (LT group) with patients who underwent surgical resection (SR group), and to determine significant clinical factors for diagnostic performance of LI-RADS v2018. METHODS Patients who underwent gadoxetic acid-enhanced MRI and subsequent SR or LT for HCC were retrospectively included between January 2019 and December 2020. The sensitivity and specificity of LI-RADS LR-5 for HCC were compared between the two groups using generalized estimating equations. The accuracy of patient allocation according to the Milan criteria was calculated for the LT group. Univariable and multivariable logistic regression analyses were performed to determine significant clinical factors associated with the sensitivity of LI-RADS. RESULTS Of the 281 patients, 237 were assigned to the SR group, and 44 were assigned to the LT group. The LT group showed significantly lower per-patient (48.5% vs. 79.6%, p < .001) and per-lesion sensitivity (31.0% vs. 75.9%, p < .001) than the SR group, whereas no significant difference in both per-patient (100.0% vs. 91.7%, p > .99) and per-lesion specificities (100.0% vs. 94.1%, p > .99). The accuracy of patient allocation was 50.0%. Sensitivity was significantly lower in patients with a smaller lesion size (p < .001), a larger lesion number (p = .002), and a higher Child-Pugh score (p = .009). CONCLUSION LI-RADS v2018 on gadoxetic acid-enhanced MRI might be insufficient in liver transplant candidates and other diagnostic imaging tests should be considered in patients with these significant clinical factors. CLINICAL RELEVANCE STATEMENT In liver transplant candidates with a smaller lesion size, a larger lesion number, and a higher Child-Pugh score, imaging tests other than gadoxetic acid-enhanced MRI may be clinically useful to determine the transplant eligibility. KEY POINTS • The sensitivity of the Liver Imaging Reporting and Data System (LI-RADS) was lower in liver transplant candidates than in those who underwent surgical resection. • With the use of gadoxetic acid-enhanced MRI, the accuracy of patient allocation for liver transplantation on the basis of the Milan criteria was suboptimal. • The sensitivity of LI-RADS v2018 was significantly associated with lesion size, lesion number, and Child-Pugh classification.
Collapse
Affiliation(s)
- Na Eun Oh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| | - Sehee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, 05505, Korea
| | - Habeen Lee
- University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyeon Ji Jang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jae Ho Byun
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Hyung Jin Won
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Yong Moon Shin
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| |
Collapse
|
6
|
Dioguardi Burgio M, Garzelli L, Cannella R, Ronot M, Vilgrain V. Hepatocellular Carcinoma: Optimal Radiological Evaluation before Liver Transplantation. Life (Basel) 2023; 13:2267. [PMID: 38137868 PMCID: PMC10744421 DOI: 10.3390/life13122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Liver transplantation (LT) is the recommended curative-intent treatment for patients with early or intermediate-stage hepatocellular carcinoma (HCC) who are ineligible for resection. Imaging plays a central role in staging and for selecting the best LT candidates. This review will discuss recent developments in pre-LT imaging assessment, in particular LT eligibility criteria on imaging, the technical requirements and the diagnostic performance of imaging for the pre-LT diagnosis of HCC including the recent Liver Imaging Reporting and Data System (LI-RADS) criteria, the evaluation of the response to locoregional therapy, as well as the non-invasive prediction of HCC aggressiveness and its impact on the outcome of LT. We will also briefly discuss the role of nuclear medicine in the pre-LT evaluation and the emerging role of artificial intelligence models in patients with HCC.
Collapse
Affiliation(s)
- Marco Dioguardi Burgio
- Department of Radiology, Hôpital Beaujon, AP-HP. Nord, 100 Boulevard du Général Leclerc, 92110 Clichy, France (V.V.)
- Centre de Recherche sur l’Inflammation, UMR1149, Université Paris Cité, 75018 Paris, France
| | - Lorenzo Garzelli
- Service d’Imagerie Medicale, Centre Hospitalier de Cayenne, Avenue des Flamboyants, Cayenne 97306, French Guiana
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy
| | - Maxime Ronot
- Department of Radiology, Hôpital Beaujon, AP-HP. Nord, 100 Boulevard du Général Leclerc, 92110 Clichy, France (V.V.)
- Centre de Recherche sur l’Inflammation, UMR1149, Université Paris Cité, 75018 Paris, France
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, AP-HP. Nord, 100 Boulevard du Général Leclerc, 92110 Clichy, France (V.V.)
- Centre de Recherche sur l’Inflammation, UMR1149, Université Paris Cité, 75018 Paris, France
| |
Collapse
|
7
|
Chen X, Cai Q, Xia J, Huang H, Li Z, Song K, Jia N, Liu W. Liver Imaging Reporting and Data System (LI-RADS) v2018: differential diagnostic value of ADC values for benign and malignant nodules with moderate probability (LR-3). Front Oncol 2023; 13:1186290. [PMID: 37675222 PMCID: PMC10478080 DOI: 10.3389/fonc.2023.1186290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Objective To evaluate the usefulness of the apparent diffusion coefficient (ADC) in differentiating between benign and malignant LR-3 lesions classified by Liver Imaging Reporting and Data System 2018 (LI-RADS v2018). Methods Retrospectively analyzed 88 patients with liver nodules confirmed by pathology and classified as LR-3 by LI-RADS. All patients underwent preoperative contrast-enhanced MR examination, and the following patient-related imaging features were collected: tumor size,nonrim APHE, nonperipheral "washout", enhancing "capsule", mild-moderate T2 hyperintensity, fat in mass, restricted diffusion, and nodule-in-nodule architecture. We performed ROC analysis and calculated the sensitivity and specificity. Results A total of 122 lesions were found in 88 patients, with 68 benign and 54 malignant lesions. The mean ADC value for malignant and benign lesions were 1.01 ± 0.15 × 103 mm2/s and 1.41 ± 0.31 × 103 mm2/s, respectively. The ADC value of malignant lesions was significantly lower than that of benign lesions, p < 0.0001. Compared with other imaging features, ADC values had the highest AUC (AUC = 0.909), with a sensitivity of 92.6% and a specificity of 74.1% for the differentiation of benign and malignant lesions. Conclusions ADC values are useful for differentiating between benign and malignant liver nodules in LR-3 classification, it improves the sensitivity of LI-RADS in the diagnosis of HCC while maintaining high specificity, and we recommend including ADC values in the standard interpretation of LI-RADSv2018.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Quanyu Cai
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinju Xia
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huan Huang
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhaoxing Li
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kairong Song
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ningyang Jia
- Department of Radiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wanmin Liu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Jhaveri KS, Babaei Jandaghi A, Bhayana R, Elbanna KY, Espin-Garcia O, Fischer SE, Ghanekar A, Sapisochin G. Prospective evaluation of Gadoxetate-enhanced magnetic resonance imaging and computed tomography for hepatocellular carcinoma detection and transplant eligibility assessment with explant histopathology correlation. Cancer Imaging 2023; 23:22. [PMID: 36841796 PMCID: PMC9960413 DOI: 10.1186/s40644-023-00532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND We aimed to prospectively compare the diagnostic performance of gadoxetic acid-enhanced MRI (EOB-MRI) and contrast-enhanced Computed Tomography (CECT) for hepatocellular carcinoma (HCC) detection and liver transplant (LT) eligibility assessment in cirrhotic patients with explant histopathology correlation. METHODS In this prospective, single-institution ethics-approved study, 101 cirrhotic patients were enrolled consecutively from the pre-LT clinic with written informed consent. Patients underwent CECT and EOB-MRI alternately every 3 months until LT or study exclusion. Two blinded radiologists independently scored hepatic lesions on CECT and EOB-MRI utilizing the liver imaging reporting and data system (LI-RADS) version 2018. Liver explant histopathology was the reference standard. Pre-LT eligibility accuracies with EOB-MRI and CECT as per Milan criteria (MC) were assessed in reference to post-LT explant histopathology. Lesion-level and patient-level statistical analyses were performed. RESULTS Sixty patients (49 men; age 33-72 years) underwent LT successfully. One hundred four non-treated HCC and 42 viable HCC in previously treated HCC were identified at explant histopathology. For LR-4/5 category lesions, EOB-MRI had a higher pooled sensitivity (86.7% versus 75.3%, p < 0.001) but lower specificity (84.6% versus 100%, p < 0.001) compared to CECT. EOB-MRI had a sensitivity twice that of CECT (65.9% versus 32.2%, p < 0.001) when all HCC identified at explant histopathology were included in the analysis instead of imaging visible lesions only. Disregarding the hepatobiliary phase resulted in a significant drop in EOB-MRI performance (86.7 to 72.8%, p < 0.001). EOB-MRI had significantly lower pooled sensitivity and specificity versus CECT in the LR5 category with lesion size < 2 cm (50% versus 79%, p = 0.002 and 88.9% versus 100%, p = 0.002). EOB-MRI had higher sensitivity (84.8% versus 75%, p < 0.037) compared to CECT for detecting < 2 cm viable HCC in treated lesions. Accuracies of LT eligibility assessment were comparable between EOB-MRI (90-91.7%, p = 0.156) and CECT (90-95%, p = 0.158). CONCLUSION EOB-MRI had superior sensitivity for HCC detection; however, with lower specificity compared to CECT in LR4/5 category lesions while it was inferior to CECT in the LR5 category under 2 cm. The accuracy for LT eligibility assessment based on MC was not significantly different between EOB-MRI and CECT. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03342677 , Registered: November 17, 2017.
Collapse
Affiliation(s)
- Kartik S. Jhaveri
- grid.17063.330000 0001 2157 2938Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, 610 University Ave, 3-957, Toronto, ON M5G 2M9 Canada
| | - Ali Babaei Jandaghi
- grid.231844.80000 0004 0474 0428Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, Toronto, ON M5G 1X6 Canada
| | - Rajesh Bhayana
- grid.17063.330000 0001 2157 2938Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON M5G 2M9 Canada
| | - Khaled Y. Elbanna
- grid.17063.330000 0001 2157 2938Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON M5G 2M9 Canada
| | - Osvaldo Espin-Garcia
- grid.415224.40000 0001 2150 066XDepartment of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1 Canada ,grid.17063.330000 0001 2157 2938Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sandra E. Fischer
- grid.231844.80000 0004 0474 0428Department of Pathology, University Health Network and University of Toronto, Toronto, Ontario Canada
| | - Anand Ghanekar
- grid.17063.330000 0001 2157 2938University Health Network, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, ON M5G 2N2 Canada
| | - Gonzalo Sapisochin
- grid.17063.330000 0001 2157 2938University Health Network, Department of Surgery, Toronto General Hospital, University of Toronto, Toronto, ON M5G 2N2 Canada
| |
Collapse
|
9
|
Editor's Notebook: July 2022. AJR Am J Roentgenol 2022; 219:3-4. [PMID: 35723243 DOI: 10.2214/ajr.22.27784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|