1
|
Rehman Khan SU. Multi-level feature fusion network for kidney disease detection. Comput Biol Med 2025; 191:110214. [PMID: 40233676 DOI: 10.1016/j.compbiomed.2025.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Kidney irregularities pose a significant public health challenge, often leading to severe complications, yet the limited availability of nephrologists makes early detection costly and time-consuming. To address this issue, we propose a deep learning framework for automated kidney disease detection, leveraging feature fusion and sequential modeling techniques to enhance diagnostic accuracy. Our study thoroughly evaluates six pretrained models under identical experimental conditions, identifying ResNet50 and VGG19 as the highly efficient models for feature extraction due to their deep residual learning and hierarchical representations. Our proposed methodology integrates feature fusion with an inception block to extract diverse feature representations while maintaining imbalance dataset overhead. To enhance sequential learning and capture long-term dependencies in disease progression, ConvLSTM is incorporated after feature fusion. Additionally, Inception block is employed after ConvLSTM to refine hierarchical feature extraction, further strengthening the proposed model ability to leverage both spatial and temporal patterns. To validate our approach, we introduce a new named Multiple Hospital Collected (MHC-CT) dataset, consisting of 1860 tumor and 1024 normal kidney CT scans, meticulously annotated by medical experts. Our model achieves 99.60 % accuracy on this dataset, demonstrating its robustness in binary classification. Furthermore, to assess its generalization capability, we evaluate the model on a publicly available benchmark multiclass CT scan dataset, achieving 91.31 % accuracy. The superior performance is attributed to the effective feature fusion using inception blocks and the sequential learning capabilities of ConvLSTM, which together enhance spatial and temporal feature representations. These results highlight the efficacy of the proposed framework in automating kidney disease detection, providing a reliable, and efficient solution for clinical decision-making. https://github.com/VS-EYE/KidneyDiseaseDetection.git.
Collapse
Affiliation(s)
- Saif Ur Rehman Khan
- School of Computer Science and Engineering, Central South University, 932 Lushan S Rd, Yuelu District, Changsha, Hunan, China.
| |
Collapse
|
2
|
Stark Z, Byrne AB, Sampson MG, Lennon R, Mallett AJ. A guide to gene-disease relationships in nephrology. Nat Rev Nephrol 2025; 21:115-126. [PMID: 39443743 DOI: 10.1038/s41581-024-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The use of next-generation sequencing technologies such as exome and genome sequencing in research and clinical care has transformed our understanding of the molecular architecture of genetic kidney diseases. Although the capability to identify and rigorously assess genetic variants and their relationship to disease has advanced considerably in the past decade, the curation of clinically relevant relationships between genes and specific phenotypes has received less attention, despite it underpinning accurate interpretation of genomic tests. Here, we discuss the need to accurately define gene-disease relationships in nephrology and provide a framework for appraising genetic and experimental evidence critically. We describe existing international programmes that provide expert curation of gene-disease relationships and discuss sources of discrepancy as well as efforts at harmonization. Further, we highlight the need for alignment of disease and phenotype terminology to ensure robust and reproducible curation of knowledge. These collective efforts to support evidence-based translation of genomic sequencing into practice across clinical, diagnostic and research settings are crucial for delivering the promise of precision medicine in nephrology, providing more patients with timely diagnoses, accurate prognostic information and access to targeted treatments.
Collapse
Affiliation(s)
- Zornitza Stark
- ClinGen, Boston, MA, USA.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| | - Alicia B Byrne
- ClinGen, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Matthew G Sampson
- ClinGen, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel Lennon
- ClinGen, Boston, MA, USA
- Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew J Mallett
- ClinGen, Boston, MA, USA.
- Townsville Hospital and Health Service, Townsville, Queensland, Australia.
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Franceschini N, Feldman DL, Berg JS, Besse W, Chang AR, Dahl NK, Gbadegesin R, Pollak MR, Rasouly HM, Smith RJH, Winkler CA, Gharavi AG. Advancing Genetic Testing in Kidney Diseases: Report From a National Kidney Foundation Working Group. Am J Kidney Dis 2024; 84:751-766. [PMID: 39033956 PMCID: PMC11585423 DOI: 10.1053/j.ajkd.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 07/23/2024]
Abstract
About 37 million people in the United States have chronic kidney disease, a disease that encompasses multiple causes. About 10% or more of kidney diseases in adults and as many as 70% of selected chronic kidney diseases in children are expected to be explained by genetic causes. Despite the advances in genetic testing and an increasing understanding of the genetic bases of certain kidney diseases, genetic testing in nephrology lags behind other medical fields. More understanding of the benefits and logistics of genetic testing is needed to advance the implementation of genetic testing in chronic kidney diseases. Accordingly, the National Kidney Foundation convened a Working Group of experts with diverse expertise in genetics, nephrology, and allied fields to develop recommendations for genetic testing for monogenic disorders and to identify genetic risk factors for oligogenic and polygenic causes of kidney diseases. Algorithms for clinical decision making on genetic testing and a road map for advancing genetic testing in kidney diseases were generated. An important aspect of this initiative was the use of a modified Delphi process to reach group consensus on the recommendations. The recommendations and resources described herein provide support to nephrologists and allied health professionals to advance the use of genetic testing for diagnosis and screening of kidney diseases.
Collapse
|
4
|
Groyer H, Supiot R, Tardu J, Virely N, Sivignon M, San D, Lévy P, Ustyugova A, Massy ZA. Cost-Effectiveness of Empagliflozin (JARDIANCE ®) in the Treatment of Patients with Chronic Kidney Disease in France, Based on the EMPA-KIDNEY Clinical Trial. Clin Drug Investig 2024; 44:811-828. [PMID: 39446272 PMCID: PMC11564328 DOI: 10.1007/s40261-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVE The efficacy and safety of empagliflozin in the treatment of chronic kidney disease (CKD) were demonstrated in the EMPA-KIDNEY trial, which showed a 28% reduction in combined risks of kidney disease or death from cardiovascular causes (hazard ratio, 0.72; 95% confidence interval, 0.64-0.82; p < 0.001) compared with placebo. Based on these results, the present study aimed to assess the cost-effectiveness of empagliflozin + standard of care (SoC) compared with SoC alone in the treatment of CKD in France. METHODS A Markov state microsimulation model was adapted to compare the health and economic outcomes in France, considering a healthcare system perspective, in patients treated with empagliflozin in addition to SoC versus patients treated with SoC alone. The model simulated the intention-to-treat population of the trial, transitioning between 18 mutually exclusive and collectively exhaustive health states defined based on the Kidney Disease: Improving Global Outcomes classification. For each arm, the model estimated (over a 25-year time horizon) the number of events and deaths, and the costs associated with these events, to calculate the incremental cost-effectiveness ratio. The resources used were derived using French authorities reports, literature, and French CKD guidelines. Both economic and health outcomes were discounted at a 2.5% annual rate according to French guidelines. RESULTS The model predicted that using empagliflozin + SoC to treat patients with CKD would prevent CKD-related complications and deaths associated with a cardiovascular event or all-cause deaths while in kidney replacement therapy, resulting on average in a discounted gain of 1.29 years in overall survival (9.48 years vs. 8.19 with SoC alone). Empagliflozin costs (treatment, events, and disease management) were completely offset by the cost savings from avoided kidney failure events. Overall, empagliflozin + SoC would be more effective and less costly than SoC alone and would therefore be the dominant treatment strategy. The sensitivity analyses conducted support the results' robustness in showing the dominance of empagliflozin + SoC over SoC alone. CONCLUSIONS The base-case results indicate that empagliflozin + SoC is a dominant strategy compared with the current SoC for the management of CKD in France. Empagliflozin + SoC would have a positive impact on patients with CKD by slowing CKD progression and leading to the prevention of kidney failure events on top of all-stages CKD complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pierre Lévy
- Université Paris-Dauphine, Université PSL, LEDa (LEGOS), Paris, France
| | | | - Ziad A Massy
- Paris and Department of Nephrology, Association Pour l'Utilisation du Rein Artificiel (AURA), Ambroise Paré University Medical Center, APHP, Paris, France
- Paris-Saclay University, UVSQ, Inserm, Clinical Epidemiology Team, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
| |
Collapse
|
5
|
Elliott MD, Vena N, Marasa M, Cocchi E, Bheda S, Bogyo K, Shang N, Zanoni F, Verbitsky M, Wang C, Kolupaeva V, Jin G, Sofer M, Gras Pena R, Canetta PA, Bomback AS, Guay-Woodford LM, Hou J, Gillespie BW, Robinson BM, Klein JB, Rheault MN, Smoyer WE, Greenbaum LA, Holzman LB, Falk RJ, Parsa A, Sanna-Cherchi S, Mariani LH, Kretzler M, Kiryluk K, Gharavi AG. Increased risk of kidney failure in patients with genetic kidney disorders. J Clin Invest 2024; 134:e178573. [PMID: 39225089 PMCID: PMC11364380 DOI: 10.1172/jci178573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDIt is unknown whether the risk of kidney disease progression and failure differs between patients with and without genetic kidney disorders.METHODSThree cohorts were evaluated: the prospective Cure Glomerulonephropathy Network (CureGN) and 2 retrospective cohorts from Columbia University, including 5,727 adults and children with kidney disease from any etiology who underwent whole-genome or exome sequencing. The effects of monogenic kidney disorders and APOL1 kidney-risk genotypes on the risk of kidney failure, estimated glomerular filtration rate (eGFR) decline, and disease remission rates were evaluated along with diagnostic yields and the impact of American College of Medical Genetics secondary findings (ACMG SFs).RESULTSMonogenic kidney disorders were identified in 371 patients (6.5%), high-risk APOL1 genotypes in 318 (5.5%), and ACMG SFs in 100 (5.2%). Family history of kidney disease was the strongest predictor of monogenic disorders. After adjustment for traditional risk factors, monogenic kidney disorders were associated with an increased risk of kidney failure (hazard ratio [HR] = 1.72), higher rate of eGFR decline (-3.06 vs. 0.25 mL/min/1.73 m2/year), and lower risk of complete remission (odds ratioNot achieving CR = 5.25). High-risk APOL1 genotypes were associated with an increased risk of kidney failure (HR = 1.67) and faster eGFR decline (-2.28 vs. 0.25 mL/min/1.73 m2), replicating prior findings. ACMG SFs were not associated with personal or family history of associated diseases, but were predicted to impact care in 70% of cases.CONCLUSIONSMonogenic kidney disorders were associated with an increased risk of kidney failure, faster eGFR decline, and lower rates of complete remission, suggesting opportunities for early identification and intervention based on molecular diagnosis.TRIAL REGISTRATIONNA.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases grants U24DK100845 (formerly UM1DK100845), U01DK100846 (formerly UM1DK100846), U01DK100876 (formerly UM1DK100876), U01DK100866 (formerly UM1DK100866), U01DK100867 (formerly UM1DK100867), U24DK100845, DK081943, RC2DK116690, 2U01DK100876, 1R01DK136765, 5R01DK082753, and RC2-DK122397; NephCure Kidney International; Department of Defense Research Awards PR201425, W81XWH-16-1-0451, and W81XWH-22-1-0966; National Center for Advancing Translational Sciences grant UL1TR001873; National Library of Medicine grant R01LM013061; National Human Genome Research Institute grant 2U01HG008680.
Collapse
Affiliation(s)
- Mark D. Elliott
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalie Vena
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Maddalena Marasa
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Enrico Cocchi
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
- Neonatal and Pediatric Intensive Care Unit, Bufalini Hospital, AUSL Romagna, Ravenna, Italy
| | - Shiraz Bheda
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Kelsie Bogyo
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Ning Shang
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Francesca Zanoni
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miguel Verbitsky
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Chen Wang
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Victoria Kolupaeva
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Gina Jin
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Maayan Sofer
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Rafael Gras Pena
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Pietro A. Canetta
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Andrew S. Bomback
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Lisa M. Guay-Woodford
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jean Hou
- Department of Laboratory Medicine and Pathology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | - Bruce M. Robinson
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jon B. Klein
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Michelle N. Rheault
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - William E. Smoyer
- Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Larry A. Greenbaum
- Department of Pediatrics, Division of Pediatric Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Larry B. Holzman
- Perelman School of Medicine, Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald J. Falk
- Department of Medicine, Division of Nephrology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Afshin Parsa
- Division of Kidney, Urologic & Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Laura H. Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Ali G. Gharavi
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
6
|
da Silva Francisco R, Punj S, Vincent L, Sanapareddy N, Bhalla V, Chertow GM, Keen-Kim D, Charu V. Prevalence of Mendelian Kidney Disease Among Patients With High-Risk APOL1 Genotypes Undergoing Commercial Genetic Testing in the United States. Kidney Int Rep 2024; 9:2667-2676. [PMID: 39291188 PMCID: PMC11403072 DOI: 10.1016/j.ekir.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Among individuals with high-risk APOL1 genotypes, the lifetime risk of developing kidney failure is ∼15%, indicating that other genetic variants or nongenetic modifiers likely contribute substantially to an individual patient's risk of progressive kidney disease. Here, we estimate the prevalence and distribution of Mendelian kidney diseases among patients with high-risk APOL1 genotypes undergoing commercial genetic testing in the United States. Methods We analyzed clinical exome sequencing data from 15,181 individuals undergoing commercial genetic testing for Mendelian kidney disease in the United States from 2020 to 2021. We identified patients with high-risk APOL1 genotypes by the presence of G1/G1, G1/G2, or G2/G2 alleles. Patients carrying single risk APOL1 alleles were identified as G1/G0, G2/G0; the remainder of patients were G0/G0. We estimated the prevalence and distribution of Mendelian kidney disease stratified by APOL1 genotype and genetically predicted ancestry. Results Of 15,181 patients, 3119 had genetic testing results consistent with a molecular diagnosis of Mendelian kidney disease (20.5%). Of 15,181 patients, 1035 (6.8%) had high-risk APOL1 genotypes. Among patients with recent genomic African ancestry, the prevalence of Mendelian kidney diseases was lower in those with high-risk APOL1 genotypes (9.6%; n = 91/944) compared with single risk APOL1 allele carriers (13.6%; n = 198/1453) and those with G0/G0 APOL1 genotypes (16.6%; n = 213/1281). Among patients with Mendelian kidney disease and recent genomic African ancestry, we observed differences in the prevalence of pathogenic/likely pathogenic variants in PKD1 (19.8% in high-risk vs. 30.2% in low-risk genotypes), and COL4A4 (24.2% in high-risk vs. 10.5% in low-risk genotypes). Conclusion In this selected population of patients undergoing clinical genetic testing, we found evidence of Mendelian kidney disease in ∼10% patients with high-risk APOL1 genotypes.
Collapse
Affiliation(s)
| | - Sumit Punj
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Lisa Vincent
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Nina Sanapareddy
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Glenn M Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Dianne Keen-Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Natera, Inc. 201 Industrial Boulevard, San Carlos, California, USA
| | - Vivek Charu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Wopperer FJ, Olinger E, Wiesener A, Broeker KAE, Knaup KX, Schaefer JT, Galiano M, Schneider K, Schiffer M, Büttner-Herold M, Reis A, Schmieder R, Pasutto F, Hilgers KF, Poglitsch M, Ziegler C, Shoemaker R, Sayer JA, Wiesener MS. Progressive Kidney Failure by Angiotensinogen Inactivation in the Germline. Hypertension 2024; 81:1857-1868. [PMID: 39005223 DOI: 10.1161/hypertensionaha.124.22806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Autosomal recessive renal tubular dysgenesis is a rare, usually fatal inherited disorder of the renin-angiotensis system (RAS). Herein, we report an adolescent individual experiencing an unknown chronic kidney disease and aim to provide novel insights into disease mechanisms. METHODS Exome sequencing for a gene panel associated with renal disease was performed. The RAS was assessed by comprehensive biochemical analysis in blood. Renin expression was determined in primary tubular cells by quantitative polymerase chain reaction and in situ hybridization on kidney biopsy samples. Allele frequencies of heterozygous and biallelic deleterious variants were determined by analysis of the Genomics England 100,000 Genomes Project. RESULTS The patient was delivered prematurely after oligohydramnios was detected during pregnancy. Postnatally, he recovered from third-degree acute kidney injury but developed chronic kidney disease stage G3b over time. Exome sequencing revealed a previously reported pathogenic homozygous missense variant, p.(Arg375Gln), in the AGT (angiotensinogen) gene. Blood AGT concentrations were low, but plasma renin concentration and gene expression in kidney biopsy, vascular, and tubular cells revealed strong upregulation of renin. Angiotensin II and aldosterone in blood were not abnormally elevated. CONCLUSIONS Renal tubular dysgenesis may present as chronic kidney disease with a variable phenotype, necessitating broad genetic analysis for diagnosis. Functional analysis of the RAS in a patient with AGT mutation revealed novel insights regarding compensatory upregulation of renin in vascular and tubular cells of the kidney and in plasma in response to depletion of AGT substrate as a source of Ang II (similarly observed with hepatic AGT silencing for the treatment of hypertension).
Collapse
Affiliation(s)
- Florian J Wopperer
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Eric Olinger
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Brussels, Belgium (E.O.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (E.O., J.A.S.)
| | - Antje Wiesener
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | - Karl X Knaup
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Jan T Schaefer
- Department of Pediatrics and Adolescent Medicine (J.T.S., M.G.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Matthias Galiano
- Department of Pediatrics and Adolescent Medicine (J.T.S., M.G.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Karen Schneider
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology (M.B.-H.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - André Reis
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Roland Schmieder
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Francesca Pasutto
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | | | - Robin Shoemaker
- Department of Pediatrics, University of Kentucky, Lexington (R. Shoemaker)
| | - John A Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (E.O., J.A.S.)
| | - Michael S Wiesener
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| |
Collapse
|
8
|
Savige J. Tips for Testing Adults With Suspected Genetic Kidney Disease. Am J Kidney Dis 2024; 83:816-824. [PMID: 38147894 DOI: 10.1053/j.ajkd.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 12/28/2023]
Abstract
Genetic kidney disease is common but often unrecognized. It accounts for most cystic kidney diseases and tubulopathies, many forms of congenital abnormalities of the kidney and urinary tract (CAKUT), and some glomerulopathies. Genetic kidney disease is typically suspected where the disease usually has a genetic basis or there is another affected family member, a young age at onset, or extrarenal involvement, but there are also many exceptions to these "rules". Genetic testing requires the patient's written informed consent. When a patient declines testing, another later conversation may be worthwhile. Genetic testing not only indicates the diagnosis but also the inheritance pattern, likely at-risk family members, disease in other organs, clinical course, and possibly effective treatments. Sometimes genetic testing does not identify a pathogenic variant even where other evidence is strong. A variant of uncertain significance (VUS) may be reported but should not be used for clinical decision making. It may be reclassified after more information becomes available without necessarily retesting the patient. Patients should be provided with a copy of their genetic test report, the results explained, and at-risk family members offered "cascade" testing. A referral to a clinical geneticist or genetic counselor helps identify affected family members and in providing advice to assist with reproductive decisions.
Collapse
Affiliation(s)
- Judy Savige
- University of Melbourne Department of Medicine (Melbourne Health and Northern health), Royal Melbourne Hospital, Parkville, Australia.
| |
Collapse
|
9
|
Stevens PE, Ahmed SB, Carrero JJ, Foster B, Francis A, Hall RK, Herrington WG, Hill G, Inker LA, Kazancıoğlu R, Lamb E, Lin P, Madero M, McIntyre N, Morrow K, Roberts G, Sabanayagam D, Schaeffner E, Shlipak M, Shroff R, Tangri N, Thanachayanont T, Ulasi I, Wong G, Yang CW, Zhang L, Levin A. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int 2024; 105:S117-S314. [PMID: 38490803 DOI: 10.1016/j.kint.2023.10.018] [Citation(s) in RCA: 515] [Impact Index Per Article: 515.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 03/17/2024]
|
10
|
Beuschel JJ, Ng GI, Abaraoha JC, Fortuna RJ. Traumatic Self-Inflicted Ventricular Laceration: A Case of Smith-Lemli-Opitz Syndrome in an Adult. Cureus 2024; 16:e53613. [PMID: 38449995 PMCID: PMC10916526 DOI: 10.7759/cureus.53613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/21/2024] [Indexed: 03/08/2024] Open
Abstract
Adults with intellectual and developmental disabilities (IDD) are increasingly living into adulthood, highlighting the need for adult clinicians to expand their familiarity with congenital conditions. Smith-Lemli-Opitz syndrome (SLOS) is a rare autosomal recessive inborn error of cholesterol synthesis. SLOS is commonly diagnosed in childhood, but a number of adults with IDD progress into adulthood without a formal diagnosis. We present an 18-year-old male with a history of IDD and altered pain sensation who was hospitalized following a self-inflicted knife injury resulting in a traumatic ventricular septal defect. Over the following 15 years, the patient continued to exhibit self-injurious behaviors. At the age of 33, caregivers consented to further work-up of his intellectual disability, and whole-exome genetic sequencing revealed a diagnosis of SLOS. The clinical course of this patient represents a unique presentation of altered pain sensation, a delayed diagnosis of SLOS into adulthood, and the challenges of providing care to an adult with IDD. The case further highlights the importance of understanding the typical workup and management of genetic and congenital conditions arising in childhood.
Collapse
Affiliation(s)
- Jennifer J Beuschel
- Internal Medicine and Pediatrics, University of Rochester Medical Center, Rochester, USA
| | - Grace I Ng
- Internal Medicine and Pediatrics, University of Rochester Medical Center, Rochester, USA
| | - Joanna C Abaraoha
- Internal Medicine and Pediatrics, University of Rochester Medical Center, Rochester, USA
| | - Robert J Fortuna
- Internal Medicine and Pediatrics, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
11
|
Chen TK, Hoenig MP, Nitsch D, Grams ME. Advances in the management of chronic kidney disease. BMJ 2023; 383:e074216. [PMID: 38052474 DOI: 10.1136/bmj-2022-074216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chronic kidney disease (CKD) represents a global public health crisis, but awareness by patients and providers is poor. Defined as persistent abnormalities in kidney structure or function for more than three months, manifested as either low glomerular filtration rate or presence of a marker of kidney damage such as albuminuria, CKD can be identified through readily available blood and urine tests. Early recognition of CKD is crucial for harnessing major advances in staging, prognosis, and treatment. This review discusses the evidence behind the general principles of CKD management, such as blood pressure and glucose control, renin-angiotensin-aldosterone system blockade, statin therapy, and dietary management. It additionally describes individualized approaches to treatment based on risk of kidney failure and cause of CKD. Finally, it reviews novel classes of kidney protective agents including sodium-glucose cotransporter-2 inhibitors, glucagon-like peptide-1 receptor agonists, non-steroidal selective mineralocorticoid receptor antagonists, and endothelin receptor antagonists. Appropriate, widespread implementation of these highly effective therapies should improve the lives of people with CKD and decrease the worldwide incidence of kidney failure.
Collapse
Affiliation(s)
- Teresa K Chen
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California San Francisco; and San Francisco VA Health Care System, San Francisco, CA, USA
| | - Melanie P Hoenig
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dorothea Nitsch
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Morgan E Grams
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Fistrek Prlic M, Huljev Frkovic S, Beck B, Tonkovic Durisevic I, Bulimbasic S, Coric M, Lamot L, Ivandic E, Vukovic Brinar I. Two sides of the same coin: a complex presentation of autosomal dominant tubulointerstitial kidney diseases: a literature review and case reports. Front Pediatr 2023; 11:1283325. [PMID: 38027261 PMCID: PMC10667683 DOI: 10.3389/fped.2023.1283325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Genetic kidney diseases are underdiagnosed; namely, from 7% to 40% of patients suffering from chronic kidney disease (CKD) can carry a pathogenic variant, depending on population characteristics. Hereditary tubulointerstitial kidney diseases, including autosomal dominant tubulointerstitial kidney diseases (ADTKD), are even more challenging to diagnose. ADTKD is a rare form of genetic kidney disease resulting from pathogenic variants in the MUC1, UMOD, HNF1B, REN, SEC61A1, and DNAJB11 genes. There is no typical clinical or histopathological sign of ADTKD, it is characterized by progressive CKD, an autosomal dominant inheritance pattern, and tubular atrophy with interstitial fibrosis on kidney biopsy. There is no significant proteinuria, and the urinary sediment is bland. The patients usually do not have severe arterial hypertension. There can be a history of early gout, especially when compared to the UMOD gene variants. Children can have enuresis due to a loss of renal concentration. On ultrasound, the kidneys can appear normal or small in size. Renal cysts are not pathognomonic for any of the named diseases. End-stage renal disease (ESRD) develops at the average age of 45, but this can be very variable. Family history that suggests autosomal dominant inheritance and CKD fulfilling the aforementioned characteristics of tubulointerstitial kidney disease should raise suspicion of ADTKD. In the setting of a negative family history for CKD, clinical suspicion should be raised based on clinical characteristics, including early onset of hyperuricemia or gout and compatible histology on the kidney biopsy. Contrary to the aforementioned characteristics of ADTKD, in the case of HNF1B-related disease, there is a more complex clinical presentation with extrarenal manifestations of the disease (diabetes mellitus, hypomagnesemia, neurologic and psychiatric disturbances, etc.). The diagnosis of ADTKD is based on a positive family history and a detection of the pathogenic variant in one of the genes in an affected individual. Aim The aim of our study is to present two case reports of ADTKD with different characteristics (slowly progressive CKD vs. complex clinical presentation with an extrarenal manifestation of the disease) with a literature review. Methods A 34-year-old patient with CKD and a positive family history of CKD in whom kidney biopsy showed nonspecific chronic changes, with only genetic analysis confirming the diagnosis of MUC1-related ADTKD. Our second case is of a 17-year-old patient with an unremarkable family history who was initially referred to genetic counseling due to cognitive and motor impairment with long-lasting epilepsy. Extensive workup revealed increased serum creatinine levels with no proteinuria and bland urinary sediment, along with hypomagnesemia. His genetic analysis revealed 17q12 deletion syndrome, causing the loss of one copy of the HNF1B gene, the AATF, and the LHX1 gene. Conclusion Autosomal dominant tubulointerstitial kidney diseases are challenging to diagnose due to a lack of typical clinical or histopathological signs as well as an uncharacteristic and versatile clinical presentation. Increased clinical awareness is crucial for the detection of these diseases.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Sanda Huljev Frkovic
- Department of Pediatrics, Division of Genetics and Metabolism, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Bodo Beck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Ivana Tonkovic Durisevic
- Department of Laboratory Diagnostics, Division of Cytogenetics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Stela Bulimbasic
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Marijana Coric
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Pediatrics, Division of Nephrology, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ema Ivandic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| |
Collapse
|
13
|
Cirillo L, De Chiara L, Innocenti S, Errichiello C, Romagnani P, Becherucci F. Chronic kidney disease in children: an update. Clin Kidney J 2023; 16:1600-1611. [PMID: 37779846 PMCID: PMC10539214 DOI: 10.1093/ckj/sfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a major healthcare issue worldwide. However, the prevalence of pediatric CKD has never been systematically assessed and consistent information is lacking in this population. The current definition of CKD is based on glomerular filtration rate (GFR) and the extent of albuminuria. Given the physiological age-related modification of GFR in the first years of life, the definition of CKD is challenging per se in the pediatric population, resulting in high risk of underdiagnosis in this population, treatment delays and untailored clinical management. The advent and spreading of massive-parallel sequencing technology has prompted a profound revision of the epidemiology and the causes of CKD in children, supporting the hypothesis that CKD is much more frequent than currently reported in children and adolescents. This acquired knowledge will eventually converge in the identification of the molecular pathways and cellular response to damage, with new specific therapeutic targets to control disease progression and clinical features of children with CKD. In this review, we will focus on recent innovations in the field of pediatric CKD and in particular those where advances in knowledge have become available in the last years, with the aim of providing a new perspective on CKD in children and adolescents.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Samantha Innocenti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmela Errichiello
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Robert T, greillier S, Torrents J, Raymond L, Dancer M, Jourde-Chiche N, Halimi JM, Burtey S, Béroud C, Mesnard L. Diagnosis of Kidney Diseases of Unknown Etiology Through Biopsy-Genetic Analysis. Kidney Int Rep 2023; 8:2077-2087. [PMID: 37850010 PMCID: PMC10577324 DOI: 10.1016/j.ekir.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Previous studies have suggested that genetic kidney diseases in adults are often overlooked, representing up to 10% of all cases of chronic kidney disease (CKD). We present data obtained from exome sequencing (ES) analysis of patients with biopsy-proven undetermined kidney disease (UKD). Methods ES was proposed during routine clinical care in patients with UKD from January 2020 to December 2021. We used in silico custom kidney genes panel analysis to detect pathological variations using American College of Medical Genetics guidelines in 52 patients with biopsy-proven UKD with histological finding reassessment. Results We detected 12 monogenic renal disorders in 21 (40.4%) patients. The most common diagnoses were collagenopathies (8/21,38.1%), COL4A3 and COL4A4 accounting for 80% of these diagnoses, and ciliopathies (5/21, 23.8%). The diagnostic yield of ES was higher in female patients and patients with a family history of kidney disease (57.1% and 71%, respectively). Clinical nephropathy categories matched with the final genetic diagnoses in 72.7% of cases, whereas histological renal lesions matched with the final diagnoses in 92.3% of cases. The genetics diagnoses and histopathological findings were in complete agreement for both glomerular and tubulointerstitial cases. Interstitial inflammation without tubulitis was only observed in tubulopathies or ciliopathies. Isolated CKD, CKD with proteinuria or hematuria, and isolated proteinuria or hematuria yielded the highest diagnostic yields (54.6%, 52.6%, and 42.9%, respectively). Conclusion ES done in patients with biopsy-proven UKD should be considered as a first-line tool for CKD patients with a family history of kidney disease. Combination of ES and kidney biopsy may have major impacts on kidney disease ontology.
Collapse
Affiliation(s)
- Thomas Robert
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Marseille medical genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Sophie greillier
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
| | - Julia Torrents
- Department of Renal Pathology, CHU Timone, AP-HM, Marseille, France
| | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Marine Dancer
- Department of Renal Pathology, CHU Timone, AP-HM, Marseille, France
| | - Noémie Jourde-Chiche
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Jean-Michel Halimi
- Néphrologie-Immunologie Clinique, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Stéphane Burtey
- Center of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, Marseille, France
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Christophe Béroud
- Marseille medical genetics, Bioinformatics & Genetics, INSERM U1251, Aix-Marseille Université, Marseille, France
| | - Laurent Mesnard
- Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Sorbonne Université, APHP, Hôpital Tenon, Paris, France
| |
Collapse
|
15
|
Hanna C, Iliuta IA, Besse W, Mekahli D, Chebib FT. Cystic Kidney Diseases in Children and Adults: Differences and Gaps in Clinical Management. Semin Nephrol 2023; 43:151434. [PMID: 37996359 DOI: 10.1016/j.semnephrol.2023.151434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cystic kidney diseases, when broadly defined, have a wide differential diagnosis extending from recessive diseases with a prenatal or pediatric diagnosis, to the most common autosomal-dominant polycystic kidney disease primarily affecting adults, and several other genetic or acquired etiologies that can manifest with kidney cysts. The most likely diagnoses to consider when assessing a patient with cystic kidney disease differ depending on family history, age stratum, radiologic characteristics, and extrarenal features. Accurate identification of the underlying condition is crucial to estimate the prognosis and initiate the appropriate management, identification of extrarenal manifestations, and counseling on recurrence risk in future pregnancies. There are significant differences in the clinical approach to investigating and managing kidney cysts in children compared with adults. Next-generation sequencing has revolutionized the diagnosis of inherited disorders of the kidney, despite limitations in access and challenges in interpreting the data. Disease-modifying treatments are lacking in the majority of kidney cystic diseases. For adults with rapid progressive autosomal-dominant polycystic kidney disease, tolvaptan (V2-receptor antagonist) has been approved to slow the rate of decline in kidney function. In this article, we examine the differences in the differential diagnosis and clinical management of cystic kidney disease in children versus adults, and we highlight the progress in molecular diagnostics and therapeutics, as well as some of the gaps meriting further attention.
Collapse
Affiliation(s)
- Christian Hanna
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Ioan-Andrei Iliuta
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Whitney Besse
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
16
|
Stein Q, Westemeyer M, Darwish T, Pitman T, Hager M, Tabriziani H, Curry K, Collett K, Raible D, Hendricks E. Genetic Counseling in Kidney Disease: A Perspective. Kidney Med 2023; 5:100668. [PMID: 37334143 PMCID: PMC10276256 DOI: 10.1016/j.xkme.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
As genetic testing is increasingly integrated into nephrology practice there is a growing need for partnership with genetic experts. Genetic counselors are ideally suited to fill this role. The value of genetic counseling is born out of the clinical value of genetic test results against the backdrop of the complexity of genetic testing. Genetic counselors who specialize in nephrology are trained to understand and explain the potential effects of genes on kidney disease, which can enable patients to make informed decisions about proceeding with genetic testing, navigating variants of uncertain significance, educating on extrarenal features of hereditary kidney disease, facilitating cascade testing, providing post-test education about testing results, and assisting with family planning. Genetic counselors can partner with the nephrologist and provide the knowledge needed to maximize the use of genetic testing for patients for nephrology consultation. Genetic counseling is more than an element or extension of genetic testing; it is a dynamic, shared conversation between the patient and the genetic counselor where concerns, sentiments, information, and education are exchanged, and value-based decision making is facilitated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Darbey Raible
- St. Elizabeth Healthcare Precision Medicine, Edgewood, KY
| | | |
Collapse
|
17
|
Elliott MD, Marasa M, Cocchi E, Vena N, Zhang JY, Khan A, Krishna Murthy S, Bheda S, Milo Rasouly H, Povysil G, Kiryluk K, Gharavi AG. Clinical and Genetic Characteristics of CKD Patients with High-Risk APOL1 Genotypes. J Am Soc Nephrol 2023; 34:909-919. [PMID: 36758113 PMCID: PMC10125632 DOI: 10.1681/asn.0000000000000094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT APOL1 high-risk genotypes confer a significant risk of kidney disease, but variability in patient outcomes suggests the presence of modifiers of the APOL1 effect. We show that a diverse population of CKD patients with high-risk APOL1 genotypes have an increased lifetime risk of kidney failure and higher eGFR decline rates, with a graded risk among specific high-risk genotypes. CKD patients with high-risk APOL1 genotypes have a lower diagnostic yield for monogenic kidney disease. Exome sequencing revealed enrichment of rare missense variants within the inflammasome pathway modifying the effect of APOL1 risk genotypes, which may explain some clinical heterogeneity. BACKGROUND APOL1 genotype has significant effects on kidney disease development and progression that vary among specific causes of kidney disease, suggesting the presence of effect modifiers. METHODS We assessed the risk of kidney failure and the eGFR decline rate in patients with CKD carrying high-risk ( N =239) and genetically matched low-risk ( N =1187) APOL1 genotypes. Exome sequencing revealed monogenic kidney diseases. Exome-wide association studies and gene-based and gene set-based collapsing analyses evaluated genetic modifiers of the effect of APOL1 genotype on CKD. RESULTS Compared with genetic ancestry-matched patients with CKD with low-risk APOL1 genotypes, those with high-risk APOL1 genotypes had a higher risk of kidney failure (Hazard Ratio [HR]=1.58), a higher decline in eGFR (6.55 versus 3.63 ml/min/1.73 m 2 /yr), and were younger at time of kidney failure (45.1 versus 53.6 years), with the G1/G1 genotype demonstrating the highest risk. The rate for monogenic kidney disorders was lower among patients with CKD with high-risk APOL1 genotypes (2.5%) compared with those with low-risk genotypes (6.7%). Gene set analysis identified an enrichment of rare missense variants in the inflammasome pathway in individuals with high-risk APOL1 genotypes and CKD (odds ratio=1.90). CONCLUSIONS In this genetically matched cohort, high-risk APOL1 genotypes were associated with an increased risk of kidney failure and eGFR decline rate, with a graded risk between specific high-risk genotypes and a lower rate of monogenic kidney disease. Rare missense variants in the inflammasome pathway may act as genetic modifiers of APOL1 effect on kidney disease.
Collapse
Affiliation(s)
- Mark D. Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
- Division of Nephrology, Department of Medicine, University of Calgary, Calgary, Canada
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Enrico Cocchi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Pediatrics, Universita’ degli Studi di Torino, Torino Italy
| | - Natalie Vena
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Jun Y. Zhang
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sarath Krishna Murthy
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Shiraz Bheda
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Gundula Povysil
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Department of Medicine, Center for Precision Medicine and Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Institute for Genomic Medicine, New York, NY
| |
Collapse
|
18
|
Nestor JG. Clinical Integration of Genomic Testing in Kidney Transplantation Clinics. Transplantation 2023; 107:820-821. [PMID: 36253912 PMCID: PMC10065878 DOI: 10.1097/tp.0000000000004364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jordan G. Nestor
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
Becherucci F, Landini S, Palazzo V, Cirillo L, Raglianti V, Lugli G, Tiberi L, Dirupo E, Bellelli S, Mazzierli T, Lomi J, Ravaglia F, Sansavini G, Allinovi M, Giannese D, Somma C, Spatoliatore G, Vergani D, Artuso R, Rosati A, Cirami C, Dattolo PC, Campolo G, De Chiara L, Papi L, Vaglio A, Lazzeri E, Anders HJ, Mazzinghi B, Romagnani P. A Clinical Workflow for Cost-Saving High-Rate Diagnosis of Genetic Kidney Diseases. J Am Soc Nephrol 2023; 34:706-720. [PMID: 36753701 PMCID: PMC10103218 DOI: 10.1681/asn.0000000000000076] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/19/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT To optimize the diagnosis of genetic kidney disorders in a cost-effective manner, we developed a workflow based on referral criteria for in-person evaluation at a tertiary center, whole-exome sequencing, reverse phenotyping, and multidisciplinary board analysis. This workflow reached a diagnostic rate of 67%, with 48% confirming and 19% modifying the suspected clinical diagnosis. We obtained a genetic diagnosis in 64% of children and 70% of adults. A modeled cost analysis demonstrated that early genetic testing saves 20% of costs per patient. Real cost analysis on a representative sample of 66 patients demonstrated an actual cost reduction of 41%. This workflow demonstrates feasibility, performance, and economic effect for the diagnosis of genetic kidney diseases in a real-world setting. BACKGROUND Whole-exome sequencing (WES) increases the diagnostic rate of genetic kidney disorders, but accessibility, interpretation of results, and costs limit use in daily practice. METHODS Univariable analysis of a historical cohort of 392 patients who underwent WES for kidney diseases showed that resistance to treatments, familial history of kidney disease, extrarenal involvement, congenital abnormalities of the kidney and urinary tract and CKD stage ≥G2, two or more cysts per kidney on ultrasound, persistent hyperechoic kidneys or nephrocalcinosis on ultrasound, and persistent metabolic abnormalities were most predictive for genetic diagnosis. We prospectively applied these criteria to select patients in a network of nephrology centers, followed by centralized genetic diagnosis by WES, reverse phenotyping, and multidisciplinary board discussion. RESULTS We applied this multistep workflow to 476 patients with eight clinical categories (podocytopathies, collagenopathies, CKD of unknown origin, tubulopathies, ciliopathies, congenital anomalies of the kidney and urinary tract, syndromic CKD, metabolic kidney disorders), obtaining genetic diagnosis for 319 of 476 patients (67.0%) (95% in 21 patients with disease onset during the fetal period or at birth, 64% in 298 pediatric patients, and 70% in 156 adult patients). The suspected clinical diagnosis was confirmed in 48% of the 476 patients and modified in 19%. A modeled cost analysis showed that application of this workflow saved 20% of costs per patient when performed at the beginning of the diagnostic process. Real cost analysis of 66 patients randomly selected from all categories showed actual cost reduction of 41%. CONCLUSIONS A diagnostic workflow for genetic kidney diseases that includes WES is cost-saving, especially if implemented early, and is feasible in a real-world setting.
Collapse
Affiliation(s)
- Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Valentina Raglianti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Gianmarco Lugli
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Lucia Tiberi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Elia Dirupo
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Tommaso Mazzierli
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Jacopo Lomi
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Giulia Sansavini
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | | | - Chiara Somma
- Nephrology Unit Florence 1, Santa Maria Annunziata Hospital, Bagno a Ripoli, Florence, Italy
| | - Giuseppe Spatoliatore
- Nephrology and Dialysis Unit, San Giovanni di Dio Hospital, AUSL Toscana Centro, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alberto Rosati
- Nephrology and Dialysis Unit, San Giovanni di Dio Hospital, AUSL Toscana Centro, Florence, Italy
| | - Calogero Cirami
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | - Pietro Claudio Dattolo
- Nephrology Unit Florence 1, Santa Maria Annunziata Hospital, Bagno a Ripoli, Florence, Italy
| | - Gesualdo Campolo
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Laura Papi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Elena Lazzeri
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| |
Collapse
|
20
|
Jayaraman P, Crouse A, Nadkarni G, Might M. A Primer in Precision Nephrology: Optimizing Outcomes in Kidney Health and Disease through Data-Driven Medicine. KIDNEY360 2023; 4:e544-e554. [PMID: 36951457 PMCID: PMC10278804 DOI: 10.34067/kid.0000000000000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
This year marks the 63rd anniversary of the International Society of Nephrology, which signaled nephrology's emergence as a modern medical discipline. In this article, we briefly trace the course of nephrology's history to show a clear arc in its evolution-of increasing resolution in nephrological data-an arc that is converging with computational capabilities to enable precision nephrology. In general, precision medicine refers to tailoring treatment to the individual characteristics of patients. For an operational definition, this tailoring takes the form of an optimization, in which treatments are selected to maximize a patient's expected health with respect to all available data. Because modern health data are large and high resolution, this optimization process requires computational intervention, and it must be tuned to the contours of specific medical disciplines. An advantage of this operational definition for precision medicine is that it allows us to better understand what precision medicine means in the context of a specific medical discipline. The goal of this article was to demonstrate how to instantiate this definition of precision medicine for the field of nephrology. Correspondingly, the goal of precision nephrology was to answer two related questions: ( 1 ) How do we optimize kidney health with respect to all available data? and ( 2 ) How do we optimize general health with respect to kidney data?
Collapse
Affiliation(s)
- Pushkala Jayaraman
- The Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Crouse
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai, New York, New York
- The Mount Sinai Clinical Intelligence Center (MSCIC), Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Data Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Barbara T Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew Might
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Murali R, Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Kannampuzha S, Namachivayam A, Madhyastha H, Renu K, Ganesan R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines (Basel) 2023; 11:vaccines11020489. [PMID: 36851366 PMCID: PMC9959335 DOI: 10.3390/vaccines11020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (A.V.G.); (R.G.)
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kaviyarasi Renu
- Center of Molecular Medicine and Diagnostics (COMMAND), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
22
|
Abstract
Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene-disease associations.
Collapse
Affiliation(s)
- Mark D Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
23
|
Grobe N, Scheiber J, Zhang H, Garbe C, Wang X. Omics and Artificial Intelligence in Kidney Diseases. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:47-52. [PMID: 36723282 DOI: 10.1053/j.akdh.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Omics applications in nephrology may have relevance in the future to improve clinical care of kidney disease patients. In a short term, patients will benefit from specific measurement and computational analyses around biomarkers identified at various omics-levels. In mid term and long term, these approaches will need to be integrated into a holistic representation of the kidney and all its influencing factors for individualized patient care. Research demonstrates robust data to justify the application of omics for better understanding, risk stratification, and individualized treatment of kidney disease patients. Despite these advances in the research setting, there is still a lack of evidence showing the combination of omics technologies with artificial intelligence and its application in clinical diagnostics and care of patients with kidney disease.
Collapse
Affiliation(s)
| | | | | | - Christian Garbe
- Frankfurter Innovationszentrum Biotechnologie, Frankfurt am Main, Germany
| | | |
Collapse
|
24
|
Liu JL, Wang XW, Liu CH, Gao XJ, Jiang XY, Mao JH, Zhu GH, Zhang AH, Wang M, Dang XQ, Zhuang JQ, Li YF, Bai HT, Zhang RF, Shen T, Bi YL, Sun YB, Wang X, Wu BB, Chen J, Rao J, Tang XS, Shen Q, Xu H. Genetic spectrum of CAKUT and risk factors for kidney failure: a pediatric multicenter cohort study. Nephrol Dial Transplant 2022; 38:gfac338. [PMID: 36549658 PMCID: PMC10468753 DOI: 10.1093/ndt/gfac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tracts (CAKUT) are the leading cause of kidney failure in children with phenotypic and genotypic heterogeneity. Our objective was to describe the genetic spectrum and identify the risk factors for kidney failure in children with CAKUT. METHODS Clinical and genetic data were derived from a multicenter network (Chinese Children Genetic Kidney Disease Database, CCGKDD) and the Chigene database. A total of 925 children with CAKUT who underwent genetic testing from 2014 to 2020 across China were studied. Data for a total of 584 children wereobtained from the CCGKDD, including longitudinal data regarding kidney function. The risk factors for kidney failure were determined by the Kaplan-Meier method and Cox proportional hazards models. RESULTS A genetic diagnosis was established in 96 out of 925 (10.3%) children, including 72 (8%) with monogenic variants, 20 (2%) with copy number variants (CNVs), and 4 (0.4%)with major chromosomal anomalies. Patients with skeletal abnormalities were more likely to have large CNVs or abnormal karyotypes than monogenic variants. Eighty-two patients from the CCGKDD progressed to kidney failure at a median age of 13.0 (95% confidence interval, 12.4-13.6) years, and twenty-four were genetically diagnosed with variants of PAX2, TNXB, EYA1, HNF1B and GATA3 or the 48, XXYY karyotype. The multivariate analysis indicated that solitary kidney, posterior urethral valves, bilateral hypodysplasia, the presence of certain variants and premature birth were independent prognostic factors. CONCLUSIONS The genetic spectrum of CAKUT varies among different subphenotypes. The identified factors indicate areas that require special attention.
Collapse
Affiliation(s)
- Jia-Lu Liu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiao-Wen Wang
- Department of Nephrology and Rheumatology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui-Hua Liu
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University/Henan Children's Hospital/Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiao-Jie Gao
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Yun Jiang
- Department of Pediatric, First Affiliated Hospital of Zhongshan University, Guangzhou, China
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang-Hua Zhu
- Department of Nephrology, Shanghai Children's Hospital, Shanghai, China
| | - Ai-Hua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mo Wang
- Department of Nephrology and Rheumatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xi-Qiang Dang
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie-Qiu Zhuang
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Feng Li
- Department of Pediatric Nephrology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Tao Bai
- Department of Pediatric, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rui-Feng Zhang
- Department of Nephrology and Rheumatology, Xuzhou Children's Hospital, Xuzhou, China
| | - Tong Shen
- Department of Pediatrics, Xiamen Maternal and Child Health Hospital, Xiamen, China
| | - Yun-Li Bi
- Department of Urology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yu-Bo Sun
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Department of Urology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiang Wang
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Department of Urology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bing-Bing Wu
- Clinical Genetic Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiao-Shan Tang
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | | |
Collapse
|
25
|
Tan XY, Borden C, Roberts MB, Mazzola S, Tan QKG, Fatica R, Simon J, Calle J, Taliercio J, Dell K, Provenzano LF, Deitzer D, Rincon-Choles H, Mehdi A, Lioudis M, Poggio ED, Nakhoul G, Nurko S, Ashour T, Bou Matar RN, Kwon C, Stephany B, Thomas G, Cheng YW, Leingang D, Alsadah A, Maditz R, Robert H, Vachhrajani T, Sedor J, Gadegbeku C, Wang X. Renal Genetics Clinic: 3-Year Experience in the Cleveland Clinic. Kidney Med 2022; 5:100585. [PMID: 36712315 PMCID: PMC9874141 DOI: 10.1016/j.xkme.2022.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale & Objective There has been an increasing demand for the expertise provided by a renal genetics clinic. Such programs are limited in the United States and typically operate in a genomics research setting. Here we report a 3-year, real-world, single-center renal genetics clinic experience. Study Design Retrospective cohort. Setting & Participants Outpatient cases referred to the renal genetics clinic of the Cleveland Clinic between January 2019 and March 2022 were reviewed. Analytical Approach Clinical and laboratory characteristics were analyzed. All genetic testing was performed in clinical labs. Results 309 new patients referred from 15 specialties were evaluated, including 118 males and 191 females aged 35.1 ± 20.3 years. Glomerular diseases were the leading presentation followed by cystic kidney diseases, electrolyte disorders, congenital anomalies of kidneys and urinary tract, nephrolithiasis, and tubulointerstitial kidney diseases. Dysmorphic features were noted in 27 (8.7%) patients. Genetic testing was recommended in 292 (94.5%) patients including chromosomal microarray (8.9%), single-gene tests (19.5%), multigene panels (77.3%), and exome sequencing (17.5%). 80.5% of patients received insurance coverage for genetic testing. 45% (115/256) of patients had positive results, 25% (64/256) had variants of unknown significance, and 22.3% (57/256) had negative results. 43 distinct monogenic disorders were diagnosed. Family history of kidney disease was present in 52.8% of patients and associated with positive genetic findings (OR, 2.28; 95% CI, 1.40-3.74). 69% of patients with positive results received a new diagnosis and/or a change in the diagnosis. Among these, 39.7% (31/78) of patients received a significant change in disease management. Limitations Retrospective and single-center study. Conclusions The renal genetics clinic plays important roles in the diagnosis and management of patients with genetic kidney diseases. Multigene panels are the most frequently used testing modality with a high diagnostic yield. Family history of kidney disease is a strong indication for renal genetics clinic referral.
Collapse
Affiliation(s)
- Xin Yee Tan
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Chloe Borden
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Mary-Beth Roberts
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio
| | - Sarah Mazzola
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio
| | - Queenie K.-G. Tan
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio
| | - Richard Fatica
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - James Simon
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Juan Calle
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Katherine Dell
- Center for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio
| | | | - Diana Deitzer
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Ali Mehdi
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Michael Lioudis
- Section of Nephrology, Upstate Medical University, Syracuse, New York
| | - Emilio D. Poggio
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Georges Nakhoul
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Saul Nurko
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Tarek Ashour
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Raed N. Bou Matar
- Center for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Charles Kwon
- Center for Pediatric Nephrology and Hypertension, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Brian Stephany
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - George Thomas
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yu-Wei Cheng
- Molecular Genetics, Cleveland Clinic, Cleveland, Ohio
| | - Deanna Leingang
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio
| | - Adnan Alsadah
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio
| | - Rhyan Maditz
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Heyka Robert
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - John Sedor
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Xiangling Wang
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, Ohio,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio,Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio,Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio,Address for Correspondence: Xiangling Wang, MD, PhD, 9500 Euclid Ave, Cleveland, OH 44195
| |
Collapse
|
26
|
Prevalence of hereditary tubulointerstitial kidney diseases in the German Chronic Kidney Disease study. Eur J Hum Genet 2022; 30:1413-1422. [PMID: 36100708 PMCID: PMC9712573 DOI: 10.1038/s41431-022-01177-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
Hereditary chronic kidney disease (CKD) appears to be more frequent than the clinical perception. Exome sequencing (ES) studies in CKD cohorts could identify pathogenic variants in ~10% of individuals. Tubulointerstitial kidney diseases, showing no typical clinical/histologic finding but tubulointerstitial fibrosis, are particularly difficult to diagnose. We used a targeted panel (29 genes) and MUC1-SNaPshot to sequence 271 DNAs, selected in defined disease entities and age cutoffs from 5217 individuals in the German Chronic Kidney Disease cohort. We identified 33 pathogenic variants. Of these 27 (81.8%) were in COL4A3/4/5, the largest group being 15 COL4A5 variants with nine unrelated individuals carrying c.1871G>A, p.(Gly624Asp). We found three cysteine variants in UMOD, a novel missense and a novel splice variant in HNF1B and the homoplastic MTTF variant m.616T>C. Copy-number analysis identified a heterozygous COL4A5 deletion, and a HNF1B duplication/deletion, respectively. Overall, pathogenic variants were present in 12.5% (34/271) and variants of unknown significance in 9.6% (26/271) of selected individuals. Bioinformatic predictions paired with gold standard diagnostics for MUC1 (SNaPshot) could not identify the typical cytosine duplication ("c.428dupC") in any individual, implying that ADTKD-MUC1 is rare. Our study shows that >10% of selected individuals carry disease-causing variants in genes partly associated with tubulointerstitial kidney diseases. COL4A3/4/5 genes constitute the largest fraction, implying they are regularly overlooked using clinical Alport syndrome criteria and displaying the existence of phenocopies. We identified variants easily missed by some ES pipelines. The clinical filtering criteria applied enriched for an underlying genetic disorder.
Collapse
|
27
|
Incorporation of Genetic Studies in the Kidney Transplant Evaluation Clinic: The Value of a Multidisciplinary Approach. Transplantation 2022; 107:952-960. [PMID: 36253919 DOI: 10.1097/tp.0000000000004363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent studies identified underlying genetic causes in a proportion of patients with various forms of kidney disease. In particular, genetic testing reclassified some focal segmental glomerulosclerosis (FSGS) cases into collagen type 4 (COL4)-related nephropathy. This knowledge has major implications for counseling prospective transplant recipients about recurrence risk and screening biologically related donors. We describe our experience incorporating genetic testing in our kidney transplant multidisciplinary practice. METHODS Patients' DNA was analyzed using whole exome sequencing for a comprehensive kidney gene panel encompassing 344 genes associated with kidney diseases and candidate genes highly expressed in the kidney. Results were correlated with phenotype by a multidisciplinary committee of nephrologists, renal pathologists, geneticists, and genetic counselors. Between October 2018 and July 2020, 30 recipient and 5 donor candidates completed testing. RESULTS Among recipient candidates, 24 (80%) carried the diagnosis of FSGS, 2 (6.7%) tubulointerstitial nephritis, and 1 (3.3%) nephrolithiasis, and 3 (10%) had an unknown cause of kidney disease. The yield for pathogenic/likely pathogenic variants was 43.3%, with majority being COL4 variants (53.8%). Among those with FSGS diagnosis, the yield was 10 of 24 (41.6%), with 29% reclassified into a COL4-related nephropathy. Family history of kidney disease was the only clinical characteristic difference between recipients with positive and negative results (76.9 versus 29.4%; P = 0.025). One of 5 donors tested positive for a pathogenic/likely pathogenic variant and was excluded from donation. CONCLUSIONS We conclude that thoughtful use of genetic testing can be valuable for kidney donor selection and transplant recipient management.
Collapse
|
28
|
Aron AW, Dahl NK, Besse W. A Practical Guide to Genetic Testing for Kidney Disorders of Unknown Etiology. KIDNEY360 2022; 3:1640-1651. [PMID: 36245662 PMCID: PMC9528385 DOI: 10.34067/kid.0007552021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023]
Abstract
Genetic testing is increasingly used in the workup and diagnosis of kidney disease and kidney-related disorders of undetermined cause. Out-of-pocket costs for clinical genetic testing have become affordable, and logistical hurdles overcome. The interest in genetic testing may stem from the need to make or confirm a diagnosis, guide management, or the patient's desire to have a more informed explanation or prognosis. This poses a challenge for providers who do not have formal training in the selection, interpretation, and limitations of genetic tests. In this manuscript, we provide detailed discussion of relevant cases in which clinical genetic testing using a kidney gene panel was applied. The cases demonstrate identification of pathogenic variants for monogenic diseases-contrasting them from genetic risk alleles-and bring up diagnostic limitations and diagnostic utility of these tests in nephrology. This review aims to guide clinicians in formulating pretest conversations with their patients, interpreting genetic variant nomenclature, and considering follow-up investigations. Although providers are gaining experience, there is still risk of testing causing more anxiety than benefit. However, with provider education and support, clinical genetic testing applied to otherwise unexplained kidney-related disorders will increasingly serve as a valuable diagnostic tool with the potential to reshape how we consider and treat many kidney-related diagnoses.
Collapse
Affiliation(s)
- Abraham W. Aron
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Neera K. Dahl
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Whitney Besse
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
Mirshahi UL, Bhan A, Tholen LE, Fang B, Chen G, Moore B, Cook A, Anand PM, Patel K, Haas ME, Lotta LA, Igarashi P, de Baaij JH, Ferrè S, Hoenderop JG, Carey DJ, Chang AR. Framework From a Multidisciplinary Approach for Transitioning Variants of Unknown Significance From Clinical Genetic Testing in Kidney Disease to a Definitive Classification. Kidney Int Rep 2022; 7:2047-2058. [PMID: 36090499 PMCID: PMC9459028 DOI: 10.1016/j.ekir.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Monogenic causes in over 300 kidney-associated genes account for approximately 12% of end stage kidney disease (ESKD) cases. Advances in sequencing and large customized panels enable the noninvasive diagnosis of monogenic kidney disease at relatively low cost, thereby allowing for more precise management for patients and their families. A major challenge is interpreting rare variants, many of which are classified as variants of unknown significance (VUS). We present a framework in which we thoroughly evaluated and provided evidence of pathogenicity for HNF1B-p.Arg303His, a VUS returned from clinical diagnostic testing for a kidney transplant candidate. Methods A blueprint was designed by a multidisciplinary team of clinicians, molecular biologists, and diagnostic geneticists. The blueprint included using a health system-based cohort with genetic and clinical information to perform deep phenotyping of VUS heterozygotes to identify the candidate VUS and rule out other VUS, examination of existing genetic databases, as well as functional testing. Results Our approach demonstrated evidence for pathogenicity for HNF1B-p.Arg303His by showing similar burden of kidney manifestations in this variant to known HNF1B pathogenic variants, and greater burden compared to noncarriers. Conclusion Determination of a molecular diagnosis for the example family allows for proper surveillance and management of HNF1B-related manifestations such as kidney disease, diabetes, and hypomagnesemia with important implications for safe living-related kidney donation. The candidate gene-variant pair also allows for clinical biomarker testing for aberrations of linked pathways. This working model may be applicable to other diseases of genetic etiology.
Collapse
Affiliation(s)
| | - Ahana Bhan
- Kidney Health Research Institute, Geisinger, Danville, Pennsylvania, USA
| | - Lotte E. Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Brian Fang
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Guoli Chen
- Department of Pathology, Penn State Health Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Bryn Moore
- Department of Molecular and Functional Genomics, Geisinger, Pennsylvania, USA
| | - Adam Cook
- Department of Molecular and Functional Genomics, Geisinger, Pennsylvania, USA
| | - Prince Mohan Anand
- Department of Nephrology, Medical University of South Carolina, Lancaster, South Carolina, USA
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Mary E. Haas
- Regeneron Genetics Center, Sawmill Road, Tarrytown, New York, USA
| | - Luca A. Lotta
- Regeneron Genetics Center, Sawmill Road, Tarrytown, New York, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Silvia Ferrè
- National Kidney Foundation, New York, New York, USA
| | - Joost G.J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David J. Carey
- Department of Molecular and Functional Genomics, Geisinger, Pennsylvania, USA
| | - Alexander R. Chang
- Kidney Health Research Institute, Geisinger, Danville, Pennsylvania, USA
| |
Collapse
|
30
|
Bogyo K, Vena N, May H, Rasouly HM, Marasa M, Sanna-Cherchi S, Kiryluk K, Nestor J, Gharavi A. Incorporating genetics services into adult kidney disease care. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:289-301. [PMID: 36161695 PMCID: PMC10360161 DOI: 10.1002/ajmg.c.32004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 09/11/2022] [Indexed: 01/29/2023]
Abstract
Studies have shown that as many as 1 in 10 adults with chronic kidney disease has a monogenic form of disease. However, genetic services in adult nephrology are limited. An adult Kidney Genetics Clinic was established within the nephrology division at a large urban academic medical center to increase access to genetic services and testing in adults with kidney disease. Between June 2019 and December 2021, a total of 363 patients were referred to the adult Kidney Genetics Clinic. Of those who completed genetic testing, a positive diagnostic finding was identified in 27.1%, a candidate diagnostic finding was identified in 6.7% of patients, and a nondiagnostic positive finding was identified in an additional 8.6% of patients, resulting in an overall yield of 42.4% for clinically relevant genetic findings in tested patients. A genetic diagnosis had implications for medical management, family member testing, and eligibility for clinical trials. With the utilization of telemedicine, genetic services reached a diverse geographic and patient population. Genetic education efforts were integral to the clinic's success, as they increased visibility and helped providers identify appropriate referrals. Ongoing access to genomic services will remain a fundamental component of patient care in adults with kidney disease.
Collapse
Affiliation(s)
- Kelsie Bogyo
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Natalie Vena
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Halie May
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jordan Nestor
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Ali Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
31
|
Wu Q, Tian X, Gong N, Zheng J, Liang D, Li X, Lu X, Xue W, Tian P, Wen J. Early graft loss due to acute thrombotic microangiopathy accompanied by complement gene variants in living-related kidney transplantation: case series report. BMC Nephrol 2022; 23:249. [PMID: 35836191 PMCID: PMC9284761 DOI: 10.1186/s12882-022-02868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Recently, early graft loss has become very rare in living-related kidney transplantation (LKT) as a result of decreased risk of hyperacute rejection and improvements in immunosuppressive regimens. Post-transplant acute thrombotic microangiopathy (TMA) is a rare, multi-factorial disease that often occurs shortly after kidney transplantation and is usually resistant to treatment with dismal renal outcomes. The complement genetic variants may accelerate the development of TMA. However, the complement genetic test was seldom performed in unknown native kidney disease recipients scheduled for LKT. Case presentation We reported three cases of unknown native kidney diseases who had fulminant TMA in the allograft shortly after LKT. Both the donors and the recipients were noted to carry complement genetic variants, which were identified by genetic testing after transplantation. However, all recipients were refractory to treatment and had allograft loss within 3 months after LKT. Conclusion This case series highlights the suggestion to screen complement gene variants in both the donors and the recipients with unknown native kidney diseases scheduled for LKT. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02868-7.
Collapse
Affiliation(s)
- Qianqian Wu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohui Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xue Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xia Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
| | - Jiqiu Wen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Wopperer FJ, Knaup KX, Stanzick KJ, Schneider K, Jobst-Schwan T, Ekici AB, Uebe S, Wenzel A, Schliep S, Schürfeld C, Seitz R, Bernhardt W, Gödel M, Wiesener A, Popp B, Stark KJ, Gröne HJ, Friedrich B, Weiß M, Basic-Jukic N, Schiffer M, Schröppel B, Huettel B, Beck BB, Sayer JA, Ziegler C, Büttner-Herold M, Amann K, Heid IM, Reis A, Pasutto F, Wiesener MS. Diverse molecular causes of unsolved autosomal dominant tubulointerstitial kidney diseases. Kidney Int 2022; 102:405-420. [DOI: 10.1016/j.kint.2022.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
33
|
Leenen E, Erger F, Altmüller J, Wenzel A, Thiele H, Harth A, Tschernoster N, Lokhande S, Joerres A, Becker JU, Ekici A, Huettel B, Beck B, Weidemann A. Alport syndrome and autosomal dominant tubulointerstitial kidney disease frequently underlie end stage renal disease of unknown origin - a single center analysis. Nephrol Dial Transplant 2022; 37:1895-1905. [PMID: 35485766 DOI: 10.1093/ndt/gfac163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The prevalence of end stage renal disease of unknown etiology in adult patients is globally high and accounts for almost 20% of all dialysis patients. Recent studies have suggested that the percentage of adult patients with a causal genetic variant has been underestimated so far. Despite severe prognostic and therapeutic implications, awareness about prevalence and manifestations of genetic kidney diseases in adult renal patients is still limited. MATERIALS AND METHODS We recruited 58 individuals from 39 families at our transplantation center, fulfilling at least one of the following criteria: 1) unclear etiology of kidney disease 2) clinically suspected genetic kidney disease 3) positive family history for nephropathies. The cohort consisted of patients waitlisted for kidney transplantation and patients in the follow-up after transplantation. Detailed documentation of family history and phenotype was obtained before initiating gene panel sequencing of 479 nephropathy-associated genes. RESULTS With this study design, a molecular genetic diagnosis was established in one third of all patients. Mutations in the collagen COL4A-genes, and mutations in MUC1 and UMOD were the most frequent among all detected causal variants. Overall, rare genetic variants were detected in more than half of all cases. CONCLUSION The combination of detailed phenotyping prior to NGS diagnostics was highly efficient. Elucidating the underlying genetic causes in a cohort of adult renal patients has considerable clinical impact on medical management.
Collapse
Affiliation(s)
- Esther Leenen
- Department of Medicine I - Nephrology, Transplantation & Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Germany
| | - Florian Erger
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Janine Altmüller
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andrea Wenzel
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Ana Harth
- Department of Medicine I - Nephrology, Transplantation & Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Shanti Lokhande
- Department of Medicine I - Nephrology, Transplantation & Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Germany
| | - Achim Joerres
- Department of Medicine I - Nephrology, Transplantation & Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Germany
| | - Jan-Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Arif Ekici
- Institute of Human Genetics, University Hospital Erlangen, Germany
| | - Bruno Huettel
- Max-Plank-Genome-Centre Cologne (MP-GC), Cologne, Germany
| | - Bodo Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Alexander Weidemann
- Department of Medicine I - Nephrology, Transplantation & Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Germany.,Department of Nephrology, St. Vincenz Hospital, Paderborn, Germany
| |
Collapse
|
34
|
Devarajan P, Chertow GM, Susztak K, Levin A, Agarwal R, Stenvinkel P, Chapman AB, Warady BA. Emerging Role of Clinical Genetics in CKD. Kidney Med 2022; 4:100435. [PMID: 35372818 PMCID: PMC8971313 DOI: 10.1016/j.xkme.2022.100435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts 15% of adults in the United States, of whom 25% have a family history. Genetic testing is supportive in identifying and possibly confirming diagnoses of CKD, thereby guiding care. Advances in the clinical genetic evaluation include next-generation sequencing with targeted gene panels, whole exome sequencing, and whole genome sequencing. These platforms provide DNA sequence reads with excellent coverage throughout the genome and have identified novel genetic causes of CKD. New pathologic genetic variants identified in previously unrecognized biological pathways have elucidated disease mechanisms underlying CKD etiologies, potentially establishing prognosis and guiding treatment selection. Molecular diagnoses using genetic sequencing can detect rare, potentially treatable mutations, avoid misdiagnoses, guide selection of optimal therapy, and decrease the risk of unnecessary and potentially harmful interventions. Genetic testing has been widely adopted in pediatric nephrology; however, it is less frequently used to date in adult nephrology. Extension of clinical genetic approaches to adult patients may achieve similar benefits in diagnostic refinement and treatment selection. This review aimed to identify clinical CKD phenotypes that may benefit the most from genetic testing, outline the commonly available platforms, and provide examples of successful deployment of these approaches in CKD.
Collapse
Affiliation(s)
- Prasad Devarajan
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adeera Levin
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rajiv Agarwal
- Division of Nephrology, Indiana University, Indianapolis, IN
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinkska Institutet, Stockholm, Sweden
| | | | - Bradley A. Warady
- Division of Pediatric Nephrology, Children’s Mercy Kansas City, Kansas City, MO
| |
Collapse
|
35
|
Vignette-Based Reflections to Inform Genetic Testing Policies in Living Kidney Donors. Genes (Basel) 2022; 13:genes13040592. [PMID: 35456398 PMCID: PMC9025319 DOI: 10.3390/genes13040592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 01/01/2023] Open
Abstract
Family history of kidney disease increases risk of end-stage kidney disease (ESKD) in donors. Pre-donation genetic testing is recommended in evaluation guidelines and regulatory policy. Collaborating across several institutions, we describe cases to illustrate the utility as well as practical issues in incorporating genetic testing in transplant protocols. Case 1 is from 2009, before pervasive genetic testing. A healthy 27-year-old Caucasian male had an uneventful donor evaluation for his mother, who had early onset ESKD of unclear cause. He participated in paired-exchange kidney donation, but developed progressive kidney disease and gout over the next 10 years. A uromodulin gene mutation (NM_003361.3(UMOD):c.377 G>A p.C126Y) was detected and kidney biopsy showed tubulointerstitial kidney disease. The patient subsequently required kidney transplantation himself. Case 2 was a 36-year-old African American female who had an uneventful kidney donor evaluation. She underwent gene panel-based testing to rule out ApolipoproteinL1 risk variants, for which was negative. Incidentally, a sickle-cell trait (NM_000518.5(HBB):c.20A>T p.Glu7Val) was noted, and she was declined for kidney donation. This led to significant patient anguish. Case 3 was a 26-year-old Caucasian female who underwent panel-based testing because the potential recipient, her cousin, carried a variant of uncertain significance in the hepatocyte nuclear factor-1-β (HNF1B) gene. While the potential donor did not harbor this variant, she was found to have a likely pathogenic variant in complement factor I (NM_000204.4(CFI):c.1311dup:p.Asp438Argfs*8), precluding kidney donation. Our cases emphasize that while genetic testing can be invaluable in donor evaluation, transplant centers should utilize detailed informed consent, develop care pathways for secondary genetic findings, and share experience to develop best practices around genetic testing in donors.
Collapse
|
36
|
Caliskan Y, Lee B, Whelan AM, Abualrub F, Lentine KL, Jittirat A. Evaluation of Genetic Kidney Diseases in Living Donor Kidney Transplantation: Towards Precision Genomic Medicine in Donor Risk Assessment. CURRENT TRANSPLANTATION REPORTS 2022; 9:127-142. [DOI: 10.1007/s40472-021-00340-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Purpose of Review
To provide a comprehensive update on the role of genetic testing for the evaluation of kidney transplant recipient and living donor candidates.
Recent Findings
The evaluation of candidates for living donor transplantation and their potential donors occurs within an ever-changing landscape impacted by new evidence and risk assessment techniques. Criteria that were once considered contraindications to living kidney donation are now viewed as standard of care, while new tools identify novel risk markers that were unrecognized in past decades. Recent work suggests that nearly 10% of a cohort of patients with chronic/end-stage kidney disease had an identifiable genetic etiology, many whose original cause of renal disease was either unknown or misdiagnosed. Some also had an incidentally found genetic variant, unrelated to their nephropathy, but medically actionable. These patterns illustrate the substantial potential for genetic testing to better guide the selection of living donors and recipients, but guidance on the proper application and interpretation of novel technologies is in its infancy. In this review, we examine the utility of genetic testing in various kidney conditions, and discuss risks and unresolved challenges. Suggested algorithms in the context of related and unrelated donation are offered.
Summary
Genetic testing is a rapidly evolving strategy for the evaluation of candidates for living donor transplantation and their potential donors that has potential to improve risk assessment and optimize the safety of donation.
Collapse
|
37
|
Elhassan EAE, Murray SL, Connaughton DM, Kennedy C, Cormican S, Cowhig C, Stapleton C, Little MA, Kidd K, Bleyer AJ, Živná M, Kmoch S, Fennelly NK, Doyle B, Dorman A, Griffin MD, Casserly L, Harris PC, Hildebrandt F, Cavalleri GL, Benson KA, Conlon PJ. The utility of a genetic kidney disease clinic employing a broad range of genomic testing platforms: experience of the Irish Kidney Gene Project. J Nephrol 2022; 35:1655-1665. [PMID: 35099770 PMCID: PMC9300532 DOI: 10.1007/s40620-021-01236-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND AIMS Genetic testing presents a unique opportunity for diagnosis and management of genetic kidney diseases (GKD). Here, we describe the clinical utility and valuable impact of a specialized GKD clinic, which uses a variety of genomic sequencing strategies. METHODS In this prospective cohort study, we undertook genetic testing in adults with suspected GKD according to prespecified criteria. Over 7 years, patients were referred from tertiary centres across Ireland to an academic medical centre as part of the Irish Kidney Gene Project. RESULTS Among 677 patients, the mean age was of 37.2 ± 13 years, and 73.9% of the patients had family history of chronic kidney disease (CKD). We achieved a molecular diagnostic rate of 50.9%. Four genes accounted for more than 70% of identified pathogenic variants: PKD1 and PKD2 (n = 186, 53.4%), MUC1 (8.9%), and COL4A5 (8.3%). In 162 patients with a genetic diagnosis, excluding PKD1/PKD2, the a priori diagnosis was confirmed in 58% and in 13% the diagnosis was reclassified. A genetic diagnosis was established in 22 (29.7%) patients with CKD of uncertain aetiology. Based on genetic testing, a diagnostic kidney biopsy was unnecessary in 13 (8%) patients. Presence of family history of CKD and the underlying a priori diagnosis were independent predictors (P < 0.001) of a positive genetic diagnosis. CONCLUSIONS A dedicated GKD clinic is a valuable resource, and its implementation of various genomic strategies has resulted in a direct, demonstrable clinical and therapeutic benefits to affected patients.
Collapse
Affiliation(s)
- Elhussein A E Elhassan
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland. .,Department of Medicine, Dublin, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Dublin, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dervla M Connaughton
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, ON, Canada
| | - Claire Kennedy
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
| | - Sarah Cormican
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
| | - Cliona Cowhig
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
| | - Caragh Stapleton
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St James' Street, Dublin 8, Ireland
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Stanislav Kmoch
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont Hospital, Dublin, Ireland.,Department of Pathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Matthew D Griffin
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland, Galway, Ireland
| | - Liam Casserly
- Department of Nephrology and Internal Medicine, University Hospital Limerick, Limerick, Ireland
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Friedhelm Hildebrandt
- Department of Paediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Dublin, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
38
|
Piras D, Lepori N, Cabiddu G, Pani A. How Genetics Can Improve Clinical Practice in Chronic Kidney Disease: From Bench to Bedside. J Pers Med 2022; 12:jpm12020193. [PMID: 35207681 PMCID: PMC8875178 DOI: 10.3390/jpm12020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is considered a major global health problem with high socio-economic costs: the risk of CKD in individuals with an affected first degree relative has been found to be three times higher than in the general population. Genetic factors are known to be involved in CKD pathogenesis, both due to the possible presence of monogenic pathologies as causes of CKD, and to the role of numerous gene variants in determining susceptibility to the development of CKD. The genetic study of CKD patients can represent a useful tool in the hands of the clinician; not only in the diagnostic and prognostic field, but potentially also in guiding therapeutic choices and in designing clinical trials. In this review we discuss the various aspects of the role of genetic analysis on clinical management of patients with CKD with a focus on clinical applications. Several topics are discussed in an effort to provide useful information for daily clinical practice: definition of susceptibility to the development of CKD, identification of unrecognized monogenic diseases, reclassification of the etiological diagnosis, role of pharmacogenetics.
Collapse
Affiliation(s)
- Doloretta Piras
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Correspondence:
| | - Nicola Lepori
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
| | - Gianfranca Cabiddu
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
| | - Antonello Pani
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerce (CNR), 09042 Monserrato, Italy
| |
Collapse
|
39
|
Jordan P, Dorval G, Arrondel C, Morinière V, Tournant C, Audrezet MP, Michel-Calemard L, Putoux A, Lesca G, Labalme A, Whalen S, Loeuillet L, Martinovic J, Attie-Bitach T, Bessières B, Schaefer E, Scheidecker S, Lambert L, Beneteau C, Patat O, Boute-Benejean O, Molin A, Guimiot F, Fontanarosa N, Nizon M, Lefebvre M, Jeanpierre C, Saunier S, Heidet L. Targeted next-generation sequencing in a large series of fetuses with severe renal diseases. Hum Mutat 2022; 43:347-361. [PMID: 35005812 DOI: 10.1002/humu.24324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Christelle Arrondel
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Carole Tournant
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Marie-Pierre Audrezet
- Service de Génétique moléculaire, Génétique, Génomique et Biotechnologies, UMR 1078, Hôpital Universitaire de Brest, Brest, France
| | - Laurence Michel-Calemard
- Service Biochimie Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, CBPE, Bron, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Gaethan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Sandra Whalen
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Laurence Loeuillet
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- APHP Service de Fœtopathologie, Hôpital Universitaire Antoine Béclère, Clamart, France
| | - Tania Attie-Bitach
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Lambert
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Odile Boute-Benejean
- Service de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Arnaud Molin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Fabien Guimiot
- APHP Service d'Embryo-Fœtopathologie, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Lefebvre
- APHP Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, Paris, France
| | - Cécile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Laurence Heidet
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
40
|
Little MH, Humphreys BD. Regrow or Repair: An Update on Potential Regenerative Therapies for the Kidney. J Am Soc Nephrol 2022; 33:15-32. [PMID: 34789545 PMCID: PMC8763179 DOI: 10.1681/asn.2021081073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.
Collapse
Affiliation(s)
- Melissa H. Little
- Murdoch Children’s Research Institute, Parkville, Melbourne, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, Missouri,Department of Developmental Biology, Washington University in St. Louis School of Medicine, Missouri
| |
Collapse
|
41
|
Nestor JG, Li AJ, King KL, Husain SA, McIntosh TJ, Sawinski D, Iltis AS, Goodman MS, Walsh HA, DuBois JM, Mohan S. Impact of education on APOL1 testing attitudes among prospective living kidney donors. Clin Transplant 2022; 36:e14516. [PMID: 34661305 PMCID: PMC9113661 DOI: 10.1111/ctr.14516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022]
Abstract
It is unknown how providing prospective living donors with information about APOL1, including the benefits and drawbacks of testing, influences their desire for testing. In this study, we surveyed 102 participants with self-reported African ancestry and positive family history of kidney disease, recruited from our nephrology waiting room. We assessed views on APOL1 testing before and after presentation of a set of potential benefits and drawbacks of testing and quantified the self-reported level of influence individual benefits and drawbacks had on participants' desire for testing in the proposed context of living donation. The majority of participants (92%) were aware of organ donation and more than half (56%) had considered living donation. And though we found no significant change in response following presentation of the potential benefits and the drawbacks of APOL1 testing by study end significance, across all participants, "becoming aware of the potential risk of kidney disease among your immediate family" was the benefit with the highest mean influence (3.3±1.4), while the drawback with the highest mean influence (2.9±1.5) was "some transplant centers may not allow you to donate to a loved one". This study provides insights into the priorities of prospective living donors and suggests concern for how the information affects family members may strongly influence desires for testing. It also highlights the need for greater community engagement to gain a deeper understanding of the priorities that influence decision making on APOL1 testing.
Collapse
Affiliation(s)
- Jordan G. Nestor
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Amber J. Li
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
| | - Kristen L. King
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - S. Ali Husain
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
- The Columbia University Renal Epidemiology (CURE) Group, New York, New York, USA
| | - Tristan J. McIntosh
- Bioethics Research Center, Division of General Medical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deirdre Sawinski
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana S. Iltis
- Center for Bioethics Health and Society and Department of Philosophy, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Melody S. Goodman
- School of Global Public Health, New York University, New York, New York, USA
| | - Heidi A. Walsh
- Bioethics Research Center, Division of General Medical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James M. DuBois
- Bioethics Research Center, Division of General Medical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumit Mohan
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
- The Columbia University Renal Epidemiology (CURE) Group, New York, New York, USA
| |
Collapse
|
42
|
OMICS in Chronic Kidney Disease: Focus on Prognosis and Prediction. Int J Mol Sci 2021; 23:ijms23010336. [PMID: 35008760 PMCID: PMC8745343 DOI: 10.3390/ijms23010336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) patients are characterized by a high residual risk for cardiovascular (CV) events and CKD progression. This has prompted the implementation of new prognostic and predictive biomarkers with the aim of mitigating this risk. The ‘omics’ techniques, namely genomics, proteomics, metabolomics, and transcriptomics, are excellent candidates to provide a better understanding of pathophysiologic mechanisms of disease in CKD, to improve risk stratification of patients with respect to future cardiovascular events, and to identify CKD patients who are likely to respond to a treatment. Following such a strategy, a reliable risk of future events for a particular patient may be calculated and consequently the patient would also benefit from the best available treatment based on their risk profile. Moreover, a further step forward can be represented by the aggregation of multiple omics information by combining different techniques and/or different biological samples. This has already been shown to yield additional information by revealing with more accuracy the exact individual pathway of disease.
Collapse
|
43
|
Mrug M, Bloom MS, Seto C, Malhotra M, Tabriziani H, Gauthier P, Sidlow V, McKanna T, Billings PR. Genetic Testing for Chronic Kidney Diseases: Clinical Utility and Barriers Perceived by Nephrologists. Kidney Med 2021; 3:1050-1056. [PMID: 34939014 PMCID: PMC8664736 DOI: 10.1016/j.xkme.2021.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rationale & Objective The identification of pathogenic variants in genes associated with chronic kidney disease can provide patients and nephrologists with actionable information to guide diagnoses and therapeutic plans. However, many nephrologists do not use genetic testing despite costs decreasing over time and more widespread availability. Study Design We conducted a survey to uncover the perceptions of general adult nephrologists about the utility of and barriers to genetic testing in clinical practice. Setting & Participants The online survey was administered to board-certified nephrologists (n = 10,054) in the United States. Analytical Approach We analyzed demographic characteristics of the survey respondents and their responses in the context of their use of genetic testing in routine clinical practice. Results A total of 149 nephrologists completed the survey, with 72% (107 of 149) reporting genetic test use in their practice. On average, tests were ordered for 3.8% of their patient population. Thirty-five percent of responses from nephrologists without a history of genetic test use ranked perceived barriers as "extremely significant" compared with 23% of responses from those who had previously used genetic tests. However, both users and nonusers of genetic tests indicated high cost (users: 46%, 49 of 107; nonusers 69%, 29 of 42) and poor availability or lack of ease (users: 33%, 35 of 107; nonusers: 57%; 24 of 42) of genetic testing as the most significant perceived barriers to implementation. Limitations The survey used in this study was not previously validated; additionally, because of the relatively small number of responses, there might have been a selection bias among the responders. Conclusions Although most nephrologists reported using genetic tests in clinical practice, high costs and poor availability or the lack of ease of use were perceived as the most important barriers to routine adoption. These observations indicate that educational programs that cover a range of topics, from genetics of chronic kidney disease to selection of the test, may help mitigate these barriers and enhance the use of genetic testing in nephrology practice.
Collapse
Affiliation(s)
- Michal Mrug
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jayasinghe K, Wu Y, Stark Z, Kerr PG, Mallett AJ, Gaff C, Martyn M, Goranitis I, Quinlan C. Cost-Effectiveness of Targeted Exome Analysis as a Diagnostic Test in Glomerular Diseases. Kidney Int Rep 2021; 6:2850-2861. [PMID: 34805637 PMCID: PMC8589690 DOI: 10.1016/j.ekir.2021.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite the emergence of diagnostic and clinical utility evidence in nephrology, publicly funded access to genomic testing is restricted in most health care systems. To establish genomic sequencing as a clinical test, an evaluation of cost-effectiveness is urgently required. METHODS An economic evaluation, informed by a primary clinical study and available clinical evidence and guidelines in nephrology, was performed to evaluate the cost-effectiveness and optimal timing of exome sequencing (ES) in adults and children with suspected monogenic glomerular diseases compared with nongenomic investigations (NGIs). Six diagnostic strategies reflecting current practice and recommended models of care in Australia were modeled: (i) NGIs, (ii) late gene panel followed by ES, (iii) late ES, (iv) early gene panel, (v) early gene panel followed by ES, and (vi) early ES. RESULTS ES with targeted analysis achieved a diagnosis in 23 of 63 (36.5%) adults and 10 of 24 (41.6%) children. NGIs were estimated to diagnose 4.0% of children, with an average estimated cost of AU$6120 per child. Integrating ES as a first-line test in children was cost saving, with an incremental cost saving of AU$3230 per additional diagnosis compared with NGIs. In adults, NGIs was estimated to diagnose 8% of patients, with an average estimated cost of AU$1830 per person. In adults, integrating ES early resulted in an incremental cost per additional diagnosis of AU$5460 relative to NGIs. CONCLUSIONS Early ES with targeted analysis was effective for diagnosing monogenic kidney disease, with substantial cost savings in children.
Collapse
Affiliation(s)
- Kushani Jayasinghe
- Department of Nephrology, Monash Medical Centre, Melbourne, Australia
- Monash University, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Australia
| | - You Wu
- Centre for Health Policy, University of Melbourne, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Melbourne, VIC, Australia
| | - Zornitza Stark
- Murdoch Children’s Research Institute, Melbourne, Australia
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Australia
- Victorian Clinical Genetics Services, Melbourne, Australia
| | - Peter G. Kerr
- Department of Nephrology, Monash Medical Centre, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Andrew J. Mallett
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Clara Gaff
- Department of Pediatrics, University of Melbourne, Australia
- Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Melissa Martyn
- Murdoch Children’s Research Institute, Melbourne, Australia
- Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Ilias Goranitis
- Centre for Health Policy, University of Melbourne, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Melbourne, VIC, Australia
| | - Catherine Quinlan
- Murdoch Children’s Research Institute, Melbourne, Australia
- The KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Australia
- Department of Pediatric Nephrology, Royal Children’s Hospital, Melbourne, Australia
| |
Collapse
|
45
|
Elliott MD, James LC, Simms EL, Sharma P, Girard LP, Cheema K, Elliott MJ, Lauzon JL, Chun J. Mainstreaming Genetic Testing for Adult Patients With Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2021; 8:20543581211055001. [PMID: 34733539 PMCID: PMC8558595 DOI: 10.1177/20543581211055001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Genetic testing results are currently obtained approximately 1 year after referral to a medical genetics team for autosomal dominant polycystic kidney disease (ADPKD). We evaluated a mainstream genetic testing (MGT) pathway whereby the nephrology team provided pre-test counseling and selection of patients with suspected ADPKD for genetic testing prior to direct patient interaction by a medical geneticist. SOURCES OF INFORMATION A multidisciplinary team of nephrologists, genetic counselors, and medical geneticists developed an MGT pathway for ADPKD using current testing criteria for adult patient with suspected ADPKD and literature from MGT in oncology. METHODS An MGT pathway was assessed using a prospective cohort and compared to a retrospective cohort of 56 patients with ADPKD who received genetic testing using the standard, traditional pathway prior to implementing the MGT for ADPKD. The mainstream pathway was evaluated using time to diagnosis, diagnostic yield, and a patient survey to assess patient perceptions of the MGT pathway. KEY FINDINGS We assessed 26 patients with ADPKD using the MGT and 18 underwent genetic testing with return of results. Of them, 52 patients had data available for analysis in the traditional control cohort. The time for return of results using our MGT pathway was significantly shorter with a median time to results of 6 months compared to 12 months for the traditional pathway. We identified causative variants in 61% of patients, variants of uncertain significance in 28%, and 10% had negative testing which is in line with expectations from the literature. The patient surveys showed high satisfaction rates with the MGT pathway. LIMITATIONS This report is an evaluation of a new genetic testing pathway restricted to a single, publicly funded health care center. The MGT pathway involved a prospective collection of a limited number of patients with ADPKD with comparison to a retrospective cohort of patients with ADPKD evaluated by standard testing. IMPLICATIONS A MGT pathway using clearly defined criteria and commercially available gene panels for ADPKD can be successfully implemented in a publicly funded health care system to reduce the time required to obtain genetic results.
Collapse
Affiliation(s)
- Mark D. Elliott
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Leslie C. James
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB, Canada
| | - Emily L. Simms
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Priyana Sharma
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB, Canada
| | - Louis P. Girard
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Kim Cheema
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Meghan J. Elliott
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Julie L. Lauzon
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Justin Chun
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, AB, Canada
| |
Collapse
|
46
|
Antón-Gamero M, Melgosa-Hijosa M. Reporting inherited kidney diseases: pick up the gauntlet. Clin Kidney J 2021; 14:2276-2277. [PMID: 34603708 PMCID: PMC8483681 DOI: 10.1093/ckj/sfab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Marta Melgosa-Hijosa
- La Paz University Hospital Children Hospital, Pediatric Nephrology Unit, Madrid, Spain
| |
Collapse
|
47
|
Pinto E Vairo F, Prochnow C, Kemppainen JL, Lisi EC, Steyermark JM, Kruisselbrink TM, Pichurin PN, Dhamija R, Hager MM, Albadri S, Cornell LD, Lazaridis KN, Klee EW, Senum SR, El Ters M, Amer H, Baudhuin LM, Moyer AM, Keddis MT, Zand L, Sas DJ, Erickson SB, Fervenza FC, Lieske JC, Harris PC, Hogan MC. Genomics Integration Into Nephrology Practice. Kidney Med 2021; 3:785-798. [PMID: 34746741 PMCID: PMC8551494 DOI: 10.1016/j.xkme.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE & OBJECTIVE The etiology of kidney disease remains unknown in many individuals with chronic kidney disease (CKD). We created the Mayo Clinic Nephrology Genomics Clinic to improve our ability to integrate genomic and clinical data to identify the etiology of unexplained CKD. STUDY DESIGN Retrospective study. SETTING & PARTICIPANTS An essential component of our program is the Nephrology Genomics Board which consists of nephrologists, geneticists, pathologists, translational omics scientists, and trainees who interpret the patient's clinical and genetic data. Since September 2016, the Board has reviewed 163 cases (15 cystic, 100 glomerular, 6 congenital anomalies of kidney and urinary tract (CAKUT), 20 stones, 15 tubulointerstitial, and 13 other). ANALYTICAL APPROACH Testing was performed with targeted panels, single gene analysis, or analysis of kidney-related genes from exome sequencing. Variant classification was obtained based on the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS A definitive genetic diagnosis was achieved for 50 families (30.7%). The highest diagnostic yield was obtained in individuals with tubulointerstitial diseases (53.3%), followed by congenital anomalies of the kidney and urological tract (33.3%), glomerular (31%), cysts (26.7%), stones (25%), and others (15.4%). A further 20 (12.3%) patients had variants of interest, and variant segregation, and research activities (exome, genome, or transcriptome sequencing) are ongoing for 44 (40%) unresolved families. LIMITATIONS Possible overestimation of diagnostic rate due to inclusion of individuals with variants with evidence of pathogenicity but classified as of uncertain significance by the clinical laboratory. CONCLUSIONS Integration of genomic and research testing and multidisciplinary evaluation in a nephrology cohort with CKD of unknown etiology or suspected monogenic disease provided a diagnosis in a third of families. These diagnoses had prognostic implications, and often changes in management were implemented.
Collapse
Affiliation(s)
- Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Carri Prochnow
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | | | - Emily C Lisi
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joan M Steyermark
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Rhadika Dhamija
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, Arizona
| | - Megan M Hager
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, Arizona
| | - Sam Albadri
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lynn D Cornell
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Sarah R Senum
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Mireille El Ters
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hatem Amer
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Linnea M Baudhuin
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ann M Moyer
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mira T Keddis
- Division of Nephrology, Mayo Clinic, Scottsdale, Arizona
| | - Ladan Zand
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - David J Sas
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stephen B Erickson
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - John C Lieske
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Peter C Harris
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Marie C Hogan
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Granhøj J, Tougaard B, Lildballe DL, Rasmussen M. Family History is Important to Identify Patients with Monogenic Causes of Adult-Onset Chronic Kidney Disease. Nephron Clin Pract 2021; 146:49-57. [PMID: 34515170 DOI: 10.1159/000518175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Monogenic causes of chronic kidney disease (CKD) are more prevalent in adults than previously thought, as causative gene variants are found in almost 10% of unselected patients with CKD. Even so, genetic testing in patients with adult-onset CKD is uncommon in clinical practice and the optimal criteria for patient selection remain unclear. A family history of kidney disease emerges as one marker associated with a high diagnostic yield of genetic testing. We present 3 cases of adult-onset CKD with underlying monogenic causes exemplifying different modes of inheritance. Case 1 is a 60-year-old male with slowly progressive CKD initially ascribed to hypertension and diabetes despite a family history with several affected first-degree relatives. A pathogenic MUC1 variant was found, and thus we identified the first Danish family of MUC1-associated autosomal dominant tubulointerstitial kidney disease. Case 2 is a 40-year-old female with nephrocalcinosis, nephrolithiasis, and unexplainable hypercalcemia consistent with vitamin D intoxication. The family history indicated autosomal recessive inheritance, and genetic testing revealed 2 pathogenic CYP24A1 variants in compound heterozygous form associated with idiopathic infantile hypercalcemia. Case 3 is a 50-year-old male with microscopic hematuria, proteinuria, and hearing loss. Electron microscopy of renal biopsy showed thin basal membrane syndrome, and the family history indicated X-linked inheritance. A novel missense variant in COL4A5 was identified, suggesting an atypical late-onset form of X-linked Alport syndrome. This case series illustrates the heterogeneous presentations of monogenic kidney disease in adults and emphasizes the importance of family history for initiating genetic testing to identify underlying monogenic causation. Moreover, we discuss the potential impact of genetic diagnostics on patient management and genetic family counseling.
Collapse
Affiliation(s)
- Jeff Granhøj
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Birgitte Tougaard
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte L Lildballe
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Maria Rasmussen
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
49
|
Torra R, Furlano M, Ortiz A, Ars E. Genetic kidney diseases as an underrecognized cause of chronic kidney disease: the key role of international registry reports. Clin Kidney J 2021; 14:1879-1885. [PMID: 34345410 PMCID: PMC8323147 DOI: 10.1093/ckj/sfab056] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited kidney diseases (IKDs) are among the leading causes of early-onset chronic kidney disease (CKD) and are responsible for at least 10-15% of cases of kidney replacement therapy (KRT) in adults. Paediatric nephrologists are very aware of the high prevalence of IKDs among their patients, but this is not the case for adult nephrologists. Recent publications have demonstrated that monogenic diseases account for a significant percentage of adult cases of CKD. A substantial number of these patients have received a non-specific/incorrect diagnosis or a diagnosis of CKD of unknown aetiology, which precludes correct treatment, follow-up and genetic counselling. There are a number of reasons why genetic kidney diseases are difficult to diagnose in adulthood: (i) adult nephrologists, in general, are not knowledgeable about IKDs; (ii) existence of atypical phenotypes; (iii) genetic testing is not universally available; (iv) family history is not always available or may be negative; (v) lack of knowledge of various genotype-phenotype relationships and (vi) conflicting interpretation of the pathogenicity of many sequence variants. Registries can contribute to visualize the burden of IKDs by regularly grouping all IKDs in their annual reports, as is done for glomerulonephritis or interstitial diseases, rather than reporting only cystic disease and hiding other IKDs under labels such as 'miscellaneous' or 'other'. Any effort to reduce the percentage of patients needing KRT with a diagnosis of 'nephropathy of unknown etiology' or an unspecific/incorrect diagnosis should be encouraged as a step towards precision nephrology. Genetic testing may be of value in this context but should not be used indiscriminately, but rather on the basis of a deep knowledge of IKDs.
Collapse
Affiliation(s)
- Roser Torra
- Department of Nephrology, Inherited Kidney Diseases, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Medicine Department-Universitat Autónoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Mónica Furlano
- Department of Nephrology, Inherited Kidney Diseases, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Medicine Department-Universitat Autónoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Alberto Ortiz
- IIS-Fundación Jimenez Diaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo-IRSIN, REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autónoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| |
Collapse
|
50
|
|