1
|
Prosdocimi F, de Farias ST. Major evolutionary transitions before cells: A journey from molecules to organisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:11-24. [PMID: 38971326 DOI: 10.1016/j.pbiomolbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Basing on logical assumptions and necessary steps of complexification along biological evolution, we propose here an evolutionary path from molecules to cells presenting four ages and three major transitions. At the first age, the basic biomolecules were formed and become abundant. The first transition happened with the event of a chemical symbiosis between nucleic acids and peptides worlds, which marked the emergence of both life and the process of organic encoding. FUCA, the first living process, was composed of self-replicating RNAs linked to amino acids and capable to catalyze their binding. The second transition, from the age of FUCA to the age of progenotes, involved the duplication and recombination of proto-genomes, leading to specialization in protein production and the exploration of protein to metabolite interactions in the prebiotic soup. Enzymes and metabolic pathways were incorporated into biology from protobiotic reactions that occurred without chemical catalysts, step by step. Then, the fourth age brought origin of organisms and lineages, occurring when specific proteins capable to stackle together facilitated the formation of peptidic capsids. LUCA was constituted as a progenote capable to operate the basic metabolic functions of a cell, but still unable to interact with lipid molecules. We present evidence that the evolution of lipid interaction pathways occurred at least twice, with the development of bacterial-like and archaeal-like membranes. Also, data in literature suggest at least two paths for the emergence of DNA biosynthesis, allowing the stabilization of early life strategies in viruses, archaeas and bacterias. Two billion years later, the eukaryotes arouse, and after 1,5 billion years of evolution, they finally learn how to evolve multicellularity via tissue specialization.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
2
|
Ishaqat A, Zhang X, Liu Q, Zheng L, Herrmann A. Programming DNA Circuits for Controlled Immunostimulation through CpG Oligodeoxynucleotide Delivery. J Am Chem Soc 2023. [PMID: 37267596 DOI: 10.1021/jacs.2c09359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein, we present a DNA circuit programmed for the delivery of CpG oligodeoxynucleotides (CpG ODNs) with the pharmacological immunostimulation function. The circuit employs a complementary DNA (cDNA) strand to deactivate the biological function of CpG ODNs via hybridization, while T7 exonuclease mediates the activation by hydrolyzing the cDNA and releasing the CpG ODN as an active moiety. We investigated the influence of several factors on the kinetic profile and temporal behavior of the circuit. These include the design of the cDNA strand, the concentration of the DNA duplex, and the concentration of T7 exonuclease. The DNA circuit's in vitro activation resulted in toll-like receptor 9 stimulation in the HEK-engineered cell line, as well as tumor necrosis factor-alpha release by J774A.1 macrophages. By programming the DNA circuit to control the release of the CpG ODN, we achieved an altered pharmacological profile with acute and potent immunostimulation, in comparison to a system without controlled CpG ODN release, which exhibited a slow and delayed response. Our findings demonstrate the potential of DNA circuits in controlling the pharmacological activity of DNA strands for controlled drug delivery.
Collapse
Affiliation(s)
- Aman Ishaqat
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Xiaofeng Zhang
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Qing Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, 25001 Wenzhou, China
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, 25001 Wenzhou, China
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
3
|
Chen F, Huang Y, Huang Z, Jiang T, Yang Z, Zeng J, Jin A, Zuo H, Huang CZ, Mao C. DNA-scaffolded multivalent vaccine against SARS-CoV-2. Acta Biomater 2023; 164:387-396. [PMID: 37088158 PMCID: PMC10122553 DOI: 10.1016/j.actbio.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Short peptides are poor immunogens. One way to increase their immune responses is by arraying immunogens in multivalency. Simple and efficient scaffolds for spatial controlling the inter-antigen distance and enhancing immune activation are required. Here, we report a molecular vaccine design principle that maximally drives potent SARS-CoV-2 RBD subunit vaccine on DNA duplex to induce robust and efficacious immune responses in vivo. We expect that the DNA-peptide epitope platform represents a facile and generalizable strategy to enhance the immune response. STATEMENT OF SIGNIFICANCE: DNA scaffolds offer a biocompatible and convenient platform for arraying immunogens in multivalency antigenic peptides, and spatially control the inter-antigen distance. This can effectively enhance immune response. Peptide (instead of entire protein) vaccines are highly attractive. However, short peptides are poor immunogens. Our DNA scaffolded multivalent peptide immunogen system induced robust and efficacious immune response in vivo as demonstrated by the antigenic peptide against SAR-CoV-2. The present strategy could be readily generalized and adapted to prepare multivalent vaccines against other viruses or disease. Particularly, the different antigens could be integrated into one single vaccine and lead to super-vaccines that can protect the host from multiple different viruses or multiple variants of the same virus.
Collapse
Affiliation(s)
- Fangfang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhengyu Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Tingting Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Zeng
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA.
| |
Collapse
|
4
|
Zhu G, Song P, Wu J, Luo M, Chen Z, Chen T. Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective. Front Bioeng Biotechnol 2022; 9:792489. [PMID: 35071205 PMCID: PMC8777461 DOI: 10.3389/fbioe.2021.792489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.
Collapse
Affiliation(s)
- Gan Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jing Wu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minglan Luo
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhipeng Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Saha U, Todi K, Malhotra BD. Emerging DNA-based multifunctional nano-biomaterials towards electrochemical sensing applications. NANOSCALE 2021; 13:10305-10319. [PMID: 34086027 DOI: 10.1039/d1nr02409d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA is known to be ubiquitous in nature as it is the controlling unit for genetic information storage in most living organisms. Lately, there has been a surge in studies relating to the use of DNA as a biomaterial for various biomedical applications such as biosensing, therapeutics, and drug delivery. The role of DNA as a bioreceptor in biosensors has been known for a long time. DNA-based biosensors are gradually evolving into highly sophisticated and sensitive molecular devices. The current realization of DNA-based biosensors embraces the unique structural and functional properties of DNA in the form of a biopolymer. The interesting properties of DNA, such as self-assembly, programmability, catalytic activity, dynamic behavior, and precise molecular recognition, have led to the emergence of innovative DNA assembly based electrochemical biosensors. This review article aims to cover the recent progress in the field of DNA-based electrochemical (EC) biosensors. It commences with an introduction to electrochemical biosensors and elucidates the advantages of integrating DNA-based materials into them. Besides this, we discuss the principles of EC biosensors based on different types of DNA-based materials. The article concludes by highlighting the outlook and importance of this interesting field for biomedical developments.
Collapse
Affiliation(s)
- Udiptya Saha
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| | - Keshav Todi
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| |
Collapse
|
7
|
Bhatia D, Wunder C, Johannes L. Self-assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications. Chembiochem 2021; 22:763-778. [PMID: 32961015 DOI: 10.1002/cbic.202000372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/19/2020] [Indexed: 12/28/2022]
Abstract
The broad field of structural DNA nanotechnology has diverged into various areas of applications ranging from computing, photonics, synthetic biology, and biosensing to in-vivo bioimaging and therapeutic delivery, to name but a few. Though the field began to exploit DNA to build various nanoscale architectures, it has now taken a new path to diverge from structural DNA nanotechnology to functional or applied DNA nanotechnology. More recently a third sub-branch has emerged-biologically oriented DNA nanotechnology, which seeks to explore the functionalities of combinatorial DNA devices in various biological systems. In this review, we summarize the key developments in DNA nanotechnology revealing a current trend that merges the functionality of DNA devices with the specificity of biomolecules to access a range of functions in biological systems. This review seeks to provide a perspective on the evolution and biological applications of DNA nanotechnology, where the integration of DNA structures with biomolecules can now uncover phenomena of interest to biologists and biomedical scientists. Finally, we conclude with the challenges, limitations, and perspectives of DNA nanodevices in fundamental and applied research.
Collapse
Affiliation(s)
- Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382330, Gandhinagar, India
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team U1143 INSERM UMR 3666 CNRS, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team U1143 INSERM UMR 3666 CNRS, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| |
Collapse
|
8
|
Garg S, Shah S, Bui H, Song T, Mokhtar R, Reif J. Renewable Time-Responsive DNA Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801470. [PMID: 30022600 DOI: 10.1002/smll.201801470] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
Abstract
DNA devices have been shown to be capable of evaluating Boolean logic. Several robust designs for DNA circuits have been demonstrated. Some prior DNA-based circuits are use-once circuits since the gate motifs of the DNA circuits get permanently destroyed as a side effect of the computation, and hence cannot respond correctly to subsequent changes in inputs. Other DNA-based circuits use a large reservoir of buffered gates to replace the working gates of the circuit and can be used to drive a finite number of computation cycles. In many applications of DNA circuits, the inputs are inherently asynchronous, and this necessitates that the DNA circuits be asynchronous: the output must always be correct regardless of differences in the arrival time of inputs. This paper demonstrates: 1) renewable DNA circuits, which can be manually reverted to their original state by addition of DNA strands, and 2) time-responsive DNA circuits, where if the inputs change over time, the DNA circuit can recompute the output correctly based on the new inputs, that are manually added after the system has been reset. The properties of renewable, asynchronous, and time-responsiveness appear to be central to molecular-scale systems; for example, self-regulation in cellular organisms.
Collapse
Affiliation(s)
- Sudhanshu Garg
- LinkedIn Inc., 1000 W Maude Ave, Sunnyvale, CA, 94085, USA
| | - Shalin Shah
- Department of Electrical & Computer Engineering, Duke University, Durham, NC, 27705, USA
| | - Hieu Bui
- National Research Council, 500 Fifth Street NW, Keck 576, Washington, DC, 20001, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Tianqi Song
- Department of Computer Science, Duke University, Durham, NC, 27705, USA
| | - Reem Mokhtar
- Department of Computer Science, Duke University, Durham, NC, 27705, USA
| | - John Reif
- Department of Electrical & Computer Engineering, Duke University, Durham, NC, 27705, USA
- Department of Computer Science, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
9
|
Computational Biosensors: Molecules, Algorithms, and Detection Platforms. MODELING, METHODOLOGIES AND TOOLS FOR MOLECULAR AND NANO-SCALE COMMUNICATIONS 2017. [PMCID: PMC7123247 DOI: 10.1007/978-3-319-50688-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Advanced nucleic acid-based sensor-applications require computationally intelligent biosensors that are able to concurrently perform complex detection and classification of samples within an in vitro platform. Realization of these cutting-edge computational biosensor systems necessitates innovation and integration of three key technologies: molecular probes with computational capabilities, algorithmic methods to enable in vitro computational post processing and classification, and immobilization and detection approaches that enable the realization of deployable computational biosensor platforms. We provide an overview of current technologies, including our contributions towards the development of computational biosensor systems.
Collapse
|
10
|
Verma A, Fratto BE, Privman V, Katz E. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications. SENSORS 2016; 16:s16071042. [PMID: 27399702 PMCID: PMC4969838 DOI: 10.3390/s16071042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023]
Abstract
We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.
Collapse
Affiliation(s)
- Arjun Verma
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA.
| | - Brian E Fratto
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Vladimir Privman
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
11
|
Li W, Zhang F, Yan H, Liu Y. DNA based arithmetic function: a half adder based on DNA strand displacement. NANOSCALE 2016; 8:3775-84. [PMID: 26814628 DOI: 10.1039/c5nr08497k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biomolecular programming utilizes the reactions and information stored in biological molecules, such as proteins and nucleic acids, for computational purposes. DNA has proven itself an excellent candidate for building logic operating systems due to its highly predictable molecular behavior. In this work we designed and realized an XOR logic gate and an AND logic gate based on DNA strand displacement reactions. These logic gates utilize ssDNA as input and output signals. The XOR gate and the AND gate were used as building blocks for constructing a half adder logic circuit, which is a primary step in constructing a full adder, a basic arithmetic unit in computing. This work provides the field of DNA molecular programming with a potential universal arithmetic tool.
Collapse
Affiliation(s)
- Wei Li
- Center of Molecular Design and Biomimetics at The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| | - Fei Zhang
- Center of Molecular Design and Biomimetics at The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| | - Hao Yan
- Center of Molecular Design and Biomimetics at The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| | - Yan Liu
- Center of Molecular Design and Biomimetics at The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
12
|
Katz E, Minko S. Enzyme-based logic systems interfaced with signal-responsive materials and electrodes. Chem Commun (Camb) 2015; 51:3493-500. [PMID: 25578785 DOI: 10.1039/c4cc09851j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzyme-based biocomputing systems were interfaced with signal-responsive membranes and electrodes resulting in bioelectronic devices switchable by logically processed biomolecular signals. "Smart" membranes, electrodes, biofuel cells, memristors and substance-releasing systems were activated by various combinations of biomolecular signals in the pre-programmed way implemented in biocatalytic cascades mimicking logic networks.
Collapse
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | | |
Collapse
|
13
|
O'Steen MR, Cornett EM, Kolpashchikov DM. Nuclease-containing media for resettable operation of DNA logic gates. Chem Commun (Camb) 2015; 51:1429-31. [PMID: 25493931 DOI: 10.1039/c4cc09283j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We designed and tested a system that allows DNA logic gates to respond multiple times to the addition of oligonucleotide inputs. After producing an output signal, the system spontaneously resets to the background state. This system does not require any operator action to achieve reset of a DNA logic gate, and may become useful for construction of reusable DNA-based computational devices.
Collapse
Affiliation(s)
- Martin R O'Steen
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA.
| | | | | |
Collapse
|
14
|
A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nat Chem 2015; 7:835-41. [PMID: 26391084 PMCID: PMC4580978 DOI: 10.1038/nchem.2325] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/10/2015] [Indexed: 01/15/2023]
Abstract
Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. A cascade reaction network has been created that can function in a manner that is superficially similar to the most basic steps of the vertebrate adaptive immune response. This reaction network uses DNA and enzymes as simple artificial analogues of the components of the acquired immune system.![]()
Collapse
|
15
|
Goltry S, Hallstrom N, Clark T, Kuang W, Lee J, Jorcyk C, Knowlton WB, Yurke B, Hughes WL, Graugnard E. DNA topology influences molecular machine lifetime in human serum. NANOSCALE 2015; 7:10382-90. [PMID: 25959862 PMCID: PMC4457601 DOI: 10.1039/c5nr02283e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 05/28/2023]
Abstract
DNA nanotechnology holds the potential for enabling new tools for biomedical engineering, including diagnosis, prognosis, and therapeutics. However, applications for DNA devices are thought to be limited by rapid enzymatic degradation in serum and blood. Here, we demonstrate that a key aspect of DNA nanotechnology-programmable molecular shape-plays a substantial role in device lifetimes. These results establish the ability to operate synthetic DNA devices in the presence of endogenous enzymes and challenge the textbook view of near instantaneous degradation.
Collapse
Affiliation(s)
- Sara Goltry
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Natalya Hallstrom
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Tyler Clark
- Department of Physics , Boise State University , Boise , Idaho 83725 , USA
- Department of Mathematics , Boise State University , Boise , Idaho 83725 , USA
| | - Wan Kuang
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Jeunghoon Lee
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Chemistry & Biochemistry , Boise State University , Boise , Idaho 83725 , USA
| | - Cheryl Jorcyk
- Department of Biological Sciences , Boise State University , Boise , Idaho 83725 , USA
| | - William B. Knowlton
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Bernard Yurke
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - William L. Hughes
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Elton Graugnard
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| |
Collapse
|
16
|
Nesterova IV, Elsiddieg SO, Nesterov EE. A dual input DNA-based molecular switch. MOLECULAR BIOSYSTEMS 2015; 10:2810-4. [PMID: 25099914 DOI: 10.1039/c4mb00363b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have designed and characterized a DNA-based molecular switch which processes two physiologically relevant inputs: pH (i.e. alkalinisation) and enzymatic activity, and generates a chemical output (in situ synthesized oligonucleotide). The design, based on allosteric interactions between i-motif and hairpin stem within the DNA molecule, addresses such critical physiological system parameters as molecular simplicity, tunability, orthogonality of the two input sensing domains, and compatibility with intracellular operation/delivery.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
17
|
Yan J, Hu C, Wang P, Zhao B, Ouyang X, Zhou J, Liu R, He D, Fan C, Song S. Growth and Origami Folding of DNA on Nanoparticles for High-Efficiency Molecular Transport in Cellular Imaging and Drug Delivery. Angew Chem Int Ed Engl 2015; 54:2431-5. [DOI: 10.1002/anie.201408247] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/22/2014] [Indexed: 01/02/2023]
|
18
|
Yan J, Hu C, Wang P, Zhao B, Ouyang X, Zhou J, Liu R, He D, Fan C, Song S. Growth and Origami Folding of DNA on Nanoparticles for High-Efficiency Molecular Transport in Cellular Imaging and Drug Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Kamiya Y, Asanuma H. Light-driven DNA nanomachine with a photoresponsive molecular engine. Acc Chem Res 2014; 47:1663-72. [PMID: 24617966 DOI: 10.1021/ar400308f] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONSPECTUS: DNA is regarded as an excellent nanomaterial due to its supramolecular property of duplex formation through A-T and G-C complementary pairs. By simply designing sequences, we can create any desired 2D or 3D nanoarchitecture with DNA. Based on these nanoarchitectures, motional DNA-based nanomachines have also been developed. Most of the nanomachines require molecular fuels to drive them. Typically, a toehold exchange reaction is applied with a complementary DNA strand as a fuel. However, repetitive operation of the machines accumulates waste DNA duplexes in the solution that gradually deteriorate the motional efficiency. Hence, we are facing an "environmental problem" even in the nanoworld. One of the direct solutions to this problem is to use clean energy, such as light. Since light does not contaminate the reaction system, a DNA nanomachine run by a photon engine can overcome the drawback of waste that is a problem with molecular-fueled engines. There are several photoresponsive molecules that convert light energy to mechanical motion through the change of geometry of the molecules; these include spiropyran, diarylethene, stilbene, and azobenzene. Although each molecule has both advantages and drawbacks, azobenzene derivatives are widely used as "molecular photon engines". In this Account, we review light-driven DNA nanomachines mainly focusing on the photoresponsive DNAs that we have developed for the past decade. The basis of our method is installation of an azobenzene into a DNA sequence through a d-threoninol scaffold. Reversible hybridization of the DNA duplex, triggered by trans-cis isomerization of azobenzene in the DNA sequences by irradiation with light, induces mechanical motion of the DNA nanomachine. Moreover we have successfully developed azobenzene derivatives that improve its photoisomerizaition properties. Use of these derivatives and techniques have allowed us to design various DNA machines that demonstrate sophisticated motion in response to lights of different wavelengths without a drop in photoregulatory efficiency. In this Account, we emphasize the advantages of our methods including (1) ease of preparation, (2) comprehensive sequence design of azobenzene-tethered DNA, (3) efficient photoisomerization, and (4) reversible photocontrol of hybridization by irradiation with appropriate wavelengths of light. We believe that photon-fueled DNA nanomachines driven by azobenzene-derivative molecular photon-fueled engines will be soon science rather than "science fiction".
Collapse
Affiliation(s)
- Yukiko Kamiya
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan
- Ecotopia
Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan
| | - Hiroyuki Asanuma
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan
| |
Collapse
|
20
|
Abstract
We have designed programmable DNA-based nanoswitches whose closing/opening can be triggered over specific different pH windows. These nanoswitches form an intramolecular triplex DNA structure through pH-sensitive parallel Hoogsteen interactions. We demonstrate that by simply changing the relative content of TAT/CGC triplets in the switches, we can rationally tune their pH dependence over more than 5 pH units. The ability to design DNA-based switches with tunable pH dependence provides the opportunity to engineer pH nanosensors with unprecedented wide sensitivity to pH changes. For example, by mixing in the same solution three switches with different pH sensitivity, we developed a pH nanosensor that can precisely monitor pH variations over 5.5 units of pH. With their fast response time (<200 ms) and high reversibility, these pH-triggered nanoswitches appear particularly suitable for applications ranging from the real-time monitoring of pH changes in vivo to the development of pH sensitive smart nanomaterials.
Collapse
Affiliation(s)
- Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata , 00133, Rome, Italy
| | | | | |
Collapse
|
21
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 507] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
22
|
Bakshi S, Halámková L, Halámek J, Katz E. Biocatalytic analysis of biomarkers for forensic identification of gender. Analyst 2014; 139:559-63. [DOI: 10.1039/c3an02055j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ouyang X, Li J, Liu H, Zhao B, Yan J, Ma Y, Xiao S, Song S, Huang Q, Chao J, Fan C. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3082-3087. [PMID: 23613456 DOI: 10.1002/smll.201300458] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 06/02/2023]
Abstract
Several single-stranded scaffold DNA, obtained from rolling circle amplification (RCA), are folded by different staples to form DNA nanoribbons. These DNA nanoribbons are rigid, simple to design, and cost-effective drug carriers, which are readily internalized by mammalian cells and show enhanced immunostimulatory activity.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Özalp VC, Bilecen K, Kavruk M, Öktem HA. Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol 2013; 8:387-401. [PMID: 23464374 DOI: 10.2217/fmb.12.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discovery of alternative sources of antimicrobial agents are essential in the ongoing battle against microbial pathogens. Legislative and scientific challenges considerably hinder the discovery and use of new antimicrobial drugs, and new approaches are in urgent demand. On the other hand, rapid, specific and sensitive detection of airborne pathogens is becoming increasingly critical for public health. In this respect affinity oligonucleotides, aptamers, provide unique opportunities for the development of nanotechnological solutions for such medical applications. In recent years, aptamers specifically recognizing microbial cells and viruses showed great potential in a range of analytical and therapeutic applications. This article describes the significant advances in the development of aptamers targeting specific pathogens. Therapeutic application of aptamers as neutralizing agents demonstrates great potential as a future source of antimicrobial agent.
Collapse
Affiliation(s)
- Veli Cengiz Özalp
- Nanobiz Ltd, MetuTechnopolis, Galium block, 2nd Floor, No. 18, 06800 Ankara, Turkey
| | | | | | | |
Collapse
|
25
|
Nesterova IV, Elsiddieg SO, Nesterov EE. Design and evaluation of an i-motif-based allosteric control mechanism in DNA-hairpin molecular devices. J Phys Chem B 2013; 117:10115-21. [PMID: 23941235 DOI: 10.1021/jp405230g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular devices designed to assess and manipulate biologically relevant conditions with required accuracy and precision play an essential role in life sciences research. Incorporating allosteric regulation mechanism is an attractive strategy toward more efficient artificial sensing and switching systems. Herein, we report on a new principle of regulating switching parameters of a DNA-based molecular device based on allosteric interaction between spatially separated hairpin stem and a tetraplexed fragment (i.e., i-motif). We characterized thermodynamic and kinetic effects arising from interaction between functional domains of the device and demonstrated the potential of applying the allosteric control principle for rational design of sensors and switches with precisely defined operational characteristics.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
26
|
Smith D, Schüller V, Engst C, Rädler J, Liedl T. Nucleic acid nanostructures for biomedical applications. Nanomedicine (Lond) 2013; 8:105-21. [PMID: 23256495 DOI: 10.2217/nnm.12.184] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We review the current developments of DNA-based nanostructures for drug delivery, immunotherapy, diagnostics and molecular biology. DNA is a powerful building block, which by the nature of predictable base pairing, allows the creation of molecular scaffolds, cages and multifunctional carriers with nanoscale dimensions. These engineered constructs have unsurpassed structural qualities such as full control over size, shape and dispersity. Site-specific surface modification enables the presentation of biomolecules at defined distances and stochiometries, which allows tailored cell targeting and substance delivery on demand. As the first successful in vivo applications of DNA nanostructures have recently been demonstrated, we now expect a burst of biomedical studies involving this rapidly progressing technology.
Collapse
Affiliation(s)
- David Smith
- Physics & Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | | | | | | | | |
Collapse
|
27
|
Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev 2013; 113:3391-406. [PMID: 23428231 DOI: 10.1021/cr3002627] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jens Rauch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
28
|
Elbaz J, Wang F, Remacle F, Willner I. pH-programmable DNA logic arrays powered by modular DNAzyme libraries. NANO LETTERS 2012; 12:6049-6054. [PMID: 22295948 DOI: 10.1021/nl300051g] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nature performs complex information processing circuits, such the programmed transformations of versatile stem cells into targeted functional cells. Man-made molecular circuits are, however, unable to mimic such sophisticated biomachineries. To reach these goals, it is essential to construct programmable modular components that can be triggered by environmental stimuli to perform different logic circuits. We report on the unprecedented design of artificial pH-programmable DNA logic arrays, constructed by modular libraries of Mg(2+)- and UO(2)(2+)-dependent DNAzyme subunits and their substrates. By the appropriate modular design of the DNA computation units, pH-programmable logic arrays of various complexities are realized, and the arrays can be erased, reused, and/or reprogrammed. Such systems may be implemented in the near future for nanomedical applications by pH-controlled regulation of cellular functions or may be used to control biotransformations stimulated by bacteria.
Collapse
Affiliation(s)
- Johann Elbaz
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
29
|
Chiba J, Shirato W, Yamade Y, Kim BS, Matsumoto S, Inouye M. Furanose ring conformations in a 1′-alkynyl C-nucleoside and the dinucleotide. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew Chem Int Ed Engl 2012; 51:9020-4. [PMID: 22887892 DOI: 10.1002/anie.201202356] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/22/2012] [Indexed: 12/31/2022]
Abstract
Right out of the (logic) gate: Logic gates made from 3D DNA nanotetrahedra were constructed that are responsive to various ions, small molecules, and short strands of DNA. By including dynamic sequences in one or more edges of the tetrahedra, a FRET signal can be generated in the manner of AND, OR, XOR, and INH logic gates, as well as a half-adder circuit. These DNA logic gates were also applied to intracellular detection of ATP.
Collapse
Affiliation(s)
- Hao Pei
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | |
Collapse
|
31
|
Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Reconfigurable Three-Dimensional DNA Nanostructures for the Construction of Intracellular Logic Sensors. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202356] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
|
33
|
Wang ZG, Elbaz J, Willner I. A Dynamically Programmed DNA Transporter. Angew Chem Int Ed Engl 2012; 51:4322-6. [DOI: 10.1002/anie.201107855] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Indexed: 12/24/2022]
|
34
|
Shapiro E. A mechanical Turing machine: blueprint for a biomolecular computer. Interface Focus 2012; 2:497-503. [PMID: 22649583 PMCID: PMC3363030 DOI: 10.1098/rsfs.2011.0118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/22/2012] [Indexed: 12/26/2022] Open
Abstract
We describe a working mechanical device that embodies the theoretical computing machine of Alan Turing, and as such is a universal programmable computer. The device operates on three-dimensional building blocks by applying mechanical analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by molecular recognition unleashing allosteric conformational changes. Logically, the device is not more complicated than biomolecular machines of the living cell, and all its operations are part of the standard repertoire of these machines; hence, a biomolecular embodiment of the device is not infeasible. If implemented, such a biomolecular device may operate in vivo, interacting with its biochemical environment in a program-controlled manner. In particular, it may ‘compute’ synthetic biopolymers and release them into its environment in response to input from the environment, a capability that may have broad pharmaceutical and biological applications.
Collapse
Affiliation(s)
- Ehud Shapiro
- Department of Computer Science and Applied Math and Department of Biological Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
35
|
Affiliation(s)
- Ofer I. Wilner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
36
|
Abstract
The base sequence encoded in nucleic acids yields significant structural and functional properties into the biopolymer. The resulting nucleic acid nanostructures provide the basis for the rapidly developing area of DNA nanotechnology. Advances in this field will be exemplified by discussing the following topics: (i) Hemin/G-quadruplex DNA nanostructures exhibit unique electrocatalytic, chemiluminescence and photophysical properties. Their integration with electrode surfaces or semiconductor quantum dots enables the development of new electrochemical or optical bioanalytical platforms for sensing DNA. (ii) The encoding of structural information into DNA enables the activation of autonomous replication processes that enable the ultrasensitive detection of DNA. (iii) By the appropriate design of DNA nanostructures, functional DNA machines, acting as "tweezers", "walkers" and "stepper" systems, can be tailored. (iv) The self-assembly of nucleic acid nanostructures (nanowires, strips, nanotubes) allows the programmed positioning of proteins on the DNA templates and the activation of enzyme cascades.
Collapse
|
37
|
Halámek J, Bocharova V, Arugula MA, Strack G, Privman V, Katz E. Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Enzyme Inhibition by a Substrate. J Phys Chem B 2011; 115:9838-45. [DOI: 10.1021/jp2041372] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Halámek
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Vera Bocharova
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Mary A. Arugula
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Guinevere Strack
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Vladimir Privman
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
38
|
Neural network computation with DNA strand displacement cascades. Nature 2011; 475:368-72. [PMID: 21776082 DOI: 10.1038/nature10262] [Citation(s) in RCA: 620] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/31/2011] [Indexed: 11/08/2022]
Abstract
The impressive capabilities of the mammalian brain--ranging from perception, pattern recognition and memory formation to decision making and motor activity control--have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anomaly detection, medical diagnosis and robotic vehicle control. Yet before neuron-based brains evolved, complex biomolecular circuits provided individual cells with the 'intelligent' behaviour required for survival. However, the study of how molecules can 'think' has not produced an equal variety of computational models and applications of artificial chemical systems. Although biomolecular systems have been hypothesized to carry out neural-network-like computations in vivo and the synthesis of artificial chemical analogues has been proposed theoretically, experimental work has so far fallen short of fully implementing even a single neuron. Here, building on the richness of DNA computing and strand displacement circuitry, we show how molecular systems can exhibit autonomous brain-like behaviours. Using a simple DNA gate architecture that allows experimental scale-up of multilayer digital circuits, we systematically transform arbitrary linear threshold circuits (an artificial neural network model) into DNA strand displacement cascades that function as small neural networks. Our approach even allows us to implement a Hopfield associative memory with four fully connected artificial neurons that, after training in silico, remembers four single-stranded DNA patterns and recalls the most similar one when presented with an incomplete pattern. Our results suggest that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment.
Collapse
|
39
|
Gil B, Kahan-Hanum M, Skirtenko N, Adar R, Shapiro E. Detection of multiple disease indicators by an autonomous biomolecular computer. NANO LETTERS 2011; 11:2989-2996. [PMID: 21671655 DOI: 10.1021/nl2015872] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The promise of biomolecular computers is their ability to interact with naturally occurring biomolecules, enabling in the future the development of context-dependent programmable drugs. Here we show a context-sensing mechanism of a biomolecular automaton that can simultaneously sense different types of molecules, allowing future integration of biomedical knowledge on a broad range of molecular disease symptoms in the decision of a biomolecular computer to release a drug molecule.
Collapse
Affiliation(s)
- Binyamin Gil
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
40
|
D'Orazio P. Biosensors in clinical chemistry - 2011 update. Clin Chim Acta 2011; 412:1749-61. [PMID: 21729694 PMCID: PMC7094392 DOI: 10.1016/j.cca.2011.06.025] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/19/2022]
Abstract
Research activity and applications of biosensors for measurement of analytes of clinical interest over the last eight years are reviewed. Nanotechnology has been applied to improve performance of biosensors using electrochemical, optical, mechanical and physical modes of transduction, and to allow arrays of biosensors to be constructed for parallel sensing. Biosensors have been proposed for measurement of cancer biomarkers, cardiac biomarkers as well as biomarkers for autoimmune disease, infectious disease and for DNA analysis. Novel applications of biosensors include measurements in alternate sample types, such as saliva. Biosensors based on immobilized whole cells have found new applications, for example to detect the presence of cancer and to monitor the response of cancer cells to chemotherapeutic agents. The number of research reports describing new biosensors for analytes of clinical interest continues to increase; however, movement of biosensors from the research laboratory to the clinical laboratory has been slow. The greatest impact of biosensors will be felt at point-of-care testing locations without laboratory support. Integration of biosensors into reliable, easy-to-use and rugged instrumentation will be required to assure success of biosensor-based systems at the point-of-care.
Collapse
Affiliation(s)
- Paul D'Orazio
- Instrumentation Laboratory, Bedford, MA 01730, United States.
| |
Collapse
|
41
|
Xu C, Zhao C, Ren J, Qu X. pH-controlled reversible drug binding and release using a cytosine-rich hairpin DNA. Chem Commun (Camb) 2011; 47:8043-5. [PMID: 21677978 DOI: 10.1039/c1cc12594j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report that a cytosine-rich DNA carrier, that oscillates between a hairpin and an i-motif structure in its response to pH variation, can be used as a drug binding and release device.
Collapse
Affiliation(s)
- Can Xu
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun, Jilin 130022, China
| | | | | | | |
Collapse
|
42
|
|
43
|
|
44
|
Huang Z, Pu F, Hu D, Wang C, Ren J, Qu X. Site‐Specific DNA‐Programmed Growth of Fluorescent and Functional Silver Nanoclusters. Chemistry 2011; 17:3774-80. [DOI: 10.1002/chem.201001795] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/05/2010] [Indexed: 12/21/2022]
Affiliation(s)
- Zhenzhen Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P.R. China)
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (P.R. China), Fax: (+86) 0431‐85262625
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P.R. China)
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (P.R. China), Fax: (+86) 0431‐85262625
| | - Dan Hu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P.R. China)
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (P.R. China), Fax: (+86) 0431‐85262625
| | - Chunyan Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P.R. China)
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (P.R. China), Fax: (+86) 0431‐85262625
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P.R. China)
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (P.R. China), Fax: (+86) 0431‐85262625
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P.R. China)
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (P.R. China), Fax: (+86) 0431‐85262625
| |
Collapse
|
45
|
|
46
|
Pita M, Privman V, Arugula MA, Melnikov D, Bocharova V, Katz E. Towards biochemical filters with a sigmoidal response to pH changes: buffered biocatalytic signal transduction. Phys Chem Chem Phys 2011; 13:4507-13. [DOI: 10.1039/c0cp02524k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Abstract
Biomolecular logic devices can be applied for sensing and nano-medicine. We built three DNA tweezers that are activated by the inputs H(+)/OH(-); ; nucleic acid linker/complementary antilinker to yield a 16-states finite-state automaton. The outputs of the automata are the configuration of the respective tweezers (opened or closed) determined by observing fluorescence from a fluorophore/quencher pair at the end of the arms of the tweezers. The system exhibits a memory because each current state and output depend not only on the source configuration but also on past states and inputs.
Collapse
|
48
|
Spectrometric study of the folding process of i-motif-forming DNA sequences upstream of the c-kit transcription initiation site. Anal Chim Acta 2010; 683:69-77. [DOI: 10.1016/j.aca.2010.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/30/2022]
|
49
|
Chen C, Pu F, Huang Z, Liu Z, Ren J, Qu X. Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers. Nucleic Acids Res 2010; 39:1638-44. [PMID: 20965972 PMCID: PMC3045591 DOI: 10.1093/nar/gkq893] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel proton-fueled molecular gate-like delivery system has been constructed for controlled cargo release using i-motif quadruplex DNA as caps onto pore outlets of mesoporous silica nanoparticles. Start from simple conformation changes, the i-motif DNA cap can open and close the pore system in smart response to pH stimulus. Importantly, the opening/closing and delivery protocol is highly reversible and a partial cargo delivery can be easily controlled at will. A pH-switchable nanoreactor has also been developed to validate the potential of our system for on-demand molecular transport. This proof of concept might open the door to a new generation of carrier materials and could also provide a general route to use other functional nucleic acids/peptide nucleic acids as capping agents in the fields of versatile controlled delivery nanodevices.
Collapse
Affiliation(s)
- Cuie Chen
- Laboratory of Chemical Biology and State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Privman V, Halámek J, Arugula MA, Melnikov D, Bocharova V, Katz E. Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic. J Phys Chem B 2010; 114:14103-9. [DOI: 10.1021/jp108693m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vladimir Privman
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Jan Halámek
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Mary A. Arugula
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Dmitriy Melnikov
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Vera Bocharova
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, and Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|