1
|
Yasir M, Choe J, Hassan M, Kloczkowski A, Chun W. Recent advances and future perspectives in small molecule JAK2 inhibitors. Future Med Chem 2025:1-17. [PMID: 40392133 DOI: 10.1080/17568919.2025.2507564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signaling pathway is essential for controlling immune function, blood cell formation, and cell growth. Dysregulation of this pathway is implicated in various diseases, including hematologic malignancies, autoimmune disorders, and chronic inflammatory conditions. This review provides a comprehensive overview of the structural and functional aspects of JAK/STAT signaling, with a particular focus on the role of JAK2. This manuscript explores the primary regulators of the JAK/STAT pathway, such as Suppressors Of Cytokine Signaling (SOCS), Protein Inhibitors of Activated STATs (PIAS), and Protein Tyrosine Phosphatases (PTPs), which play a crucial role in maintaining cellular balance and stability. Additionally, the therapeutic landscape of JAK2 inhibitors is explored, covering both approved and investigational drugs, including their mechanisms of action, efficacy, and safety profiles. Emerging strategies such as drug repositioning using computational approaches and experimental validation are also highlighted. By integrating insights from molecular docking studies, machine learning models, and kinase assays, this review emphasizes the potential of JAK2 inhibitors in disease management.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Zhang H, Ouyang C. BTB protein family and human breast cancer: signaling pathways and clinical progress. J Cancer Res Clin Oncol 2023; 149:16213-16229. [PMID: 37682360 DOI: 10.1007/s00432-023-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Breast cancer is considered the number one killer of women both in China and abroad, and the leading cause of cancer death. It severely affects female health-related quality of life. Broad-complex, tramtrack, bric à brac (BTB) protein family was first discovered in drosophila as early as in 1993 by Godt D and peers, since then, more family members and their critical biological functions were uncovered. Moreover, researchers around the world have recently demonstrated that numerous signaling pathways connect BTB family members and human breast cancer. PURPOSE In this review, we critically discuss these findings regarding the essential mechanisms and functions of the BTB protein family in mediating the organic processes of human breast cancer. Meanwhile, we summarize the signaling pathways the BTB protein family participates in. And we address that BTB proteins regulate the growth, apoptosis, and other behaviors of breast cancer cells. We also point out the future directions for further studies in this field. METHODS The relevant online literatures have been reviewed for this article. CONCLUSION This review could offer an update on novel molecular targets for treating human breast cancer and new insights into BTB protein family research.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
3
|
Hajdu-Cheney Syndrome: A Systematic Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176174. [PMID: 32854429 PMCID: PMC7504254 DOI: 10.3390/ijerph17176174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
Hajdu–Cheney syndrome (HCS) is a rare genetic disease that causes acroosteolysis and generalized osteoporosis, accompanied by a series of developmental skeletal disorders and multiple clinical and radiological manifestations. It has an autosomal dominant inheritance, although there are several sporadic non-hereditary cases. The gene that has been associated with Hajdu-Cheney syndrome is NOTCH2. The described phenotype and clinical signs and symptoms are many, varied, and evolve over time. As few as 50 cases of this disease, for which there is currently no curative treatment, have been reported to date. The main objective of this systematic review was to evaluate the results obtained in research regarding Hajdu–Cheney Syndrome. The findings are reported in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and were registered on the web PROSPERO under the registration number CRD42020164377. A bibliographic search was carried out using the online databases Orphanet, PubMed, and Scielo; articles from other open access sources were also considered. Finally, 76 articles were included, and after their analysis, we have obtained a series of hypotheses as results that will support further studies on this matter.
Collapse
|
4
|
Caradu C, Guy A, James C, Reynaud A, Gadeau AP, Renault MA. Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice. Cardiovasc Res 2019; 114:759-770. [PMID: 29365079 DOI: 10.1093/cvr/cvy017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
Aims Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. Methods and results To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Conclusion Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.
Collapse
Affiliation(s)
- Caroline Caradu
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Alexandre Guy
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Chloé James
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Annabel Reynaud
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Alain-Pierre Gadeau
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Marie-Ange Renault
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| |
Collapse
|
5
|
Zhang F, Zhang J, Li X, Li B, Tao K, Yue S. Notch signaling pathway regulates cell cycle in proliferating hepatocytes involved in liver regeneration. J Gastroenterol Hepatol 2018; 33:1538-1547. [PMID: 29384233 DOI: 10.1111/jgh.14110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM It has been well documented that Notch signaling is involved in liver regeneration. However, the exact molecular mechanism mediating this process is not fully elucidated. The current study aimed to investigate the role of Notch signaling regulating cell cycle in proliferating hepatocytes in liver regeneration after partial hepatectomy (PHx, 67% resection) and the related molecular mechanism. METHODS Partial hepatectomy was performed in Sprague Dawley rats, and remnant livers were harvested 0, 1, 3, 5, and 7 days after operation, and primary hepatocytes were isolated to investigate the molecular mechanism. RESULTS Notch signaling activation and hepatocyte proliferation were significantly increased after PHx, while treatment with FLI-06, the inhibitor of γ-secreting enzyme, blocked these trends. Besides, inhibition of Notch signaling led to dysregulation of cell cycle and cell-cycle components. Furthermore, Akti-1/2 (a selective Akt inhibitor) and PX-478 (a selective Hif-1α inhibitor) inhibited hepatocyte proliferation and liver regeneration after PHx, and the effect of downstream molecules activation by Jagged-1 (Notch-1 ligand) in hepatocytes was abolished by FLI-06, Akti-1/2, and PX-478. CONCLUSION The current study demonstrated for the first time that Notch signaling regulated cell cycle in proliferating hepatocytes involved in liver regeneration through NICD/Akt Akt/Hif-1α pathway.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bowei Li
- Department of 2nd Surgery, Baoji City Chinese Medicine Hospital, Baoji, Shanxi, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuqiang Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Canalis E, Sanjay A, Yu J, Zanotti S. An Antibody to Notch2 Reverses the Osteopenic Phenotype of Hajdu-Cheney Mutant Male Mice. Endocrinology 2017; 158:730-742. [PMID: 28323963 PMCID: PMC5460801 DOI: 10.1210/en.2016-1787] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/20/2017] [Indexed: 11/19/2022]
Abstract
Notch receptors play a central role in skeletal development and bone remodeling. Hajdu-Cheney syndrome (HCS), a disease characterized by osteoporosis and fractures, is associated with gain-of-NOTCH2 function mutations. To study HCS, we created a mouse model harboring a point 6955C>T mutation in the Notch2 locus upstream of the proline, glutamic acid, serine, and threonine domain, leading to a Q2319X change at the amino acid level. Notch2Q2319X heterozygous mutants exhibited cancellous and cortical bone osteopenia. Microcomputed tomography demonstrated that the cancellous and cortical osteopenic phenotype was reversed by the administration of antibodies generated against the negative regulatory region (NRR) of Notch2, previously shown to neutralize Notch2 activity. Bone histomorphometry revealed that anti-Notch2 NRR antibodies decreased the osteoclast number and eroded surface in cancellous bone of Notch2Q2319X mice. An increase in osteoclasts on the endocortical surface of Notch2Q2319X mice was not observed in the presence of anti-Notch2 NRR antibodies. The anti-Notch2 NRR antibody decreased the induction of Notch target genes and Tnfsf11 messenger RNA levels in bone extracts and osteoblasts from Notch2Q2319X mice. In vitro experiments demonstrated increased osteoclastogenesis in Notch2Q2319X mutants in response to macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand, and these effects were suppressed by the anti-Notch2 NRR. In conclusion, Notch2Q2319X mice exhibit cancellous and cortical bone osteopenia that can be corrected by the administration of anti-Notch2 NRR antibodies.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and
- Medicine and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Archana Sanjay
- Departments of Orthopaedic Surgery and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Jungeun Yu
- Departments of Orthopaedic Surgery and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and
- Medicine and
- the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
7
|
Canalis E, Zanotti S. Hairy and Enhancer of Split-Related With YRPW Motif-Like (HeyL) Is Dispensable for Bone Remodeling in Mice. J Cell Biochem 2017; 118:1819-1826. [PMID: 28019674 DOI: 10.1002/jcb.25859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Notch induces Hairy Enhancer of Split (Hes)1 and Hes-related with YRPW motif (Hey) Hey1, Hey2 and Hey-like (HeyL) expression in osteoblasts, but it is not known whether any of these target genes mediates the effect of Notch in the skeleton. We demonstrated that Notch1 activation in osteoblasts/osteocytes induces Hes1, Hey1, Hey2, and HeyL, but HeyL was induced to a greater extent than other target genes. To characterize HeyL null mice for their skeletal phenotype, microcomputed tomography (µCT) and histomorphometric analysis of HeyL null and sex-matched littermate controls was performed. µCT demonstrated modest cancellous bone osteopenia in 1 month old male mice and normal microarchitecture in 3 month old male HeyL null mice. Female HeyL null mice were not different from controls at either 1 or 3 months of age. Bone histomorphometry did not demonstrate differences between HeyL null mice of either sex and littermate controls. In conclusion, HeyL null mice do not exhibit an obvious skeletal phenotype demonstrating that HeyL is dispensable for skeletal homeostasis. J. Cell. Biochem. 118: 1819-1826, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, 06030-5456
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, 06030-5456
| |
Collapse
|
8
|
Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S. Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption. J Biol Chem 2015; 291:1538-1551. [PMID: 26627824 DOI: 10.1074/jbc.m115.685453] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/06/2022] Open
Abstract
Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption.
Collapse
Affiliation(s)
| | | | - Siu-Pok Yee
- Cell Biology, Genetics, and; Genome Sciences Biology
| | - Sun-Kyeong Lee
- Medicine,; Center on Aging, University of Connecticut Health Center, Farmington, Connecticut 06030
| | | |
Collapse
|
9
|
Canalis E, Zanotti S. Hajdu-Cheney syndrome: a review. Orphanet J Rare Dis 2014; 9:200. [PMID: 25491639 PMCID: PMC4269900 DOI: 10.1186/s13023-014-0200-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/21/2014] [Indexed: 01/23/2023] Open
Abstract
Hajdu Cheney Syndrome (HCS), Orpha 955, is a rare disease characterized by acroosteolysis, severe osteoporosis, short stature, specific craniofacial features, wormian bones, neurological symptoms, cardiovascular defects and polycystic kidneys. HCS is rare and is inherited as autosomal dominant although many sporadic cases have been reported. HCS is associated with mutations in exon 34 of NOTCH2 upstream the PEST domain that lead to the creation of a truncated and stable NOTCH2 protein with enhanced NOTCH2 signaling activity. Although the number of cases with NOTCH2 mutations reported are limited, it would seem that the diagnosis of HCS can be established by sequence analysis of exon 34 of NOTCH2. Notch receptors are single-pass transmembrane proteins that determine cell fate, and play a critical role in skeletal development and homeostasis. Dysregulation of Notch signaling is associated with skeletal developmental disorders. There is limited information about the mechanisms of the bone loss and acroosteolysis in HCS making decisions regarding therapeutic intervention difficult. Bone antiresorptive and anabolic agents have been tried to treat the osteoporosis, but their benefit has not been established. In conclusion, Notch regulates skeletal development and bone remodeling, and gain-of-function mutations of NOTCH2 are associated with HCS.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
10
|
Piven OO, Palchevska OL, Lukash LL. Role of Wnt/β-catenin signaling in embryonic cardiogenesis, postnatal formation and reconstruction of myocardium. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Renault MA, Robbesyn F, Chapouly C, Yao Q, Vandierdonck S, Reynaud A, Belloc I, Traiffort E, Ruat M, Desgranges C, Gadeau AP. Hedgehog-dependent regulation of angiogenesis and myogenesis is impaired in aged mice. Arterioscler Thromb Vasc Biol 2013; 33:2858-66. [PMID: 24135022 DOI: 10.1161/atvbaha.113.302494] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study is to further document alteration of signal transduction pathways, more particularly of hedgehog (Hh) signaling, causing impaired ischemic muscle repair in old mice. APPROACH AND RESULTS We used 12-week-old (young mice) and 20- to 24-month-old C57BL/6 mice (old mice) to investigate the activity of Hh signaling in the setting of hindlimb ischemia-induced angiogenesis and skeletal muscle repair. In this model, delayed ischemic muscle repair observed in old mice was associated with an impaired upregulation of Gli1. Sonic Hh expression was not different in old mice compared with young mice, whereas desert Hh (Dhh) expression was downregulated in the skeletal muscle of old mice both in healthy and ischemic conditions. The rescue of Dhh expression by gene therapy in old mice promoted ischemia-induced angiogenesis and increased nerve density; nevertheless, it failed to promote myogenesis or to increase Gli1 mRNA expression. After further investigation, we found that, in addition to Dhh, smoothened expression was significantly downregulated in old mice. We used smoothened haploinsufficient mice to demonstrate that smoothened knockdown by 50% is sufficient to impair activation of Hh signaling and ischemia-induced muscle repair. CONCLUSIONS The present study demonstrates that Hh signaling is impaired in aged mice because of Dhh and smoothened downregulation. Moreover, it shows that hegdehog-dependent regulation of angiogenesis and myogenesis involves distinct mechanisms.
Collapse
Affiliation(s)
- Marie-Ange Renault
- From the University of Bordeaux, Adaptation cardiovasculaire à l'ischémie, UMR1034, Pessac, France (M.-A.R., F.R., C.C., Q.Y., S.V., A.R., I.B., C.D., A.-P.G.); INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, Pessac, France (M.-A.R., F.R., C.C., Q.Y., S.V., A.R., I.B., C.D., A.-P.G.); CHU de Bordeaux, Pharmacie de l'Hôpital Haut-Lévêque, Bordeaux, France (C.C., S.V.); and CNRS, UPR-3294, Laboratoire de Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard IFR2118, Gif-sur-Yvette, France (E.T., M.R.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Renault MA, Vandierdonck S, Chapouly C, Yu Y, Qin G, Metras A, Couffinhal T, Losordo DW, Yao Q, Reynaud A, Jaspard-Vinassa B, Belloc I, Desgranges C, Gadeau AP. Gli3 regulation of myogenesis is necessary for ischemia-induced angiogenesis. Circ Res 2013; 113:1148-58. [PMID: 24044950 DOI: 10.1161/circresaha.113.301546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. OBJECTIVE The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the cross-talk between angiogenesis and myogenesis in adults. METHODS AND RESULTS Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-Cre(ERT2); Gli3(Flox/Flox) mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle-associated transcription factor E2F1. CONCLUSIONS This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair-associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine.
Collapse
Affiliation(s)
- Marie-Ange Renault
- From the Université de Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, Pessac, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S. Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling. J Biol Chem 2013; 288:25614-25625. [PMID: 23884415 DOI: 10.1074/jbc.m113.470492] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Notch receptors play a role in skeletal development and homeostasis, and Notch activation in undifferentiated and mature osteoblasts causes osteopenia. In contrast, Notch activation in osteocytes increases bone mass, but the mechanisms involved and exact functions of Notch are not known. In this study, Notch1 and -2 were inactivated preferentially in osteocytes by mating Notch1/2 conditional mice, where Notch alleles are flanked by loxP sequences, with transgenics expressing Cre directed by the Dmp1 (dentin matrix protein 1) promoter. Notch1/2 conditional null male and female mice exhibited an increase in trabecular bone volume due to an increase in osteoblasts and decrease in osteoclasts. In male null mice, this was followed by an increase in osteoclast number and normalization of bone volume. To activate Notch preferentially in osteocytes, Dmp1-Cre transgenics were crossed with Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and Notch1 intracellular domain sequences. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited an increase in trabecular bone volume due to decreased bone resorption and an increase in cortical bone due to increased bone formation. Biomechanical and chemical properties were not affected. Osteoprotegerin mRNA was increased, sclerostin and dickkopf1 mRNA were decreased, and Wnt signaling was enhanced in Dmp1-Cre(+/-);Rosa(Notch) femurs. Botulinum toxin A-induced muscle paralysis caused pronounced osteopenia in control mice, but bone mass was preserved in mice harboring the Notch activation in osteocytes. In conclusion, Notch plays a unique role in osteocytes, up-regulates osteoprotegerin and Wnt signaling, and differentially regulates trabecular and cortical bone homeostasis.
Collapse
Affiliation(s)
- Ernesto Canalis
- From the Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105,; the University of Connecticut School of Medicine, Farmington, Connecticut 06030,.
| | - Douglas J Adams
- the Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Adele Boskey
- the Hospital for Special Surgery, New York, New York 10021
| | - Kristen Parker
- From the Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105
| | - Lauren Kranz
- From the Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105
| | - Stefano Zanotti
- From the Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105,; the University of Connecticut School of Medicine, Farmington, Connecticut 06030
| |
Collapse
|
14
|
Canalis E, Parker K, Feng JQ, Zanotti S. Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 2013; 154:623-34. [PMID: 23275471 PMCID: PMC3548181 DOI: 10.1210/en.2012-1732] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transgenic overexpression of the Notch1 intracellular domain inhibits osteoblast differentiation and causes osteopenia, and inactivation of Notch1 and Notch2 increases bone volume transiently and induces osteoblastic differentiation. However, the biology of Notch is cell-context-dependent, and consequences of Notch activation in cells of the osteoblastic lineage at various stages of differentiation and in osteocytes have not been defined. For this purpose, Rosa(Notch) mice, where a loxP-flanked STOP cassette placed between the Rosa26 promoter and the NICD coding sequence, were crossed with transgenics expressing the Cre recombinase under the control of the Osterix (Osx), Osteocalcin (Oc), Collagen 1a1 (Col2.3), or Dentin matrix protein1 (Dmp1) promoters. At 1 month, Osx-Cre;Rosa(Notch) and Oc-Cre;Rosa(Notch) mice exhibited osteopenia due to impaired bone formation. In contrast, Col2.3-Cre;Rosa(Notch) and Dmp1-Cre;Rosa(Notch) exhibited increased femoral trabecular bone volume due to a decrease in osteoclast number and eroded surface. In the four lines studied, cortical bone was either not present, was porous, or had the appearance of trabecular bone. Oc-Cre;Rosa(Notch) and Col2.3-Cre;Rosa(Notch) mice exhibited early lethality so that their adult phenotype was not established. At 3 months, Osx-Cre;Rosa(Notch) and Dmp1-Cre;Rosa(Notch) mice displayed increased bone volume, and increased osteoblasts although calcein-demeclocycline labels were diffuse and fragmented, indicating abnormal bone formation. In conclusion, Notch effects in the skeleton are cell-context-dependent. When expressed in immature osteoblasts, Notch arrests their differentiation, causing osteopenia, and when expressed in osteocytes, it causes an initial suppression of bone resorption and increased bone volume, a phenotype that evolves as the mice mature.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, CT 06105-1299, USA.
| | | | | | | |
Collapse
|
15
|
Mishra M, Heese K. P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J Cell Mol Med 2012; 15:2462-77. [PMID: 21199326 PMCID: PMC3822957 DOI: 10.1111/j.1582-4934.2010.01248.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the present study, we show that overexpression of the G-protein-coupled receptor (GPCR)-associated sorting protein p60TRP (transcription regulator protein) in neural stem cells (NSCs) and in a transgenic mouse model modulates the phosphorylation and proteolytic processing of amyloid precursor protein (App), N-cadherin (Cdh2), presenilin (Psen) and τ protein (Mapt). Our results suggest that p60TRP is an inhibitor of Bace1 (β-site App cleaving enzyme) and Psen. We performed several apoptosis assays [Annexin-V, TdT-mediated dUTP Nick-End Labeling (TUNEL), caspase-3/7] using NSCs and PC12 cells (overexpressing p60TRP and knockdown of p60TRP) to substantiate the neuroprotective role of p60TRP. Functional analyses, both in vitro and in vivo, revealed that p60TRP promotes neurosynaptogenesis. Characterization of the cognitive function of p60TRP transgenic mice using the radial arm water maze test demonstrated that p60TRP improved memory and learning abilities. The improved cognitive functions could be attributed to increased synaptic connections and plasticity, which was confirmed by the modulation of the γ-aminobutyric acid receptor system and the elevated expression of microtubule-associated protein 2, synaptophysin and Slc17a7 (vesicle glutamate transporter, Vglut1), as well as by the inhibition of Cdh2 cleavage. In conclusion, interference with the p60TRP/ GPCR/secretase signalling pathway might be a new therapeutic target for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Manisha Mishra
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | | |
Collapse
|
16
|
Kacer D, McIntire C, Kirov A, Kany E, Roth J, Liaw L, Small D, Friesel R, Basilico C, Tarantini F, Verdi J, Prudovsky I. Regulation of non-classical FGF1 release and FGF-dependent cell transformation by CBF1-mediated notch signaling. J Cell Physiol 2011; 226:3064-75. [PMID: 21302306 DOI: 10.1002/jcp.22663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
FGF1, a widely expressed proangiogenic factor involved in tissue repair and carcinogenesis, is released from cells through a non-classical pathway independent of endoplasmic reticulum and Golgi. Although several proteins participating in FGF1 export were identified, genetic mechanisms regulating this process remained obscure. We found that FGF1 export and expression are regulated through Notch signaling mediated by transcription factor CBF1 and its partner MAML. The expression of a dominant negative (dn) form of CBF1 in 3T3 cells induces transcription of FGF1 and sphingosine kinase 1 (SphK1), which is a component of FGF1 export pathway. dnCBF1 expression stimulates the stress-independent release of transduced FGF1 from NIH 3T3 cells and endogenous FGF1 from A375 melanoma cells. NIH 3T3 cells transfected with dnCBF1 form colonies in soft agar and produce rapidly growing highly angiogenic tumors in nude mice. The transformed phenotype of dnCBF1 transfected cells is efficiently blocked by dn forms of FGF receptor 1 and S100A13, which is a component of FGF1 export pathway. FGF1 export and acceleration of cell growth induced by dnCBF1 depend on SphK1. Similar to dnCBF1, dnMAML transfection induces FGF1 expression and release, and accelerates cell proliferation. The latter effect is strongly decreased in FGF1 null cells. We suggest that the regulation of FGF1 expression and release by CBF1-mediated Notch signaling can play an important role in tumor formation.
Collapse
Affiliation(s)
- Doreen Kacer
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li C, Yin T, Dong N, Dong F, Fang X, Qu YL, Tan Y, Wu H, Liu Z, Li W. Oxygen tension affects terminal differentiation of corneal limbal epithelial cells. J Cell Physiol 2011; 226:2429-37. [PMID: 21660966 DOI: 10.1002/jcp.22591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxygen concentration has been shown to be crucial in the proliferation and differentiation of various types of cells, while the impact of oxygen tension on the lineage commitment of epithelial cells remains elusive. In this study, we investigated the effect of hypoxia on the differentiation of corneal limbal epithelium using an ex vivo squamous metaplasia model. Under normoxic conditions when exposed to air, the hyperproliferation and abnormal epidermal-like differentiation of human corneal limbal epithelium was induced, whereas when exposed to air under hypoxic conditions, although we observed augmented proliferation, the abnormal differentiation was inhibited. The Notch signaling pathway was activated in hypoxic cultures, whereas the p38 MAPK signaling pathway was downregulated. The addition of Notch inhibitor under hypoxic conditions restored the activation of p38 MAPK and resulted in the recidivation of limbal epithelial cells to epidermal-like differentiation. Moreover, the epidermal-like differentiation of rabbit limbal epithelial cells was also blocked under hypoxic conditions in corneal epithelial cell sheets engineered ex vivo. We concluded that hypoxia can prevent abnormal differentiation while enhancing the proliferation of corneal limbal epithelial cells. Hypoxia coupled with air exposure can be used in the tissue engineering of corneal limbal epithelium.
Collapse
Affiliation(s)
- Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University Medical College, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zachar V, Prasad SM, Weli SC, Gabrielsen A, Petersen K, Petersen MB, Fink T. The effect of human embryonic stem cells (hESCs) long-term normoxic and hypoxic cultures on the maintenance of pluripotency. In Vitro Cell Dev Biol Anim 2010; 46:276-83. [PMID: 20177991 DOI: 10.1007/s11626-010-9305-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
Abstract
The maintenance of pluripotency of human embryonic stem cells (hESCs) requires a high efficiency of self-renewal. During in vitro propagation, however, spontaneous differentiation occurs frequently, and there is also a risk of chromosomal changes. In this study, we assessed the properties of hESCs after long-term culture at ambient air and 5% oxygen growth conditions. The hESC lines were grown for up to 42 and 18 mo in normoxic and hypoxic conditions, respectively, and their proliferation; expression of Oct4, SSEA1, Nanog, and Notch1; karyotype; telomerase activity; and differentiation potential in vitro were evaluated. In contrast to cultures at 20% oxygen, where the central zones of the colonies underwent spontaneous differentiation, during exposure to 5% oxygen, the hESC colonies maintained a homogenous and flat morphology that was consistent with the presence of Oct4-positive undifferentiated phenotype. Irrespective of oxygen concentration, the undifferentiated cells expressed high levels of Nanog and Oct4 transcripts, normal karyotype, and high telomerase activity. When assayed for differentiation potential, they yielded derivatives of all three embryonic germ layers. Our data thus indicate that hypoxic exposure has the capacity to sustain enhanced long-term self-renewal of hESCs. The hESC lines described in the current paper can be obtained for research purposes from the Laboratory for Stem Cell Research, Aalborg University.
Collapse
Affiliation(s)
- Vladimir Zachar
- Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer 2009; 8:128. [PMID: 20030805 PMCID: PMC2809056 DOI: 10.1186/1476-4598-8-128] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/23/2009] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies have implicated aberrant Notch signaling in breast cancers. Yet, relatively little is known about the pattern of expression of various components of the Notch pathway, or its mechanism of action. To better understand the role of the Notch pathway in breast cancer, we have undertaken a detailed expression analysis of various Notch receptors, their ligands, and downstream targets at different stages of breast cancer progression. Results We report here that there is a general increase in the expression levels of Notch 1, 2, 4, Jagged1, Jagged2, and Delta-like 4 proteins in breast cancers, with simultaneous upregulation of multiple Notch receptors and ligands in a given cancer tissue. While Notch3 and Delta-like1 were undetectable in normal tissues, moderate to high expression was detected in several cancers. We detected the presence of active, cleaved Notch1, along with downstream targets of the Notch pathway, Hes1/Hes5, in ~75% of breast cancers, clearly indicating that in a large proportion of breast cancers Notch signaling is aberrantly activated. Furthermore, we detected cleaved Notch1 and Hes1/5 in early precursors of breast cancers - hyperplasia and ductal carcinoma in situ - suggesting that aberrant Notch activation may be an early event in breast cancer progression. Mechanistically, while constitutively active Notch1 alone failed to transform immortalized breast cells, it synergized with the Ras/MAPK pathway to mediate transformation. This cooperation is reflected in vivo, as a subset of cleaved Notch positive tumors additionally expressed phopsho-Erk1/2 in the nuclei. Such cases exhibited high node positivity, suggesting that Notch-Ras cooperation may lead to poor prognosis. Conclusions High level expression of Notch receptors and ligands, and its increased activation in several breast cancers and early precursors, places Notch signaling as a key player in breast cancer pathogenesis. Its cooperation with the Ras/MAPK pathway in transformation offers combined inhibition of the two pathways as a new modality for breast cancer treatment.
Collapse
|
20
|
Aravind L, Anantharaman V, Venancio TM. Apprehending multicellularity: regulatory networks, genomics, and evolution. ACTA ACUST UNITED AC 2009; 87:143-64. [PMID: 19530132 DOI: 10.1002/bdrc.20153] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the "network view" of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and nonprotein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch subnetwork, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
21
|
Prasad SM, Czepiel M, Cetinkaya C, Smigielska K, Weli SC, Lysdahl H, Gabrielsen A, Petersen K, Ehlers N, Fink T, Minger SL, Zachar V. Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. Cell Prolif 2009; 42:63-74. [PMID: 19143764 DOI: 10.1111/j.1365-2184.2008.00571.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The maintenance of pluripotency of human embryonic stem cells (hESCs) requires a high efficiency of self-renewal. During in vitro propagation, however, hESCs have a propensity to differentiate spontaneously. In this study, we assessed the nature of hESC responses to hypoxic conditions. MATERIALS AND METHODS Human embryonic stem cells were grown in normoxic and hypoxic conditions, and the cells expressing Oct4 and stage-specific embryonic antigen-1 were identified by indirect immunofluorescence. The transcriptional expression of Nanog, Notch1, and Oct4 was determined by a real-time reverse transcription-polymerase chain reaction, and the inhibition of Notch-mediated signalling was achieved with a gamma-secretase inhibitor. RESULTS In contrast to culture at 21% oxygen, where the colonies displayed a marked degree of differentiation, we found that during exposure to 5% oxygen, the hESC colonies displayed a homogenous and flat morphology that was consistent with the presence of Oct4-positive phenotype, indicating no spontaneous differentiation. When cultured at 5% oxygen for either 4 weeks or up to 18 months, high levels of Nanog and Notch1 transcriptional expression were detected, albeit the expression was significantly lower during longer exposure. The suppression of differentiation was rapidly reversed on transfer of the hypoxic cultures to normoxic conditions. Looking into the molecular mechanisms of the maintenance of self-renewal at low oxygen tensions, we found that inhibition of Notch signalling fully abrogated the hypoxic induction of undifferentiated phenotype. CONCLUSION Our data, thus, indicate that hypoxic exposure has the capacity to sustain long-term self-renewal of hESCs and that this effect is mediated through activation of Notch.
Collapse
Affiliation(s)
- S M Prasad
- Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rizzo P, Osipo C, Pannuti A, Golde T, Osborne B, Miele L. Targeting Notch signaling cross-talk with estrogen receptor and ErbB-2 in breast cancer. ACTA ACUST UNITED AC 2009; 49:134-41. [PMID: 19344631 DOI: 10.1016/j.advenzreg.2009.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Rizzo
- Breast Cancer Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
23
|
Prudovsky I, Tarantini F, Landriscina M, Neivandt D, Soldi R, Kirov A, Small D, Kathir KM, Rajalingam D, Kumar TKS. Secretion without Golgi. J Cell Biochem 2008; 103:1327-43. [PMID: 17786931 PMCID: PMC2613191 DOI: 10.1002/jcb.21513] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A growing number of proteins devoid of signal peptides have been demonstrated to be released through the non-classical pathways independent of endoplasmic reticulum and Golgi. Among them are two potent proangiogenic cytokines FGF1 and IL1alpha. Stress-induced transmembrane translocation of these proteins requires the assembly of copper-dependent multiprotein release complexes. It involves the interaction of exported proteins with the acidic phospholipids of the inner leaflet of the cell membrane and membrane destabilization. Not only stress, but also thrombin treatment and inhibition of Notch signaling stimulate the export of FGF1. Non-classical release of FGF1 and IL1alpha presents a promising target for treatment of cardiovascular, oncologic, and inflammatory disorders.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Bone remodeling is the result of the coordinated activity of osteoblasts, which form new matrix, and osteoclasts, which resorb bone. Notch proteins are single-pass transmembrane receptors that determine cell fate. Recent gain-of-function and loss-of-function experiments reveal a suppressive effect of Notch in osteoblast and osteoclast differentiation in development and in the postnatal bone, which establishes a role for Notch signaling in bone remodeling.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, CT 06105, USA.
| |
Collapse
|