1
|
Dai K, Liao B, Huang X, Liu Q. Consistency in bacterial extracellular vesicle production: key to their application in human health. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:1-20. [PMID: 40206807 PMCID: PMC11977363 DOI: 10.20517/evcna.2024.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 04/11/2025]
Abstract
Bacterial extracellular vesicles (BEVs) are naturally occurring functional structures that play critical roles in bacterial life processes. These vesicles, commonly known as outer membrane vesicles (OMVs), were first found to be released by Gram-negative bacteria; however, it has since been confirmed that Gram-positive bacteria also secrete BEVs. As research advances, BEVs are increasingly utilized in diverse applications, including vaccine development and drug delivery. Nevertheless, the effective employment of BEVs in these contexts requires the acquisition of vesicles with consistent properties and functions through appropriate culture, isolation, and purification methods. This review examines the advantages and disadvantages of various purification techniques alongside the heterogeneity they may introduce. We utilize the heterogeneity of BEVs as a framework to critically analyze the barriers to their application and the factors influencing their characteristics. Additionally, we constructively propose solutions to enhance the consistency of BEVs, thereby facilitating their further development and application.
Collapse
Affiliation(s)
- Ke Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Authors contributed equally
| | - Bo Liao
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Authors contributed equally
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
2
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Chen H, Moraru C. Synergistic effects of sequential light treatment with 222-nm/405-nm and 280-nm/405-nm wavelengths on inactivation of foodborne pathogens. Appl Environ Microbiol 2023; 89:e0065023. [PMID: 37800967 PMCID: PMC10617431 DOI: 10.1128/aem.00650-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023] Open
Abstract
Light-based technologies of different wavelengths can inactivate pathogenic microorganisms, but each wavelength has its limitations. This work explores the potential of sequential treatments with different wavelengths for enhancing the disinfection performance of individual treatments by employing various bactericidal mechanisms. The effectiveness, inactivation kinetics, and bactericidal mechanisms of treatments with 222/405, 280/405, and 405 nm alone against Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Pseudomonas aeruginosa were evaluated. Inactivation experiments were performed in thin liquid bacterial suspensions that were treated either individually with 48 h of 405-nm light or sequentially with (i) 30 s of 222-nm far-UV-C light, followed by 48 h of 405-nm light, or (ii) 30 s of 280-nm far-UV-C light, followed by 48 h of 405-nm light. Survivors were recovered and enumerated by standard plate counting. All inactivation curves were non-linear and followed the Weibull model (0.99 ≥ R2 ≥ 0.70). Synergistic effects were found for E. coli, L. monocytogenes, and S. Typhimurium, with maximum inactivation level increases of 2.9, 3.3, and 1.1 log CFU after the sequential treatments, respectively. Marginal synergy was found for S. aureus, and an antagonistic effect was found for P. aeruginosa after sequential treatments. Significant differences in reactive oxygen species accumulation were found (P < 0.05) after various treatment combinations, and the performance of sequential treatments was correlated with cellular oxidative damage. The sequential wavelength treatments proposed demonstrate the potential for enhanced disinfection of multiple foodborne pathogens compared with individual wavelength treatments, which can have significant food safety benefits. IMPORTANCE Nonthermal light-based technologies offer a chemical-free method to mitigate microbial contamination in the food and healthcare industries. However, each individual wavelength has different limitations in terms of efficacy and operating conditions, which limits their practical applicability. In this study, bactericidal synergism of sequential treatments with different wavelengths was identified. Pre-treatments with 280 and 222 nm enhanced the disinfection performance of follow-up 405-nm treatments for multiple foodborne pathogens by inducing higher levels of cellular membrane damage and oxidative stress. These findings deliver useful information for light equipment manufacturers, food processors, and healthcare users, who can design and optimize effective light-based systems to realize the full potential of germicidal light technologies. The results from the sequential treatments offer practical solutions to improve the germicidal efficacy of visible light systems, as well as provide inspiration for future hurdle disinfection systems design, with a positive impact on food safety and public health.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Carmen Moraru
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Pseudomonas aeruginosa and the Complement System: A Review of the Evasion Strategies. Microorganisms 2023; 11:microorganisms11030664. [PMID: 36985237 PMCID: PMC10056308 DOI: 10.3390/microorganisms11030664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The increasing emergence of multidrug resistant isolates of P. aeruginosa causes major problems in hospitals worldwide. This concern is particularly significant in bloodstream infections that progress rapidly, with a high number of deaths within the first hours and without time to select the most appropriate treatment. In fact, despite improvements in antimicrobial therapy and hospital care, P. aeruginosa bacteremia remains fatal in about 30% of cases. The complement system is a main defensive mechanism in blood against this pathogen. This system can mark bacteria for phagocytosis or directly lyse it via the insertion of a membrane attack complex in the bacterial membrane. P. aeruginosa exploits different strategies to resist complement attack. In this review for the special issue on “bacterial pathogens associated with bacteriemia”, we present an overview of the interactions between P. aeruginosa and the complement components and strategies used by this pathogen to prevent recognition and killing by the complement system. A thorough understanding of these interactions will be critical in order to develop drugs to counteract bacterial evasion mechanisms.
Collapse
|
5
|
Lyon R, Jones RA, Shropshire H, Aberdeen I, Scanlan DJ, Millard A, Chen Y. Membrane lipid renovation in Pseudomonas aeruginosa - implications for phage therapy? Environ Microbiol 2022; 24:4533-4546. [PMID: 35837865 PMCID: PMC9804370 DOI: 10.1111/1462-2920.16136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is an important Gram-negative pathogen with intrinsic resistance to many clinically used antibiotics. It is particularly troublesome in nosocomial infections, immunocompromised patients, and individuals with cystic fibrosis. Antimicrobial resistance (AMR) is a huge threat to global health, with a predicted 10 million people dying from resistant infections by 2050. A promising therapy for combatting AMR infections is phage therapy. However, more research is required to investigate mechanisms that may influence the efficacy of phage therapy. An important overlooked aspect is the impact of membrane lipid remodelling on phage binding ability. P. aeruginosa undergoes changes in membrane lipids when it encounters phosphorus stress, an environmental perturbation that is likely to occur during infection. Lipid changes include the substitution of glycerophospholipids with surrogate glycolipids and the over-production of ornithine-containing aminolipids. Given that membrane lipids are known to influence the structure and function of membrane proteins, we propose that changes in the composition of membrane lipids during infection may alter phage binding and subsequent phage infection dynamics. Consideration of such effects needs to be urgently prioritised in order to develop the most effective phage therapy strategies for P. aeruginosa infections.
Collapse
Affiliation(s)
- Rhiannon Lyon
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | - Rebekah A. Jones
- School of Life SciencesUniversity of WarwickCoventryUK,MRC Doctoral Training PartnershipUniversity of WarwickCoventryUK
| | - Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | - Isabel Aberdeen
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Andrew Millard
- Department of Genetics and Genome BiologyUniversity of LeicesterUK
| | - Yin Chen
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
6
|
Protective effect of two new nanovaccines against Pseudomonas aeruginosa based on LPS and OPS: A comparison study. Immunobiology 2022; 227:152278. [PMID: 36115097 DOI: 10.1016/j.imbio.2022.152278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is one of the most important infectious pathogens in medicine. This bacterium causes various infections, especially in patients with severe burns and people with defective immune systems. The purpose of this study was to develop a nanovaccine based on PLGA nanoparticles and lipopolysaccharide and oligopolysaccharide antigens for appropriate stimulation of the humoral and cellular immune systems against P. aeruginosa. LPS-PLGA and OPS-PLGA conjugates were synthesized using the carbodiimide reaction. The prepared conjugates of as well as the pure antigens of LPS and OPS were injected to BALB/c mice in three periods at 2 week intervals. The ELISA test showed that the IgM, IgA, IgG, IgG1, IgG2b, IgG2a and IgG3 antibodies produced against LPS-PLGA or OPS-PLGA conjugates were tens of times higher than the pure antigens. Also, the opsonophagocytosis test showed that the performance and the effect of produced anti-LPS-PLGA antibodies were higher than other groups. In addition, the mice treated with LPS-PLGA conjugate were more resistant to P. aeruginosa infection than other groups. These findings indicated that LPS and OPS antigens in conjugation with PLGA nanoparticles have the ability to create and effective immunity against P. aeruginosa and LPS-PLGA is more effective than OPS-PLGA.
Collapse
|
7
|
O-Specific Antigen-Dependent Surface Hydrophobicity Mediates Aggregate Assembly Type in Pseudomonas aeruginosa. mBio 2021; 12:e0086021. [PMID: 34372703 PMCID: PMC8406328 DOI: 10.1128/mbio.00860-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacteria live in spatially organized aggregates during chronic infections, where they adapt to the host environment, evade immune responses, and resist therapeutic interventions. Although it is known that environmental factors such as polymers influence bacterial aggregation, it is not clear how bacterial adaptation during chronic infection impacts the formation and spatial organization of aggregates in the presence of polymers. Here, we show that in an in vitro model of cystic fibrosis (CF) containing the polymers extracellular DNA (eDNA) and mucin, O-specific antigen is a major factor determining the formation of two distinct aggregate assembly types of Pseudomonas aeruginosa due to alterations in cell surface hydrophobicity. Our findings suggest that during chronic infection, the interplay between cell surface properties and polymers in the environment may influence the formation and structure of bacterial aggregates, which would shed new light on the fitness costs and benefits of O-antigen production in environments such as CF lungs.
Collapse
|
8
|
Woodcock SD, Syson K, Little RH, Ward D, Sifouna D, Brown JKM, Bornemann S, Malone JG. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa. PLoS Genet 2021; 17:e1009524. [PMID: 33872310 PMCID: PMC8084333 DOI: 10.1371/journal.pgen.1009524] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress. Author summary To survive outside their host, pathogenic bacteria must withstand various environmental stresses. The sugar molecule trehalose is associated with a range of abiotic stress tolerances, particularly osmotic shock. In this study, we analyse the trehalose metabolic network in the human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is intimately connected to the biosynthesis of branched α-glucan, or glycogen. Disruption of either trehalose or glycogen biosynthesis significantly reduces the ability of PAO1 to survive on steel work surfaces. While both trehalose and glycogen are important for stress tolerance, they counter very different stresses. Trehalose is important for the osmotic stress response, and survival in conditions of elevated salt. On the other hand, glycogen is responsible for desiccation tolerance and survival in low humidity environments. Trehalose does not apparently contribute to desiccation tolerance, marking a clear distinction between the roles of trehalose and glycogen in mediating abiotic stress responses in P. aeruginosa.
Collapse
Affiliation(s)
- Stuart D. Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard H. Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Despoina Sifouna
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - James K. M. Brown
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Riquelme SA, Wong Fok Lung T, Prince A. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Front Immunol 2020; 11:385. [PMID: 32231665 PMCID: PMC7082326 DOI: 10.3389/fimmu.2020.00385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
A limited number of pulmonary pathogens are able to evade normal mucosal defenses to establish acute infection and then adapt to cause chronic pneumonias. Pathogens, such as Pseudomonas aeruginosa or Staphylococcus aureus, are typically associated with infection in patients with underlying pulmonary disease or damage, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). To establish infection, bacteria express a well-defined set of so-called virulence factors that facilitate colonization and activate an immune response, gene products that have been identified in murine models. Less well-understood are the adaptive changes that occur over time in vivo, enabling the organisms to evade innate and adaptive immune clearance mechanisms. These colonizers proliferate, generating a population sufficient to provide selection for mutants, such as small colony variants and mucoid variants, that are optimized for long term infection. Such host-adapted strains have evolved in response to selective pressure such as antibiotics and the recruitment of phagocytes at sites of infection and their release of signaling metabolites (e.g., succinate). These metabolites can potentially function as substrates for bacterial growth and but also generate oxidant stress. Whole genome sequencing and quantified expression of selected genes have helped to explain how P. aeruginosa and S. aureus adapt to the presence of these metabolites over the course of in vivo infection. The serial isolation of clonally related strains from patients with cystic fibrosis has provided the opportunity to identify bacterial metabolic pathways that are altered under this immune pressure, such as the anti-oxidant glyoxylate and pentose phosphate pathways, routes contributing to the generation of biofilms. These metabolic pathways and biofilm itself enable the organisms to dissipate oxidant stress, while providing protection from phagocytosis. Stimulation of host immune signaling metabolites by these pathogens drives bacterial adaptation and promotes their persistence in the airways. The inherent metabolic flexibility of P. aeruginosa and S. aureus is a major factor in their success as pulmonary pathogens.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Hassan AA, Coutinho CP, Sá-Correia I. Burkholderia cepacia Complex Species Differ in the Frequency of Variation of the Lipopolysaccharide O-Antigen Expression During Cystic Fibrosis Chronic Respiratory Infection. Front Cell Infect Microbiol 2019; 9:273. [PMID: 31417878 PMCID: PMC6686744 DOI: 10.3389/fcimb.2019.00273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria can adapt to the lung environment of cystic fibrosis (CF) patients resulting in the emergence of a very difficult to eradicate heterogeneous population leading to chronic infections associated with rapid lung function loss and increased mortality. Among the important phenotypic modifications is the variation of the lipopolysaccharide (LPS) structure at level of the O-antigen (OAg) presence, influencing adherence, colonization and the ability to evade the host defense mechanisms. The present study was performed to understand whether the loss of OAg expression during CF infection can be considered a general phenomenon in different Bcc species favoring its chronicity. In fact, it is still not clear why different Bcc species/strains differ in their ability to persist in the CF lung and pathogenic potential. The systematic two-decade-retrospective-longitudinal-screening conducted covered 357 isolates retrieved from 19 chronically infected patients receiving care at a central hospital in Lisbon. The study involved 21 Bcc strains of six/seven Bcc species/lineages, frequently or rarely isolated from CF patients worldwide. Different strains/clonal variants obtained during infection gave rise to characteristic OAg-banding patterns. The two most prevalent and feared species, B. cenocepacia and B. multivorans, showed a tendency to lose the OAg along chronic infection. B. cenocepacia recA lineage IIIA strains known to lead to particularly destructive infections exhibit the most frequent OAg loss, compared with lineage IIIB. The switch frequency increased with the duration of infection and the level of lung function deterioration. For the first time, it is shown that the rarely found B. cepacia and B. contaminans, whose representation in the cohort of patients examined is abnormally high, keep the OAg even during 10- or 15-year infections. Data from co-infections with different Bcc species reinforced these conclusions. Concerning the two other rarely found species examined, B. stabilis exhibited a stable OAg expression phenotype over the infection period while for the single clone of the more distantly related B. dolosa species, the OAg-chain was absent from the beginning of the 5.5-year infection until the patient dead. This work reinforces the relevance attributed to the OAg-expression switch suggesting marked differences in the various Bcc species.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P. Coutinho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Preparation of Exopolysaccharide Synthesized by Lactic Acid Bacteria. Methods Mol Biol 2018. [PMID: 30506251 DOI: 10.1007/978-1-4939-8907-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Polysaccharides produced by lactic acid bacteria are divided into two classes based on their biosynthesis and structure. Nevertheless, the procedures for isolation, purification, and chemical analysis of these polymers are very similar. This chapter introduces the techniques that are used to prepare exopolysaccharides from lactic acid bacteria; both large- and small-scale preparation methods are described. The chapter consists of three sections, covering precipitation (using ethanol or trichloroacetic acid), ion-exchange chromatography, and ultrafiltration. Technical advisory notes on the individual steps are also provided.
Collapse
|
12
|
Wu Q, Zhang H, Wang PG, Chen M. Evaluation of the efficacy and safety of Ganoderma lucidum mycelium-fermented liquid on gut microbiota and its impact on cardiovascular risk factors in human. RSC Adv 2017. [DOI: 10.1039/c7ra08087e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systematic analysis the effects and safety of GLFL on gut microbiota and cardiovascular risk factors in human.
Collapse
Affiliation(s)
- Qizheng Wu
- The State Key Laboratory of Microbial Technology
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- Jinan
| | - Houcheng Zhang
- The State Key Laboratory of Microbial Technology
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- Jinan
| | - Peng Gorge Wang
- The State Key Laboratory of Microbial Technology
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- Jinan
| | - Min Chen
- The State Key Laboratory of Microbial Technology
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- Jinan
| |
Collapse
|
13
|
Ostvar S, Wood BD. Multiscale Model Describing Bacterial Adhesion and Detachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5213-5222. [PMID: 27129780 DOI: 10.1021/acs.langmuir.6b00882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial surfaces are complex structures with nontrivial adhesive properties. The physics of bacterial adhesion deviates from that of ideal colloids as a result of cell-surface roughness and because of the mechanical properties of the polymers covering the cell surface. In the present study, we develop a simple multiscale model for the interplay between the potential energy functions that characterize the cell surface biopolymers and their interaction with the extracellular environment. We then use the model to study a discrete network of bonds in the presence of significant length heterogeneities in cell-surface polymers. The model we present is able to generate force curves (both approach and retraction) that closely resemble those measured experimentally. Our results show that even small-length-scale heterogeneities can lead to macroscopically nonlinear behavior that is qualitatively and quantitatively different from the homogeneous case. We also report on the energetic consequences of such structural heterogeneity.
Collapse
Affiliation(s)
- Sassan Ostvar
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| | - Brian D Wood
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
14
|
Kalynych S, Morona R, Cygler M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol Rev 2014; 38:1048-65. [DOI: 10.1111/1574-6976.12070] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 12/20/2022] Open
|
15
|
Roles of predicted glycosyltransferases in the biosynthesis of the Rhizobium etli CE3 O antigen. J Bacteriol 2013; 195:1949-58. [PMID: 23435981 DOI: 10.1128/jb.02080-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer. The genetic regions required for its synthesis have been identified, and the nucleotide sequences are known. The structure of the O antigen has been determined, but the roles of specific genes in synthesizing this structure are relatively unclear. Within the known O-antigen genetic clusters of this strain, nine open reading frames (ORFs) were found to contain a conserved glycosyltransferase domain. Each ORF was mutated, and the resulting mutant lipopolysaccharide (LPS) was analyzed. Tricine SDS-PAGE revealed stepwise truncations of the O antigen that were consistent with differences in mutant LPS sugar compositions and reactivity with O-antigen-specific monoclonal antibodies. Based on these results and current theories of O-antigen synthesis, specific roles were deduced for each of the nine glycosyltransferases, and a model for biosynthesis of the R. etli CE3 O antigen was proposed. In this model, O-antigen biosynthesis is initiated with the addition of N-acetyl-quinovosamine-phosphate (QuiNAc-P) to bactoprenol-phosphate by glycosyltransferase WreU. Glycosyltransferases WreG, WreE, WreS, and WreT would each act once to attach mannose, fucose, a second fucose, and 3-O-methyl-6-deoxytalose (3OMe6dTal), respectively. WreH would then catalyze the addition of methyl glucuronate (MeGlcA) to complete the first instance of the O-antigen repeat unit. Four subsequent repeats of this unit composed of fucose, 3OMe6dTal, and MeGlcA would be assembled by a cycle of reactions catalyzed by two additional glycosyltransferases, WreM and WreL, along with WreH. Finally, the O antigen would be capped by attachment of di- or tri-O-methylated fucose as catalyzed by glycosyltransferase WreB.
Collapse
|
16
|
Page MGP. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel? Handb Exp Pharmacol 2012:67-86. [PMID: 23090596 DOI: 10.1007/978-3-642-28951-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist.
Collapse
|
17
|
Kintz EN, Goldberg JB. Site-directed mutagenesis reveals key residue for O antigen chain length regulation and protein stability in Pseudomonas aeruginosa Wzz2. J Biol Chem 2011; 286:44277-44284. [PMID: 22069314 DOI: 10.1074/jbc.m111.273979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The production of preferred lipopolysaccharide O antigen chain lengths is important for the survival of pathogenic Gram-negative bacteria in different environments, yet how Wzz proteins regulate these lengths is not well understood. The Wzz2 proteins from two different serotype O11 Pseudomonas aeruginosa strains are responsible for the expression of different very long chain lengths despite high sequence homology. Site-directed mutagenesis was performed to determine whether a specific amino acid was responsible for this difference in chain length; the residue present in position 321 within the second predicted coiled-coil region was able to determine which chain length was produced. A panel of site-directed mutants introducing different amino acids at this position implicated that the charge of the amino acid affected chain length, with positively charged residues associated with shorter chain lengths. Expression data also suggested this site was important for overall stability of the protein because mutants predicted to disrupt proper folding of the α helix led to lower protein levels. Cross-linking studies found that Wzz2 proteins producing shorter chain lengths had more stable higher-order oligomers. Mapping residue 321 onto the solved Escherichia coli Wzz FepE crystal structure predicted it to be located within α helix 8, which participates in intermonomeric interactions. These data further support the observation that Wzz oligomerization is necessary for chain length regulating activity but also provide evidence that differences in complex stability or changes in the conformation of the oligomer can lead to shifts in the length of the O antigen side chain.
Collapse
Affiliation(s)
- Erica N Kintz
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Joanna B Goldberg
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia 22908.
| |
Collapse
|
18
|
Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl. Front Microbiol 2011; 2:167. [PMID: 21991261 PMCID: PMC3159412 DOI: 10.3389/fmicb.2011.00167] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/19/2011] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
Collapse
|
19
|
Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy. J Bacteriol 2010; 193:1259-66. [PMID: 21148734 DOI: 10.1128/jb.01308-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of P. aeruginosa.
Collapse
|
20
|
Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14. Infect Immun 2010; 78:1437-46. [PMID: 20123716 DOI: 10.1128/iai.00621-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and severe chronic lung infections in cystic fibrosis patients. The reference strains PA14 and PAO1 have been studied extensively, revealing that PA14 is more virulent than PAO1 in diverse infection models. Among other factors, this may be due to two pathogenicity islands, PAPI-1 and PAPI-2, both present in PA14 but not in PAO1. We compared the global contributions to virulence of PAPI-1 and PAPI-2, rather than that of individual island-borne genes, using murine models of acute pneumonia and bacteremia. Three isogenic island-minus mutants (PAPI-1-minus, PAPI-2-minus, and PAPI-1-minus, PAPI-2-minus mutants) were compared with the wild-type parent strain PA14 and with PAO1. Our results showed that both islands contributed significantly to the virulence of PA14 in acute pneumonia and bacteremia models. However, in contrast to the results for the bacteremia model, where each island was found to contribute individually, loss of the 108-kb PAPI-1 island alone was insufficient to measurably attenuate the mutant in the acute pneumonia model. Nevertheless, the double mutant was substantially more attenuated, and exhibited a lesser degree of virulence, than even PAO1 in the acute pneumonia model. In particular, its ability to disseminate from the lungs to the bloodstream was markedly inhibited. We conclude that both PAPI-1 and PAPI-2 contribute directly and synergistically in a major way to the virulence of PA14, and we suggest that analysis of island-minus strains may be a more appropriate way than individual gene knockouts to assess the contributions to virulence of large, horizontally acquired segments of DNA.
Collapse
|
21
|
Abstract
The O antigen, consisting of many repeats of an oligosaccharide unit, is part of the lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria. It is on the cell surface and appears to be a major target for both immune system and bacteriophages, and therefore becomes one of the most variable cell constituents. The variability of the O antigen provides the major basis for serotyping schemes of Gram-negative bacteria. The genes responsible for the synthesis of O antigen are usually in a single cluster known as O antigen gene cluster, and their location on the chromosome within a species is generally conserved. Three O antigen biosynthesis pathways including Wzx/Wzy, ABC-transporter and Synthase have been discovered. In this chapter, the traditional and molecular O serotyping schemes are compared, O antigen structures and gene clusters of well-studied species are described, processes for formation and distribution of the variety of O antigens are discussed, and finally, the role of O antigen in bacterial virulence.
Collapse
Affiliation(s)
- Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | | | | |
Collapse
|
22
|
Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53:2522-31. [PMID: 19332674 DOI: 10.1128/aac.00035-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of antimicrobial drug resistance is of enormous public concern due to the increased risk of delayed treatment of infections, the increased length of hospital stays, the substantial increase in the cost of care, and the high risk of fatal outcomes. A prerequisite for the development of effective therapy alternatives is a detailed understanding of the diversity of bacterial mechanisms that underlie drug resistance, especially for problematic gram-negative bacteria such as Pseudomonas aeruginosa. This pathogen has impressive chromosomally encoded mechanisms of intrinsic resistance, as well as the potential to mutate, gaining resistance to current antibiotics. In this study we have screened the comprehensive nonredundant Harvard PA14 library for P. aeruginosa mutants that exhibited either increased or decreased resistance against 19 antibiotics commonly used in the clinic. This approach identified several genes whose inactivation sensitized the bacteria to a broad spectrum of different antimicrobials and uncovered novel genetic determinants of resistance to various classes of antibiotics. Knowledge of the enhancement of bacterial susceptibility to existing antibiotics and of novel resistance markers or modifiers of resistance expression may lay the foundation for effective therapy alternatives and will be the basis for the development of new strategies in the control of problematic multiresistant gram-negative bacteria.
Collapse
|