1
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
2
|
Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, Amoutzias GD. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom 2023; 9:mgen001028. [PMID: 37266990 PMCID: PMC10327506 DOI: 10.1099/mgen.0.001028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus Streptomyces, by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species. Even among closely related species, we observed high interspecies variability of chromosomal protein-coding genes, species-level core genes, accessory genes and fingerprints. Notably, secondary metabolite biosynthetic gene clusters (smBGCs), carbohydrate-active enzymes (CAZymes) and protein-coding genes bearing the rare TTA codon demonstrate high intraspecies and interspecies variability, which emphasizes the need for strain-specific genomic mining. Highly conserved genes, such as those specifying genus-level core proteins, tend to occur in the central region of the chromosome, whereas those encoding proteins with evolutionarily volatile species-level fingerprints, smBGCs, CAZymes and TTA-codon-bearing genes are often found towards the ends of the linear chromosome. Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at the species and strain level. Finally, we observed a moderate, but statistically significant, correlation between the total number of CAZymes and three categories of smBGCs (siderophores, e-Polylysin and type III lanthipeptides) that are related to competition among bacteria.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikoletta Frangou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9054 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9054 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
3
|
Screening of Antibiotic Gene Clusters in Microorganisms Isolated from Wood. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2296:151-165. [PMID: 33977446 DOI: 10.1007/978-1-0716-1358-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The biosphere of Earth is made up of a variety of ecosystems governed by complex biological interactions, some of them mediated by microbial bioactive secondary metabolites. These metabolites such as antibiotics (e.g., polyketides and nonribosomal peptides) have been receiving increasing attention, due to their multiple pharmaceutical uses. Besides, antibiotic resistance is on the rise, and it is currently regarded as one of the greatest threats to global human health. The screening of novel antimicrobial polyketides and nonribosomal peptides in poorly studied ecosystems is an interesting alternative to address the problem of antibiotic resistance. This chapter updates a molecular method to identify antibiotics gene clusters and their subsequent production and activity validation. On the one hand, a PCR method based on degenerated primers for nonribosomal peptide synthases (NRPS) and the polyketide synthases (PKS) genes is used as an initial fast screening. On the other hand, a bioassay-based method is the protocol selected for the production confirmation and antibacterial effect estimation. These methods are applied to screen Actinobacteria and Penicillium species as main antibiotic producers isolated from wood.
Collapse
|
4
|
Agrawal P, Mohanty D. A machine learning-based method for prediction of macrocyclization patterns of polyketides and non-ribosomal peptides. Bioinformatics 2021; 37:603-611. [PMID: 33010151 DOI: 10.1093/bioinformatics/btaa851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 08/30/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Even though genome mining tools have successfully identified large numbers of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) biosynthetic gene clusters (BGCs) in bacterial genomes, currently no tool can predict the chemical structure of the secondary metabolites biosynthesized by these BGCs. Lack of algorithms for predicting complex macrocyclization patterns of linear PK/NRP biosynthetic intermediates has been the major bottleneck in deciphering the final bioactive chemical structures of PKs/NRPs by genome mining. RESULTS Using a large dataset of known chemical structures of macrocyclized PKs/NRPs, we have developed a machine learning (ML) algorithm for distinguishing the correct macrocyclization pattern of PKs/NRPs from the library of all theoretically possible cyclization patterns. Benchmarking of this ML classifier on completely independent datasets has revealed ROC-AUC and PR-AUC values of 0.82 and 0.81, respectively. This cyclization prediction algorithm has been used to develop SBSPKSv3, a genome mining tool for completely automated prediction of macrocyclized structures of NRPs/PKs. SBSPKSv3 has been extensively benchmarked on a dataset of over 100 BGCs with known PKs/NRPs products. AVAILABILITY AND IMPLEMENTATION The macrocyclization prediction pipeline and all the datasets used in this study are freely available at http://www.nii.ac.in/sbspks3.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Priyesh Agrawal
- Bioinformatics Centre, National Institute of Immunology, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Centre, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
5
|
Wang X, Zhang M, Loh B, Leptihn S, Ahmed T, Li B. A novel NRPS cluster, acquired by horizontal gene transfer from algae, regulates siderophore iron metabolism in Burkholderia seminalis R456. Int J Biol Macromol 2021; 182:838-848. [PMID: 33862079 DOI: 10.1016/j.ijbiomac.2021.04.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Abstract
In an environment with limited iron levels, sufficiently high intracellular iron concentrations are critical for bacterial survival. When iron levels are low, many bacteria including those of the Burkholderia cepacia group secrete chemically diverse siderophores to capture Fe3+. The synthesis of the two main siderophores, ornibactin and pyochelin, is regulated in an iron concentration dependent manner via the regulator protein Fur. In this study, we identified a novel Nonribosomal Peptide Synthetase (NRPS) cluster in strain R456 of Burkholderia seminalis, a member of the B. cepacia group. We show that the NRPS cluster not only allows the production of a so-far undescribed siderophore, but is also required for ornibactin and pyochelin production as it is a crucial component in the signaling pathway targeting the global iron regulating effector Fur which regulates siderophore production. Furthermore, the NRPS cluster is also involved in cell motility and biofilm formation, both of which are directly dependent on iron concentration in various bacteria. Interestingly, our data suggests that this newly discovered NRPS cluster which regulates siderophore iron metabolism in bacteria was obtained by horizontal gene transfer from algae.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
6
|
Primahana G, Risdian C, Mozef T, Wink J, Surup F, Stadler M. Amycolatomycins A and B, Cyclic Hexapeptides Isolated from an Amycolatopsis sp. 195334CR. Antibiotics (Basel) 2021; 10:261. [PMID: 33807584 PMCID: PMC8002008 DOI: 10.3390/antibiotics10030261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
The rare actinobacterium Amycolatopsis sp. strain 195334CR was found to produce previously undescribed cyclic hexapeptides, which we named amycolatomycin A and B (1 and 2). Their planar structures were determined by high-resolution mass spectrometry as well as extensive 1D and 2D NMR spectroscopy, while the absolute stereochemistry of its amino acids were determined by Marfey's method. Moreover, 1 and 2 differ by the incorporation of l-Ile and l-allo-Ile, respectively, whose FDVA (Nα-(2,4-Dinitro-5-fluorphenyl)-L-valinamide) derivatives were separated on a C4 column. Their hallmark in common is a unique 2,6-dichloro-tryptophan amino acid unit. Amycolatomycin A (1) exhibited weak activity against Bacillus subtilis DSM 10 (minimum inhibitory concentration (MIC) = 33.4 µg/mL).
Collapse
Affiliation(s)
- Gian Primahana
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (F.S.)
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong, Tangerang Selatan 15314, Indonesia;
| | - Chandra Risdian
- Working Group Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (C.R.); (J.W.)
- Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia
| | - Tjandrawati Mozef
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong, Tangerang Selatan 15314, Indonesia;
| | - Joachim Wink
- Working Group Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (F.S.)
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (F.S.)
| |
Collapse
|
7
|
Pérez-Bonilla M, Oves-Costales D, González I, de la Cruz M, Martín J, Vicente F, Genilloud O, Reyes F. Krisynomycins, Imipenem Potentiators against Methicillin-Resistant Staphylococcus aureus, Produced by Streptomyces canus. JOURNAL OF NATURAL PRODUCTS 2020; 83:2597-2606. [PMID: 32921049 DOI: 10.1021/acs.jnatprod.0c00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A reinvestigation of the acetone extract of the strain CA-091830 of Streptomyces canus, producer of the imipenem potentiator krisynomycin, resulted in the isolation of two additional analogues, krisynomycins B (1) and C (2), with different chlorination patterns. Genome sequencing of the strain followed by detailed bioinformatics analysis led to the identification of the corresponding biosynthetic gene cluster (BGC) of this cyclic nonribosomal peptide family. The planar structure of the new molecules was determined using HRMS, ESI-qTOF-MS/MS, and 1D and 2D NMR data. Their absolute configuration was proposed using a combination of Marfey's and bioinformatic BGC analyses. The krisynomycins displayed weak to negligible antibiotic activity against methicillin-resistant Staphylococcus aureus (MRSA), which was significantly enhanced when tested in combination with sublethal concentrations of imipenem. The halogenation pattern plays a key role in the antimicrobial activity and imipenem-potentiating effects of the compounds, with molecules having a higher number of chlorine atoms potentiating the effect of imipenem at lower doses.
Collapse
Affiliation(s)
- Mercedes Pérez-Bonilla
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Ignacio González
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucı́a, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Armilla, Granada, Spain
| |
Collapse
|
8
|
Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. DIVERSITY 2020. [DOI: 10.3390/d12080289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core-orthologues. The subsequent phylogenomic analysis revealed two well-defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus-level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group-specific core proteins were also identified, with P. aeruginosa having the highest number of these and P. fluorescens having none. We identified several P. aeruginosa-specific core proteins (such as CntL, CntM, PlcB, Acp1, MucE, SrfA, Tse1, Tsi2, Tse3, and EsrC) that are known to play an important role in its pathogenicity. Finally, a holin family bacteriocin and a mitomycin-like biosynthetic protein were found to be core-specific for P. cholororaphis and we hypothesize that these proteins may confer a competitive advantage against other root-colonizers.
Collapse
|
9
|
Marine macroalgae-associated heterotrophic Firmicutes and Gamma-proteobacteria: prospective anti-infective agents against multidrug resistant pathogens. Arch Microbiol 2020; 202:905-920. [DOI: 10.1007/s00203-019-01800-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/29/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
|
10
|
Agha R, Gross A, Rohrlack T, Wolinska J. Adaptation of a Chytrid Parasite to Its Cyanobacterial Host Is Hampered by Host Intraspecific Diversity. Front Microbiol 2018; 9:921. [PMID: 29867832 PMCID: PMC5952108 DOI: 10.3389/fmicb.2018.00921] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Experimental evolution can be used to test for and characterize parasite and pathogen adaptation. We undertook a serial-passage experiment in which a single parasite population of the obligate fungal (chytrid) parasite Rhizophydium megarrhizum was maintained over a period of 200 days under different mono- and multiclonal compositions of its phytoplankton host, the bloom-forming cyanobacterium Planktothrix. Despite initially inferior performance, parasite populations under sustained exposure to novel monoclonal hosts experienced rapid fitness increases evidenced by increased transmission rates. This demonstrates rapid adaptation of chytrids to novel hosts and highlights their high evolutionary potential. In contrast, increased fitness was not detected in parasites exposed to multiclonal host mixtures, indicating that cyanobacterial intraspecific diversity hampers parasites adaptation. Significant increases in intensity of infection were observed in monoclonal and multiclonal treatments, suggesting high evolvability of traits involved in parasite attachment onto hosts (i.e., encystment). A comparison of the performance of evolved and unevolved (control) parasite populations against their common ancestral host did not reveal parasite attenuation. Our results exemplify the ability of chytrid parasites to adapt rapidly to new hosts, while providing experimental evidence that genetic diversity in host populations grants increased resistance to disease by hindering parasite adaptation.
Collapse
Affiliation(s)
- Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Alina Gross
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Rohrlack
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Shishido TK, Jokela J, Fewer DP, Wahlsten M, Fiore MF, Sivonen K. Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543. ACS Chem Biol 2017; 12:2746-2755. [PMID: 28933529 DOI: 10.1021/acschembio.7b00570] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anabaenopeptins are a diverse group of cyclic peptides, which contain an unusual ureido linkage. Namalides are shorter structural homologues of anabaenopeptins, which also contain an ureido linkage. The biosynthetic origins of namalides are unknown despite a strong resemblance to anabaenopeptins. Here, we show the cyanobacterium Nostoc sp. CENA543 strain producing new (nostamide B-E (2, 4, 5, and 6)) and known variants of anabaenopeptins (schizopeptin 791 (1) and anabaenopeptin 807 (3)). Surprisingly, Nostoc sp. CENA543 also produced namalide B (8) and the new namalides D (7), E (9), and F (10) in similar amounts to anabaenopeptins. Analysis of the complete Nostoc sp. CENA543 genome sequence indicates that both anabaenopeptins and namalides are produced by the same biosynthetic pathway through module skipping during biosynthesis. This unique process involves the skipping of two modules present in different nonribosomal peptide synthetases during the namalide biosynthesis. This skipping is an efficient mechanism since both anabaenopeptins and namalides are synthesized in similar amounts by Nostoc sp. CENA543. Consequently, gene skipping may be used to increase and possibly broaden the chemical diversity of related peptides produced by a single biosynthetic gene cluster. Genome mining demonstrated that the anabaenopeptin gene clusters are widespread in cyanobacteria and can also be found in tectomicrobia bacteria.
Collapse
Affiliation(s)
- Tânia K. Shishido
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - David P. Fewer
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Matti Wahlsten
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Marli F. Fiore
- Center
for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - Kaarina Sivonen
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Ong KS, Aw YK, Lee LH, Yule CM, Cheow YL, Lee SM. Burkholderia paludis sp. nov., an Antibiotic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil. Front Microbiol 2016; 7:2046. [PMID: 28066367 PMCID: PMC5174137 DOI: 10.3389/fmicb.2016.02046] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/06/2016] [Indexed: 11/25/2022] Open
Abstract
A novel Gram negative rod-shaped bacterium, designated strain MSh1T, was isolated from Southeast Pahang tropical peat swamp forest soil in Malaysia and characterized using a polyphasic taxonomy approach. The predominant cellular fatty acids (>10.0%) were C16:0 (31.7%), C17:0 cyclo (26.6%), and C19:0 cyclo ω8c (16.1%). The polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant ubiquinone was Q-8. This revealed that strain MSh1T belongs to the genus Burkholderia. The type strain MSh1T can be differentiated from other Burkholderia cepacia complex (Bcc) species by phylogenetic analysis of 16S rRNA gene sequence, multilocus sequence analysis (MLSA), average nucleotide identity (ANI) and biochemical tests. DNA-DNA relatedness values between strain MSh1T and closely related type strains were below the 70% threshold value. Based on this polyphasic study of MSh1T, it can be concluded that this strain represents a novel species within the Bcc, for which the name Burkholderia paludis sp. nov. is proposed. The type strain is MSh1T (= DSM 100703T = MCCC 1K01245T). The dichloromethane extract of MSh1T exhibited antimicrobial activity against four Gram positive bacteria (Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700802, Staphylococcus aureus ATCC 29213, S. aureus ATCC 700699) and a Gram negative bacteria (Escherichia coli ATCC 25922). Further purification work has led to the isolation of Compound 1, pyochelin. Pyochelin demonstrated antimicrobial activity against four S. aureus strains and three E. faecalis strains with MIC-values of 3.13 μg/ml and 6.26 μg/ml, respectively. SEM analysis showed that the cellular morphology of E. faecalis ATCC 700802 was not affected by pyochelin; suggesting that it might target the intracellular components. Pyochelin, a siderophore with antimicrobial activity might be useful in treating bacterial infections caused by S. aureus and E. faecalis, however further work has to be done.
Collapse
Affiliation(s)
- Kuan Shion Ong
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| | - Yoong Kit Aw
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University PhayaoPhayao, Thailand
| | - Catherine M. Yule
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| | - Yuen Lin Cheow
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
13
|
Buelow HN, Winter AS, Van Horn DJ, Barrett JE, Gooseff MN, Schwartz E, Takacs-Vesbach CD. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica. Front Microbiol 2016; 7:1040. [PMID: 27486436 PMCID: PMC4947590 DOI: 10.3389/fmicb.2016.01040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/21/2016] [Indexed: 11/27/2022] Open
Abstract
The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM) amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and OM. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8 and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59%) dominated water-amended soils and Firmicutes (45%) dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes) were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34) of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by generalist, copiotrophic taxa is likely.
Collapse
Affiliation(s)
- Heather N Buelow
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - Ara S Winter
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - David J Van Horn
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - John E Barrett
- Department of Biological Sciences, Virginia Tech Blacksburg, VA, USA
| | - Michael N Gooseff
- Department of Civil, Architectural, and Environmental Engineering, Institute of Arctic and Alpine Research, University of Colorado Boulder Boulder, CO, USA
| | - Egbert Schwartz
- Department of Biological Sciences, Northern Arizona University Flagstaff, AZ, USA
| | | |
Collapse
|
14
|
"Cre/loxP plus BAC": a strategy for direct cloning of large DNA fragment and its applications in Photorhabdus luminescens and Agrobacterium tumefaciens. Sci Rep 2016; 6:29087. [PMID: 27364376 PMCID: PMC4929569 DOI: 10.1038/srep29087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 01/23/2023] Open
Abstract
Heterologous expression has been proven to be a valid strategy for elucidating the natural products produced by gene clusters uncovered by genome sequencing projects. Efforts have been made to efficiently clone gene clusters directly from genomic DNA and several approaches have been developed. Here, we present an alternative strategy based on the site-specific recombinase system Cre/loxP for direct cloning gene clusters. A type three secretion system (T3SS) gene cluster (~32 kb) from Photorhabdus luminescens TT01 and DNA fragment (~78 kb) containing the siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58 have been successfully cloned into pBeloBAC11 with “Cre/loxP plus BAC” strategy. Based on the fact that Cre/loxP system has successfully used for genomic engineering in a wide range of organisms, we believe that this strategy could be widely used for direct cloning of large DNA fragment.
Collapse
|
15
|
Genome sequence and comparative analysis of clavicipitaceous insect-pathogenic fungus Aschersonia badia with Metarhizium spp. BMC Genomics 2016; 17:367. [PMID: 27189621 PMCID: PMC4869207 DOI: 10.1186/s12864-016-2710-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Aschersonia badia [(Ab) Teleomorph: Hypocrella siamensis] is an entomopathogenic fungus that specifically infects scale insects and whiteflies. We present the whole genome sequence of Ab and its comparison with two clavicipitaceous fungi Metarhizium robertsii (MR: generalist entomopathogen) and M. acridum (MAC: acridid-specific entomopathogen) that exhibit variable host preferences. Here, through comparative analysis of pathogen-host interacting genes, carbohydrate active enzymes, secondary metabolite biosynthesis genes, and sexuality genes, we explore the proteins with possible virulence functions in clavicipitaceous fungi. Comprehensive overview of GH18 family chitinases has been provided to decipher the role of chitinases in claviceptaceous fungi that are either host specific or generalists. Results We report the 28.8 Mb draft genome of Ab and its comparative genome analysis with MR and MAC. The comparative analyses suggests expansion in pathogen-host interacting gene families and carbohydrate active enzyme families in MR, whilst their contraction in Ab and MAC genomes. The multi-modular NRPS gene (dtxS1) responsible for biosynthesis of the secondary metabolite destruxin in MR is not conserved in Ab, similar to the specialist pathogen MAC. An additional siderophore biosynthetic gene responsible for acquisition of iron was identified in MR. Further, the domain survey of chitinases suggest that the CBM50 (LysM) domains, which participate in chitin-binding functions, were not observed in MAC, but were present in Ab and MR. However, apparent differences in frequency of CBM50 domains associated with chitinases of Ab and MR was identified, where MR chitinases displayed a higher proportion of associated CBM50 domains than Ab chitinases. Conclusions This study suggests differences in distribution of dtxS1 and chitinases in specialists (Ab and MAC) and generalists (MR) fungi. Our analysis also suggests the presence of a siderophore biosynthetic gene in the MR genome which perhaps aids in enhanced virulence potential and host range. The variation in association of CBMs, being higher in generalists (MR) and lower in specialists (Ab and MAC) fungi may further be responsible for the differences in host affiliation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2710-6) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes. Mar Drugs 2016; 14:md14040080. [PMID: 27092515 PMCID: PMC4849084 DOI: 10.3390/md14040080] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 11/17/2022] Open
Abstract
Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.
Collapse
|
17
|
Zhang L, Wang X, Yu M, Qiao Y, Zhang XH. Genomic analysis of Luteimonas abyssi XH031(T): insights into its adaption to the subseafloor environment of South Pacific Gyre and ecological role in biogeochemical cycle. BMC Genomics 2015; 16:1092. [PMID: 26690083 PMCID: PMC4687298 DOI: 10.1186/s12864-015-2326-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/15/2015] [Indexed: 01/22/2023] Open
Abstract
Background Luteimonas abyssi XH031T, which was previously isolated from subseafloor environment of the South Pacific Gyre (SPG), was an aerobic, gram-negative bacterium, and was identified to be a novel species of the genus Luteimonas in the family of Xanthomonadaceae. The nutrients utilization and metabolic mechanisms of XH031T indicate its plasticity. In view of the above characteristics, its genome was sequenced, and an in-depth analysis of the XH031T genome was performed to elucidate its adaption to extreme ecological environment. Results Various macromolecules including polysaccharide, protein, lipid and DNA could be degraded at low temperature by XH031T under laboratory conditions, and its degradation abilities to starch, gelatin and casein were considerably strong. Genome sequence analysis indicated that XH031T possesses extensive enzyme-encoding genes compared with four other Luteimonas strains. In addition, intricate systems (such as two-component regulatory systems, secretion systems, etc.), which are often used by bacteria to modulate the interactions of bacteria with their environments, were predicted in the genome of XH031T. Genes encoding a choline-glycine betaine transporter and 99 extracellular peptidases featured with halophilicity were predicted in the genome, which might help the bacterium to adapt to the salty marine environment. Moreover, there were many gene clusters in the genome encoding ATP-binding cassette superfamily transporters, major facilitator superfamily transporters and cytochrome P450s that might function in the process of various substrate transportation and metabolisms. Furthermore, drug resistance genes harbored in the genome might signify that XH031T has evolved hereditary adaptation to toxic environment. Finally, the annotation of metabolic pathways of the elements (such as carbon, nitrogen, sulfur, phosphor and iron) in the genome elucidated the degradation of organic matter in the deep sediment of the SPG. Conclusions The genome analysis showed that XH031T had genetic advantages to adapt to subseafloor environment. The material metabolism manifests that the strain may play an important ecological role in the biogeochemical cycle of the SPG, and various cold-adapted extracelluar enzymes produced by the strain may have significant value in application. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2326-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,College of Life Science, Qingdao Agriculture University, Qingdao, 266109, China.
| | - Xiaolei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Min Yu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Yanlu Qiao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
18
|
Agha R, Quesada A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 2014; 6:1929-50. [PMID: 24960202 PMCID: PMC4073138 DOI: 10.3390/toxins6061929] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.
Collapse
Affiliation(s)
- Ramsy Agha
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| |
Collapse
|
19
|
Sequence characterization and computational analysis of the non-ribosomal peptide synthetases controlling biosynthesis of lipopeptides, fengycins and bacillomycin D, from Bacillus amyloliquefaciens Q-426. Biotechnol Lett 2013; 35:2155-63. [PMID: 24068498 DOI: 10.1007/s10529-013-1320-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Lipopeptides secreted by bacteria attract interest because of their uses in biomedicine, biotechnology and food technology; however, harnessing their megasynthases (non-ribosomal peptide synthetases, NRPSs) has met with some difficulties in heterologous expression and crystallization. Here, we used similarity and phylogenetic analysis of NRPS sequences, including the fengycin and iturin family synthetases from Bacillus spp., and have developed a novel approach for delineating the length and boundaries of NRPS domains from Bacillus amyloliquefaciens strain Q-426. The sequences were further characterized (including specific residues and conserved motifs) that gave insight into the basis of the substrate specificity. Data from the prediction of the NRPS domains, obtained by the self-optimized prediction method with Alignment program, showed they are all structurally unstable, making it difficult to determine their crystal structures.
Collapse
|
20
|
Cyanobacterial toxin degrading bacteria: who are they? BIOMED RESEARCH INTERNATIONAL 2013; 2013:463894. [PMID: 23841072 PMCID: PMC3690202 DOI: 10.1155/2013/463894] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are ubiquitous in nature and are both beneficial and detrimental to humans. Benefits include being food supplements and producing bioactive compounds, like antimicrobial and anticancer substances, while their detrimental effects are evident by toxin production, causing major ecological problems at the ecosystem level. To date, there are several ways to degrade or transform these toxins by chemical methods, while the biodegradation of these compounds is understudied. In this paper, we present a meta-analysis of the currently available 16S rRNA and mlrA (microcystinase) genes diversity of isolates known to degrade cyanobacterial toxins. The available data revealed that these bacteria belong primarily to the Proteobacteria, with several strains from the sphingomonads, and one from each of the Methylobacillus and Paucibacter genera. Other strains belonged to the genera Arthrobacter, Bacillus, and Lactobacillus. By combining the ecological knowledge on the distribution, abundance, and ecophysiology of the bacteria that cooccur with toxic cyanobacterial blooms and newly developed molecular approaches, it is possible not only to discover more strains with cyanobacterial toxin degradation abilities, but also to reveal the genes associated with the degradation of these toxins.
Collapse
|
21
|
Shishido TK, Kaasalainen U, Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Fiore MF, Yunes JS, Rikkinen J, Sivonen K. Convergent evolution of [D-Leucine(1)] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evol Biol 2013; 13:86. [PMID: 23601305 PMCID: PMC3640908 DOI: 10.1186/1471-2148-13-86] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/09/2013] [Indexed: 11/24/2022] Open
Abstract
Background Many important toxins and antibiotics are produced by non-ribosomal biosynthetic pathways. Microcystins are a chemically diverse family of potent peptide toxins and the end-products of a hybrid NRPS and PKS secondary metabolic pathway. They are produced by a variety of cyanobacteria and are responsible for the poisoning of humans as well as the deaths of wild and domestic animals around the world. The chemical diversity of the microcystin family is attributed to a number of genetic events that have resulted in the diversification of the pathway for microcystin assembly. Results Here, we show that independent evolutionary events affecting the substrate specificity of the microcystin biosynthetic pathway have resulted in convergence on a rare [D-Leu1] microcystin-LR chemical variant. We detected this rare microcystin variant from strains of the distantly related genera Microcystis, Nostoc, and Phormidium. Phylogenetic analysis performed using sequences of the catalytic domains within the mcy gene cluster demonstrated a clear recombination pattern in the adenylation domain phylogenetic tree. We found evidence for conversion of the gene encoding the McyA2 adenylation domain in strains of the genera Nostoc and Phormidium. However, point mutations affecting the substrate-binding sequence motifs of the McyA2 adenylation domain were associated with the change in substrate specificity in two strains of Microcystis. In addition to the main [D-Leu1] microcystin-LR variant, these two strains produced a new microcystin that was identified as [Met1] microcystin-LR. Conclusions Phylogenetic analysis demonstrated that both point mutations and gene conversion result in functional mcy gene clusters that produce the same rare [D-Leu1] variant of microcystin in strains of the genera Microcystis, Nostoc, and Phormidium. Engineering pathways to produce recombinant non-ribosomal peptides could provide new natural products or increase the activity of known compounds. Our results suggest that the replacement of entire adenylation domains could be a more successful strategy to obtain higher specificity in the modification of the non-ribosomal peptides than point mutations.
Collapse
Affiliation(s)
- Tânia Keiko Shishido
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter (Viikinkaari 9), PO Box 56, Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel) 2013; 5:717-42. [PMID: 23604065 PMCID: PMC3705289 DOI: 10.3390/toxins5040717] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023] Open
Abstract
Polyketide synthase (PKSs) and nonribosomal peptide synthetase (NRPSs) are large multimodular enzymes involved in biosynthesis of polyketide and peptide toxins produced by fungi. Furthermore, hybrid enzymes, in which a reducing PKS region is fused to a single NRPS module, are also responsible of the synthesis of peptide-polyketide metabolites in fungi. The genes encoding for PKSs and NRPSs have been exposed to complex evolutionary mechanisms, which have determined the great number and diversity of metabolites. In this study, we considered the most important polyketide and peptide mycotoxins and, for the first time, a phylogenetic analysis of both PKSs and NRPSs involved in their biosynthesis was assessed using two domains for each enzyme: β-ketosynthase (KS) and acyl-transferase (AT) for PKSs; adenylation (A) and condensation (C) for NRPSs. The analysis of both KS and AT domains confirmed the differentiation of the three classes of highly, partially and non-reducing PKSs. Hybrid PKS-NRPSs involved in mycotoxins biosynthesis grouped together in the phylogenetic trees of all the domains analyzed. For most mycotoxins, the corresponding biosynthetic enzymes from distinct fungal species grouped together, except for PKS and NRPS involved in ochratoxin A biosynthesis, for which an unlike process of evolution could be hypothesized in different species.
Collapse
Affiliation(s)
- Antonia Gallo
- Institute of Sciences of Food Production ISPA, National Research Council CNR, Bari, Italy.
| | | | | |
Collapse
|
23
|
Trindade-Silva AE, Rua CPJ, Andrade BGN, Vicente ACP, Silva GGZ, Berlinck RGS, Thompson FL. Polyketide synthase gene diversity within the microbiome of the sponge Arenosclera brasiliensis, endemic to the Southern Atlantic Ocean. Appl Environ Microbiol 2013; 79:1598-605. [PMID: 23275501 PMCID: PMC3591950 DOI: 10.1128/aem.03354-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022] Open
Abstract
Microbes associated with marine sponges are considered important producers of bioactive, structurally unique polyketides. The synthesis of such secondary metabolites involves type I polyketide synthases (PKSs), which are enzymes that reach a maximum complexity degree in bacteria. The Haplosclerida sponge Arenosclera brasiliensis hosts a complex microbiota and is the source of arenosclerins, alkaloids with cytotoxic and antibacterial activity. In the present investigation, we performed high-throughput sequencing of the ketosynthase (KS) amplicon to investigate the diversity of PKS genes present in the metagenome of A. brasiliensis. Almost 4,000 ketosynthase reads were recovered, with about 90% annotated automatically as bacterial. A total of 235 bacterial KS contigs was rigorously assembled from this sequence pool and submitted to phylogenetic analysis. A great diversity of six type I PKS groups has been consistently detected in our phylogenetic reconstructions, including a novel and A. brasiliensis-exclusive group. Our study is the first to reveal the diversity of type I PKS genes in A. brasiliensis as well as the potential of its microbiome to serve as a source of new polyketides.
Collapse
Affiliation(s)
- Amaro E. Trindade-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia P. J. Rua
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Genivaldo G. Z. Silva
- Department of Computer Science, San Diego State University, San Diego, California, USA
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Fabiano L. Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Nikolouli K, Mossialos D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 2012; 34:1393-403. [PMID: 22481301 DOI: 10.1007/s10529-012-0919-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Eolou, 41221, Larissa, Greece
| | | |
Collapse
|
25
|
Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DK, Brogaard KH, Hansen BG, Frisvad JC, Larsen TO, Mortensen UH. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 2011; 321:157-66. [PMID: 21658102 DOI: 10.1111/j.1574-6968.2011.02327.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fungi possess an advanced secondary metabolism that is regulated and coordinated in a complex manner depending on environmental challenges. To understand this complexity, a holistic approach is necessary. We initiated such an analysis in the important model fungus Aspergillus nidulans by systematically deleting all 32 individual genes encoding polyketide synthases. Wild-type and all mutant strains were challenged on different complex media to provoke induction of the secondary metabolism. Screening of the mutant library revealed direct genetic links to two austinol meroterpenoids and expanded the current understanding of the biosynthetic pathways leading to arugosins and violaceols. We expect that the library will be an important resource towards a systemic understanding of polyketide production in A. nidulans.
Collapse
Affiliation(s)
- Michael L Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 2010; 5:e8926. [PMID: 20126622 PMCID: PMC2812497 DOI: 10.1371/journal.pone.0008926] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/07/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Methane (CH(4)) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO(2)). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed. METHODOLOGY/PRINCIPAL FINDINGS The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H(2)) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species. CONCLUSIONS/SIGNIFICANCE The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to worldwide efforts to mitigate ruminant methane emissions and reduce production of anthropogenic greenhouse gases.
Collapse
Affiliation(s)
- Sinead C. Leahy
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - William J. Kelly
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Eric Altermann
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ron S. Ronimus
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carl J. Yeoman
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Diana M. Pacheco
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Dong Li
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Zhanhao Kong
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Sharla McTavish
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carrie Sang
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Suzanne C. Lambie
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H. Janssen
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Debjit Dey
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Graeme T. Attwood
- Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|