1
|
Vlăsceanu D, Popescu D, Baciu F, Stochioiu C. Examining the Flexural Behavior of Thermoformed 3D-Printed Wrist-Hand Orthoses: Role of Material, Infill Density, and Wear Conditions. Polymers (Basel) 2024; 16:2359. [PMID: 39204579 PMCID: PMC11359674 DOI: 10.3390/polym16162359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
This paper examined the mechanical properties of wrist-hand orthoses made from polylactic acid (PLA) and polyethylene terephthalate glycol (PETG), produced through material extrusion with infill densities of 55% and 80%. These orthoses, commonly prescribed for wrist injuries, were 3D-printed flat and subsequently thermoformed to fit the user's hand. Experimental and numerical analyses assessed their mechanical resistance to flexion after typical wear conditions, including moisture and long-term aging, as well as their moldability. Digital Imaging Correlation investigations were performed on PLA and PETG specimens for determining the characteristics required for running numerical analysis of the mechanical behavior of the orthoses. The results indicated that even the orthoses with the lower infill density maintained suitable rigidity for wrist immobilization, despite a decrease in their mechanical properties after over one year of shelf life. PLA orthoses with 55% infill density failed at a mean load of 336 N (before aging) and 215 N (after aging), while PETG orthoses did not break during tests. Interestingly, PLA and PETG orthoses with 55% infill density were less influenced by aging compared to their 80% density counterparts. Additionally, moisture and aging affected the PLA orthoses more, with thermoforming, ongoing curing, and stress relaxation as possible explanations related to PETG behavior. Both materials proved viable for daily use, with PETG offering better flexural resistance but posing greater thermoforming challenges.
Collapse
Affiliation(s)
- Daniel Vlăsceanu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (D.V.); (C.S.)
| | - Diana Popescu
- Department of Robotics and Production Systems, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Florin Baciu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (D.V.); (C.S.)
| | - Constantin Stochioiu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (D.V.); (C.S.)
| |
Collapse
|
2
|
Felton H, Schiffmann O, Goudswaard M, Gopsill J, Snider C, Real R, McClenaghan A, Hicks B. Maker communities and the COVID-19 pandemic: a longitudinal analysis of Thingiverse's response to supply shortages. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230790. [PMID: 37771964 PMCID: PMC10523067 DOI: 10.1098/rsos.230790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
The COVID-19 pandemic profoundly affected various aspects of daily life, particularly the supply and demand of essential goods, resulting in critical shortages. This included personal protective equipment for medical professionals and the general public. To address these shortages, online 'maker communities' emerged, aiming to develop and locally manufacture critical products. While some organized efforts existed, the majority of initiatives originated from individuals and groups on platforms like Thingiverse. This paper presents a longitudinal analysis of Thingiverse, one of the largest maker community websites, to examine the pandemic's effects. Our findings reveal a surge in community output during the initial lockdown periods in major contributing nations (primarily those in the Western Hemisphere), followed by a subsequent decline. Additionally, throughout 2020, pandemic-related products dominated uploads and interactions during this period. Based on these observations, we propose recommendations to expedite the community's ability to support local, national and international responses to future disasters.
Collapse
Affiliation(s)
- H. Felton
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - O. Schiffmann
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - M. Goudswaard
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - J. Gopsill
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - C. Snider
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - R. Real
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - A. McClenaghan
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - B. Hicks
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| |
Collapse
|
3
|
Amza CG, Zapciu A, Baciu F, Radu C. Effect of UV-C Radiation on 3D Printed ABS-PC Polymers. Polymers (Basel) 2023; 15:1966. [PMID: 37112113 PMCID: PMC10141134 DOI: 10.3390/polym15081966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
During the initial stages of the COVID-19 pandemic, healthcare facilities experienced severe shortages of personal protective equipment (PPE) and other medical supplies. Employing 3D printing to rapidly fabricate functional parts and equipment was one of the emergency solutions used to tackle these shortages. Using ultraviolet light in the UV-C band (wavelengths of 200 nm to 280 nm) might prove useful in sterilizing 3D printed parts, enabling their reusability. Most polymers, however, degrade under UV-C radiation, so it becomes necessary to determine what 3D printing materials can withstand the conditions found during medical equipment sterilization with UV-C. This paper analyzes the effect of accelerated aging through prolonged exposure to UV-C on the mechanical properties of parts 3D printed from a polycarbonate and acrylonitrile butadiene styrene polymer (ABS-PC). Samples 3D printed using a material extrusion process (MEX) went through a 24-h UV-C exposure aging cycle and then were tested versus a control group for changes in tensile strength, compressive strength and some selected material creep characteristics. Testing showed minimal mechanical property degradation following the irradiation procedure, with tensile strength being statistically the same for irradiated parts as those in the control group. Irradiated parts showed small losses in stiffness (5.2%) and compressive strength (6.5%). Scanning electron microscopy (SEM) was employed in order to assess if any changes occurred in the material structure.
Collapse
Affiliation(s)
- Catalin Gheorghe Amza
- Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.Z.); (F.B.); (C.R.)
| | | | | | | |
Collapse
|
4
|
Karbassiyazdi E, Fattahi F, Yousefi N, Tahmassebi A, Taromi AA, Manzari JZ, Gandomi AH, Altaee A, Razmjou A. XGBoost model as an efficient machine learning approach for PFAS removal: Effects of material characteristics and operation conditions. ENVIRONMENTAL RESEARCH 2022; 215:114286. [PMID: 36096170 DOI: 10.1016/j.envres.2022.114286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Due to the implications of poly- and perfluoroalkyl substances (PFAS) on the environment and public health, great attention has been recently made to finding innovative materials and methods for PFAS removal. In this work, PFAS is considered universal contamination which can be found in many wastewater streams. Conventional materials and processes used to remove and degrade PFAS do not have enough competence to address the issue particularly when it comes to eliminating short-chain PFAS. This is mainly due to the large number of complex parameters that are involved in both material and process designs. Here, we took the advantage of artificial intelligence to introduce a model (XGBoost) in which material and process factors are considered simultaneously. This research applies a machine learning approach using data collected from reported articles to predict the PFAS removal factors. The XGBoost modeling provided accurate adsorption capacity, equilibrium, and removal estimates with the ability to predict the adsorption mechanisms. The performance comparison of adsorbents and the role of AI in one dominant are studied and reviewed for the first time, even though many studies have been carried out to develop PFAS removal through various adsorption methods such as ion exchange, nanofiltration, and activated carbon (AC). The model showed that pH is the most effective parameter to predict PFAS removal. The proposed model in this work can be extended for other micropollutants and can be used as a basic framework for future adsorbent design and process optimization.
Collapse
Affiliation(s)
- Elika Karbassiyazdi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Fatemeh Fattahi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Negin Yousefi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Arsia Afshar Taromi
- Petrochemicals Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran
| | - Javad Zyaie Manzari
- Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amir H Gandomi
- Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Ali Altaee
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214698. [PMID: 36365695 PMCID: PMC9656270 DOI: 10.3390/polym14214698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The scientific community is and has constantly been working to innovate and improve the available technologies in our use. In that effort, three-dimensional (3D) printing was developed that can construct 3D objects from a digital file. Three-dimensional printing, also known as additive manufacturing (AM), has seen tremendous growth over the last three decades, and in the last five years, its application has widened significantly. Three-dimensional printing technology has the potential to fill the gaps left by the limitations of the current manufacturing technologies, and it has further become exciting with the addition of a time dimension giving rise to the concept of four-dimensional (4D) printing, which essentially means that the structures created by 4D printing undergo a transformation over time under the influence of internal or external stimuli. The created objects are able to adapt to changing environmental variables such as moisture, temperature, light, pH value, etc. Since their introduction, 3D and 4D printing technologies have extensively been used in the healthcare, aerospace, construction, and fashion industries. Although 3D printing has a highly promising future, there are still a number of challenges that must be solved before the technology can advance. In this paper, we reviewed the recent advances in 3D and 4D printing technologies, the available and potential materials for use, and their current and potential future applications. The current and potential role of 3D printing in the imperative fight against COVID-19 is also discussed. Moreover, the major challenges and developments in overcoming those challenges are addressed. This document provides a cutting-edge review of the materials, applications, and challenges in 3D and 4D printing technologies.
Collapse
|
6
|
Said S, Bouloiz H, Gallab M. Contributions of Industry 4.0 to resilience achievement in the context of COVID-19 pandemic. IFAC-PAPERSONLINE 2022; 55:3226-3231. [PMID: 38620797 PMCID: PMC9605721 DOI: 10.1016/j.ifacol.2022.10.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the totally unprecedented context of the COVID-19 health crisis, the widespread adoption of Industry 4.0 technologies, and the great interest in resilience, have been stronger than ever. Within this framework, the present paper outlines the involvement of technologies emerging from the fourth industrial revolution in the fight against the epidemic expansion, and the results of this implication in terms of strengthening and achieving resilience in diverse fields. In order to gain a fuller understanding of these points, fourteen resilience domains related to the COVID-19 pandemic are defined. On the other hand, the third section of this paper digs into the literature to expose a variety of Industry 4.0 solutions developed to cope with the sanitary crisis. Afterwards, a fuzzy cognitive map is elaborated, using mental modeler, in order to emphasize the causal links between Industry 4.0 technologies and resilience domains. Subsequently, a simulation of this model is performed to evaluate the contribution of an optimized joint use of Industry 4.0 core technologies in the achievement of resilience in its different dimensions during the COVID-19 pandemic, and to discuss how the identified gaps or weaknesses can be addressed.
Collapse
Affiliation(s)
- Saloua Said
- Systems engineering and decision support laboratory, Ibn Zohr University, ENSA Agadir, Morocco
| | - Hafida Bouloiz
- Systems engineering and decision support laboratory, Ibn Zohr University, ENSA Agadir, Morocco
| | - Maryam Gallab
- MIS-LISTD Laboratory, Computer Science Department, Mines-Rabat School (ENSMR), Rabat, Morocco
| |
Collapse
|
7
|
Pham YL, Beauchamp J, Clement A, Wiegandt F, Holz O. 3D-printed mouthpiece adapter for sampling exhaled breath in medical applications. 3D Print Med 2022; 8:27. [PMID: 35943600 PMCID: PMC9364600 DOI: 10.1186/s41205-022-00150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
The growing use of 3D printing in the biomedical sciences demonstrates its utility for a wide range of research and healthcare applications, including its potential implementation in the discipline of breath analysis to overcome current limitations and substantial costs of commercial breath sampling interfaces. This technical note reports on the design and construction of a 3D-printed mouthpiece adapter for sampling exhaled breath using the commercial respiration collector for in-vitro analysis (ReCIVA) device. The paper presents the design and digital workflow transition of the adapter and its fabrication from three commercial resins (Surgical Guide, Tough v5, and BioMed Clear) using a Formlabs Form 3B stereolithography (SLA) printer. The use of the mouthpiece adapter in conjunction with a pulmonary function filter is appraised in comparison to the conventional commercial silicon facemask sampling interface. Besides its lower cost - investment cost of the printing equipment notwithstanding - the 3D-printed adapter has several benefits, including ensuring breath sampling via the mouth, reducing the likelihood of direct contact of the patient with the breath sampling tubes, and being autoclaveable to enable the repeated use of a single adapter, thereby reducing waste and associated environmental burden compared to current one-way disposable facemasks. The novel adapter for breath sampling presented in this technical note represents an additional field of application for 3D printing that further demonstrates its widespread applicability in biomedicine.
Collapse
Affiliation(s)
- Y Lan Pham
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354, Freising, Germany.,Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Jonathan Beauchamp
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354, Freising, Germany
| | - Alexander Clement
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Felix Wiegandt
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Olaf Holz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Feodor-Lynen-Str. 15, 30625, Hannover, Germany. .,Member of the German Centre of Lung Research DZL (BREATH), Hannover, Germany.
| |
Collapse
|
8
|
Amaechi CV, Adefuye EF, Kgosiemang IM, Huang B, Amaechi EC. Scientometric Review for Research Patterns on Additive Manufacturing of Lattice Structures. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5323. [PMID: 35955258 PMCID: PMC9369840 DOI: 10.3390/ma15155323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Over the past 15 years, interest in additive manufacturing (AM) on lattice structures has significantly increased in producing 3D/4D objects. The purpose of this study is to gain a thorough grasp of the research pattern and the condition of the field's research today as well as identify obstacles towards future research. To accomplish the purpose, this work undertakes a scientometric analysis of the international research conducted on additive manufacturing for lattice structure materials published from 2002 to 2022. A total of 1290 journal articles from the Web of Science (WoS) database and 1766 journal articles from the Scopus database were found using a search system. This paper applied scientometric science, which is based on bibliometric analysis. The data were subjected to a scientometric study, which looked at the number of publications, authorship, regions by countries, keyword co-occurrence, literature coupling, and scientometric mapping. VOSviewer was used to establish research patterns, visualize maps, and identify transcendental issues. Thus, the quantitative determination of the primary research framework, papers, and themes of this research field was possible. In order to shed light on current developments in additive manufacturing for lattice structures, an extensive systematic study is provided. The scientometric analysis revealed a strong bias towards researching AM on lattice structures but little concentration on technologies that emerge from it. It also outlined its unmet research needs, which can benefit both the industry and academia. This review makes a prediction for the future, with contributions by educating researchers, manufacturers, and other experts on the current state of AM for lattice structures.
Collapse
Affiliation(s)
- Chiemela Victor Amaechi
- School of Engineering, Lancaster University, Bailrigg, Lancaster LA1 4YR, UK
- Standards Organisation of Nigeria (SON), 52 Lome Crescent, Wuse Zone 7, Abuja 900287, Federal Capital Territory, Nigeria
| | - Emmanuel Folarin Adefuye
- School of Engineering, Lancaster University, Bailrigg, Lancaster LA1 4YR, UK
- Department of Mechanical/MetalWork Technology, Federal College of Education [Technical], Akoka 100001, Lagos State, Nigeria
| | - Irish Mpho Kgosiemang
- Department of Management, University of Central Lancashire (UCLAN), Preston PR1 2HE, UK;
| | - Bo Huang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | | |
Collapse
|
9
|
Sigston EAW. How 3D Printing Is Reshaping Translational Research. Front Bioeng Biotechnol 2021; 9:640611. [PMID: 34957060 PMCID: PMC8703123 DOI: 10.3389/fbioe.2021.640611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
"Translational Research" has traditionally been defined as taking basic scientific findings and developing new diagnostic tools, drugs, devices and treatment options for patients, that are translated into practice, reach the people and populations for whom they are intended and are implemented correctly. The implication is of a unidirectional flow from "the bench to bedside". The rapidly emergent field of additive manufacturing (3D printing) is contributing to a major shift in translational medical research. This includes the concept of bidirectional or reverse translation, early collaboration between clinicians, bio-engineers and basic scientists, and an increasingly entrepreneurial mindset. This coincides with, and is strongly complemented by, the rise of systems biology. The rapid pace at which this type of translational research can occur brings a variety of potential pitfalls and ethical concerns. Regulation surrounding implantable medical devices is struggling to keep up. 3D printing has opened the way for personalization which can make clinical outcomes hard to assess and risks putting the individual before the community. In some instances, novelty and hype has led to loss of transparency of outcomes with dire consequence. Collaboration with commercial partners has potential for conflict of interest. Nevertheless, 3D printing has dramatically changed the landscape of translational research. With early recognition and management of the potential risks, the benefits of reshaping the approach to translational research are enormous. This impact will extend into many other areas of biomedical research, re-establishing that science is more than a body of research. It is a way of thinking.
Collapse
Affiliation(s)
- Elizabeth A W Sigston
- Monash Institute of Medical Engineering, Monash University, Melbourne, VIC, Australia.,Department of Surgery, School of Clinical Sciences at Monash Health, Monash University Melbourne, Melbourne, VIC, Australia.,Department of Otolaryngology, Head and Neck Surgery, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Arjunan A, Robinson J, Baroutaji A, Tuñón-Molina A, Martí M, Serrano-Aroca Á. 3D Printed Cobalt-Chromium-Molybdenum Porous Superalloy with Superior Antiviral Activity. Int J Mol Sci 2021; 22:12721. [PMID: 34884526 PMCID: PMC8657688 DOI: 10.3390/ijms222312721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.
Collapse
Affiliation(s)
- Arun Arjunan
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - John Robinson
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
- Additive Analytics Ltd., Stirchley Road, Telford TF3 1EB, UK
| | - Ahmad Baroutaji
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| |
Collapse
|
11
|
deMello A. To Print, or Not to Print, That Is the Question. ACS Sens 2021; 6:3494-3495. [PMID: 34674529 DOI: 10.1021/acssensors.1c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|