1
|
Chiuariu T, Șalaru D, Ureche C, Vasiliu L, Lupu A, Lupu VV, Șerban AM, Zăvoi A, Benchea LC, Clement A, Tudurachi BS, Sascău RA, Stătescu C. Cardiac and Renal Fibrosis, the Silent Killer in the Cardiovascular Continuum: An Up-to-Date. J Cardiovasc Dev Dis 2024; 11:62. [PMID: 38392276 PMCID: PMC10889423 DOI: 10.3390/jcdd11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular disease (CVD) and chronic kidney disease (CKD) often coexist and have a major impact on patient prognosis. Organ fibrosis plays a significant role in the pathogenesis of cardio-renal syndrome (CRS), explaining the high incidence of heart failure and sudden cardiac death in these patients. Various mediators and mechanisms have been proposed as contributors to the alteration of fibroblasts and collagen turnover, varying from hemodynamic changes to the activation of the renin-angiotensin system, involvement of FGF 23, and Klotho protein or collagen deposition. A better understanding of all the mechanisms involved has prompted the search for alternative therapeutic targets, such as novel inhibitors of the renin-angiotensin-aldosterone system (RAAS), serelaxin, and neutralizing interleukin-11 (IL-11) antibodies. This review focuses on the molecular mechanisms of cardiac and renal fibrosis in the CKD and heart failure (HF) population and highlights the therapeutic alternatives designed to target the responsible pathways.
Collapse
Affiliation(s)
- Traian Chiuariu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Delia Șalaru
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Vasiliu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Ancuta Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adela Mihaela Șerban
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001 Cluj-Napoca, Romania
| | - Alexandra Zăvoi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Catalina Benchea
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Alexandra Clement
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Bogdan-Sorin Tudurachi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Radu Andy Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| |
Collapse
|
2
|
Zhang J, Cao J, Qian J, Gu X, Zhang W, Chen X. Regulatory mechanism of CaMKII δ mediated by RIPK3 on myocardial fibrosis and reversal effects of RIPK3 inhibitor GSK'872. Biomed Pharmacother 2023; 166:115380. [PMID: 37639745 DOI: 10.1016/j.biopha.2023.115380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Myocardial fibrosis (MF) remains a prominent challenge in heart disease. The role of receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is evident in the pathogenesis of numerous heart diseases. Concurrently, the activation of Ca2+/calmodulin-dependent protein kinase (CaMKII) is pivotal in cardiovascular disease (CVD). This study aimed to evaluate the impact and underlying mechanisms of RIPK3 on myocardial injury in MF and to elucidate the potential involvement of CaMKII. METHODS Building upon our previous research methods [1], wild-type (WT) mice and RIPK3 knockout (RIPK3 -/-) mice underwent random assignment for transverse aortic constriction (TAC) in vivo. Four weeks post-procedure, the MF model was effectively established. Parameters such as the extent of MF, myocardial injury, RIPK3 expression, necroptosis, CaMKII activity, phosphorylation of mixed lineage kinase domain-like protein (MLKL), mitochondrial ultrastructural details, and oxidative stress levels were examined. Cardiomyocyte fibrosis was simulated in vitro using angiotensin II on cardiac fibroblasts. RESULTS TAC reliably produced MF, myocardial injury, CaMKII activation, and necroptosis in mice. RIPK3 depletion ameliorated these conditions. The RIPK3 inhibitor, GSK'872, suppressed the expression of RIPK3 in myocardial fibroblasts, leading to improved fibrosis and inflammation, diminished CaMKII oxidation and phosphorylation levels, and the rectification of CaMKIIδ alternative splicing anomalies. Furthermore, GSK'872 downregulated the expressions of RIPK1, RIPK3, and MLKL phosphorylation, attenuated necroptosis, and bolstered the oxidative stress response. CONCLUSIONS Our data suggested that in MF mice, necroptosis was augmented in a RIPK3-dependent fashion. There seemed to be a positive correlation between CaMKII activation and RIPK3 expression. The adverse effects on myocardial fibrosis mediated by CaMKII δ through RIPK3 could potentially be mitigated by the RIPK3 inhibitor, GSK'872. This offered a fresh perspective on the amelioration and treatment of MF and myocardial injury.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China; School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Ji Cao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianan Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaosong Gu
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China; School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xianfan Chen
- Department of Pharmacy,Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
3
|
Andersen T, Ueland T, Aukrust P, Nilsen DW, Grundt H, Staines H, Pönitz V, Kontny F. Procollagen type 1 N-terminal propeptide is associated with adverse outcome in acute chest pain of suspected coronary origin. Front Cardiovasc Med 2023; 10:1191055. [PMID: 37731526 PMCID: PMC10507464 DOI: 10.3389/fcvm.2023.1191055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 09/22/2023] Open
Abstract
Background Extracellular matrix (ECM) is an integral player in the pathophysiology of a variety of cardiac diseases. Cardiac ECM is composed mainly of collagen, of which type 1 is the most abundant with procollagen type 1 N-terminal Propeptide (P1NP) as a formation marker. P1NP is associated with mortality in the general population, however, its role in myocardial infarction (MI) is still uncertain, and P1NP has not been investigated in acute chest pain. The objective of the current study was to assess the role of P1NP in undifferentiated acute chest pain of suspected coronary origin. Methods and results 813 patients from the Risk in Acute Coronary Syndromes study were included. This was a single-center study investigating biomarkers in consecutively enrolled patients with acute chest pain of suspected coronary origin, with a follow-up for up to 7 years. Outcome measures were a composite endpoint of all-cause death, new MI or stroke, as well as its individual components at 1, 2, and 7 years, and cardiac death at 1 and 2 years. In multivariable Cox regression analysis, quartiles of P1NP were significantly associated with the composite endpoint at 1 year of follow-up with a hazard ratio for Q4 of 1.82 (95% CI, 1.12-2.98). There was no other significant association with outcomes at any time points. Conclusion P1NP was found to be an independent biomarker significantly associated with adverse clinical outcome at one year in patients admitted to hospital for acute chest pain of suspected coronary origin. This is the first report in the literature on the prognostic value of P1NP in this clinical setting. Clinicaltrialsygov Identifier NCT00521976.
Collapse
Affiliation(s)
- Thomas Andersen
- Department of Anesthesiology, Stavanger University Hospital, Stavanger, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Thrombosis Research Centre (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Dennis W.T. Nilsen
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidi Grundt
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pulmonology, Stavanger University Hospital, Stavanger, Norway
| | - Harry Staines
- Sigma Statistical Services, Balmullo, United Kingdom
| | - Volker Pönitz
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Frederic Kontny
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
- Drammen Heart Centre, Drammen, Norway
| |
Collapse
|
4
|
Ureche C, Dodi G, Covic A, Nedelcu A, Volovăț SR, Sascău RA, Stătescu C, Covic A. Connection between Cardiac Fibrosis Biomarkers and Echocardiography Parameters in Advanced Chronic Kidney Disease Patients. J Clin Med 2023; 12:jcm12083003. [PMID: 37109335 PMCID: PMC10143889 DOI: 10.3390/jcm12083003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Myocardial fibrosis represents a mainstay pathway in the pathophysiology of uremic cardiomyopathy. This process leads to structural and functional changes in the heart, which can be detected by echocardiography. The purpose of our study was to determine the association between four echocardiographic parameters (ejection fraction (EF), global longitudinal strain (GLS), mean E/e' ratio, and left atrial volume indexed) and biomarkers associated with cardiac fibrosis, such as procollagen type I carboxy-terminal propeptide (PICP), procollagen type III N-terminal peptide (P3NP), and galectin-3 (Gal-3) in patients with end-stage renal disease (ESRD). METHODS 140 patients with ESRD were enrolled and investigated by echocardiography and the serum levels of the aforementioned biomarkers were determined at baseline. RESULTS The mean EF was 53.63 ± 8%, the mean GLS was -10.2 ± 5.3%, the mean E/e' ratio was 9.8 ± 4.3, and the mean left atrial volume indexed (LAVI) was 45.8 ± 14.2 mL/m2. The average levels for PICP, P3NP, and Gal-3 were 457.2 ± 240 µg/L, 242 ± 199.9 µg/L, and 10.7 ± 3.7 ng/mL, respectively. In regression analysis, PICP was strongly associated with all four echocardiographic parameters (EF: p = 0.0002, R2 = 0.69; GLS: p = 0.00001, R2 = 0.81; mean E/e': p = 0.00002; R2 = 0.89; LAVI: p = 0.003; R2 = 0.73). P3NP and Gal-3 were only associated with the EF (p = 0.01, R2 = 0.31 and p = 0.02; R2 = 0.35, respectively). CONCLUSION Our study evidenced that PICP, a collagen-derived biomarker, is associated with important echocardiography parameters, suggesting that it can serve as an indicator of the presence of subclinical systolic and diastolic dysfunction in patients with advanced CKD.
Collapse
Affiliation(s)
- Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, 700503 Iasi, Romania
| | - Gianina Dodi
- Biomedical Sciences Department, Faculty of Medical Bioengineering and Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Alexandra Covic
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
| | - Alina Nedelcu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
| | - Simona R Volovăț
- Department of Medical Oncology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
| | - Radu A Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, 700503 Iasi, Romania
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, 700503 Iasi, Romania
| | - Adrian Covic
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Nephrology Clinic, Dialysis, Renal Transplant Center, Dr. C.I. Parhon University Hospital, 700503 Iasi, Romania
| |
Collapse
|
5
|
Jones AL, Faerber J, Huang J, Ampah S, Wang Y, DeCost G, Gardner M, Naim MY, Reddy S, Goldmuntz E, Mercer-Rosa L. Biomarkers, Socioeconomic Factors, and Right Ventricular Function After Surgical Repair for Tetralogy of Fallot. Pediatr Cardiol 2023:10.1007/s00246-023-03108-x. [PMID: 36797379 PMCID: PMC10330615 DOI: 10.1007/s00246-023-03108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
Right ventricular (RV) dysfunction early after tetralogy of Fallot (TOF) increases post-operative morbidity. We investigated associations of circulating biomarkers and socioeconomic factors with early post-operative RV systolic function. Single-center prospective cohort study of infants undergoing TOF repair. Six serologic biomarkers of myocardial fibrosis and wall stress collected at the time of surgery were measured with immunoassay. Geocoding was performed for socioeconomic factors. Multivariate adaptive regression splines (MARS) models identified factors associated with RV function parameters: fractional area change (FAC), global longitudinal strain and strain rate, and free wall strain and strain rate. Seventy-one patients aged 3.5 months (IQR 2.4, 5.2) were included. Galectin-3 was the highest ranked predictor for FAC, global longitudinal strain, and free wall strain, and procollagen type-I carboxy-terminal propeptide (PICP) was the highest ranked predictor for global longitudinal strain rate and free wall strain rate. Several neighborhood characteristics were also highly ranked. Models adjusted R2 ranged from 0.71 to 0.85 (FAC, global longitudinal strain/strain rate), and 0.55-0.57 (RV free wall strain/strain rate). A combination of serologic biomarkers, socioeconomic, and clinical variables explain a significant proportion of the variability in RV function after TOF repair. These factors may inform pre-operative risk-stratification for these patients.
Collapse
Affiliation(s)
- Andrea L Jones
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Jennifer Faerber
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jing Huang
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Steve Ampah
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Yan Wang
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Grace DeCost
- Women and Infants Hospital of Rhode Island, Providence, RI, 02905, USA
| | - Monique Gardner
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Maryam Y Naim
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sushma Reddy
- Division of Cardiology, Department of Pediatrics, Lucile Packard Children's Hospital and Stanford University, Palo Alto, CA, 94304, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Laura Mercer-Rosa
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Andersen T, Ueland T, Aukrust P, Nilsen DW, Grundt H, Staines H, Kontny F. Podocan and Adverse Clinical Outcome in Patients Admitted With Suspected Acute Coronary Syndromes. Front Cardiovasc Med 2022; 9:867944. [PMID: 35669474 PMCID: PMC9163367 DOI: 10.3389/fcvm.2022.867944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Markers of bone and extracellular matrix (ECM) remodeling may be associated with adverse outcomes in atherosclerotic cardiovascular disease. Podocan is a newly discovered ECM glycoprotein, previously not studied in a chest pain population. We wanted to study the association between Podocan levels on admission and the risk of adverse outcomes in a chest pain population with suspected acute coronary syndromes. Methods A total of 815 patients from the Risk markers in Acute Coronary Syndrome (RACS) trial with suspected coronary chest pain were followed for 7 years. Blood samples were taken immediately after inclusion and stored in the biobank. Associations between Podocan and endpoints were assessed with Cox proportional hazards analyses. Results The median admission level of Podocan was 0.674 ng/ml (0.566–0.908 ng/ml). No significant association was found between Podocan quartile levels and all-cause death, neither at 1 year nor 2- or 7-years follow-up (p > 0.05 for all). Furthermore, no significant association could be shown between Podocan and cardiac death, myocardial infarction (MI), stroke, or the composites of all-cause death/MI/stroke or cardiac death/MI/stroke (p > 0.05 for all). Similarly, in a subgroup of patients with Troponin T-positive (n = 432) there was no significant association between Podocan and any of the outcome measures (p > 0.05 for all endpoints and points in time). Conclusion Podocan, a novel ECM biomarker, is not associated with all-cause mortality or other major cardiovascular adverse events in patients admitted with acute chest pain suspected to be of coronary origin. Clinical Trials.gov Identifier: NCT00521976.
Collapse
Affiliation(s)
- Thomas Andersen
- Department of Anesthesiology, Stavanger University Hospital, Stavanger, Norway
- *Correspondence: Thomas Andersen
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Dennis W. Nilsen
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidi Grundt
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pulmonology, Stavanger University Hospital, Stavanger, Norway
| | - Harry Staines
- Sigma Statistical Services, Balmullo, United Kingdom
| | - Frederic Kontny
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
- Drammen Heart Center, Drammen, Norway
| |
Collapse
|
7
|
Nikolov A, Popovski N. Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites 2022; 12:297. [PMID: 35448484 PMCID: PMC9025448 DOI: 10.3390/metabo12040297] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that two major proteins are responsible for the structural coherence of bounding cardiomyocytes. These biomolecules are known as myocardial fibrillar collagen type I (COL1) and type III (COL3). In addition, fibronectin, laminin, fibrillin, elastin, glycoproteins, and proteoglycans take part in the formation of cardiac extracellular matrix (ECM). In physiological conditions, collagen synthesis and degradation in human cardiac ECM are well-regulated processes, but they can be impaired in certain cardiovascular diseases, such as heart failure (HF). Myocardial remodeling is part of the central mechanism of HF and involves cardiomyocyte injury and cardiac fibrosis due to increased fibrillar collagen accumulation. COL1 and COL3 are predominantly involved in this process. Specific products identified as collagen-derived peptides are released in the circulation as a result of abnormal COL1 and COL3 turnover and myocardial remodeling in HF and can be detected in patients' sera. The role of these products in the pathogenesis of cardiac fibrosis and the possible clinical implications are the focus of numerous investigations. This paper reviews recent studies on COL1- and COL3-derived peptides in patients with HF. Their potential application as indicators of myocardial fibrosis and prognostic markers of HF is also highlighted.
Collapse
Affiliation(s)
- Asparuh Nikolov
- Cardiovascular Research Working Group, Division of Medicine, Institute for Scientific Research, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Nikola Popovski
- Clinic of Obstetrics and Gynaecology, Department of Obstetrics and Gynaecology, University Hospital Pleven, Medical University-Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
8
|
Gordon B, González-Fernández V, Dos-Subirà L. Myocardial fibrosis in congenital heart disease. Front Pediatr 2022; 10:965204. [PMID: 36467466 PMCID: PMC9715985 DOI: 10.3389/fped.2022.965204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial fibrosis resulting from the excessive deposition of collagen fibers through the myocardium is a common histopathologic finding in a wide range of cardiovascular diseases, including congenital anomalies. Interstitial fibrosis has been identified as a major cause of myocardial dysfunction since it distorts the normal architecture of the myocardium and impairs the biological function and properties of the interstitium. This review summarizes current knowledge on the mechanisms and detrimental consequences of myocardial fibrosis in heart failure and arrhythmias, discusses the usefulness of available imaging techniques and circulating biomarkers to assess this entity and reviews the current body of evidence regarding myocardial fibrosis in the different subsets of congenital heart diseases with implications in research and treatment.
Collapse
Affiliation(s)
- Blanca Gordon
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Víctor González-Fernández
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| |
Collapse
|
9
|
Sun C, Lu J, Long Y, Guo S, Jia W, Ning N, Hao H, Wang X, Bian Y, Liu H, Wang L. Adiponectin up-regulates the decrease of myocardial autophagic flux induced by β 1 -adrenergic receptor autoantibody partly dependent on AMPK. J Cell Mol Med 2021; 25:8464-8478. [PMID: 34322993 PMCID: PMC8419161 DOI: 10.1111/jcmm.16807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocytes autophagy is essential for maintaining cardiac function. Our previous studies have found that β1‐adrenergic receptor autoantibody (β1‐AA) induced the decreased myocardial autophagic flux, which resulted in cardiomyocyte death and cardiac dysfunction. And other studies demonstrated that β1‐AA induced the decrease of AMPK phosphorylation, the key hub of autophagy pathway, while adiponectin up‐regulated autophagic flux mediated by AMPK. However, it is not clear whether adiponectin improves the inhibition of myocardial autophagic flux induced by β1‐AA by up‐regulating the level of AMPK phosphorylation. In this study, it has been confirmed that β1‐AA induced the decrease of AMPK phosphorylation level in both vivo and vitro. Moreover, pretreatment of cardiomyocytes with AMPK inhibitor Compound C could further reduce the autophagic flux induced by β1‐AA. Adiponectin deficiency could aggravate the decrease of myocardial AMPK phosphorylation level, autophagic flux and cardiac function induced by β1‐AA. Further, exogenous adiponectin could reverse the decline of AMPK phosphorylation level and autophagic flux induced by β1‐AA and even reduce cardiomyocyte death. While pretreated with the Compound C, the adiponectin treatment did not improve the decreased autophagosome formation, but still improved the decreased autophagosome clearance induced by β1‐AA in cardiomyocytes. This study is the first time to confirm that β1‐AA could inhibit myocardial autophagic flux by down‐regulating AMPK phosphorylation level. Adiponectin could improve the inhibition of myocardial autophagic flux induced by β1‐AA partly dependent on AMPK, so as to provide an experimental basis for the treatment of patients with β1‐AA‐positive cardiac dysfunction.
Collapse
Affiliation(s)
- Cong Sun
- Department of Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Department of Pathology, Linfen Central Hospital, Linfen, China
| | - Jiebei Lu
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yaolin Long
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Shuai Guo
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Weiwei Jia
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Na Ning
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Haihu Hao
- Department of Orthopedics, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiaohui Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Li Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| |
Collapse
|