1
|
Wang X, Li W, Zhao X, Hu N, Wang X, Xiao X, Yang K, Sun T. Dysregulated Coagulation in Parkinson's Disease. Cells 2024; 13:1874. [PMID: 39594622 PMCID: PMC11592531 DOI: 10.3390/cells13221874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein accumulation, has been increasingly associated with coagulation dysfunction. This review synthesizes emerging evidence linking dysregulated coagulation to PD pathophysiology. We examine the alterations in coagulation parameters, including elevated fibrinogen levels, impaired fibrinolysis, and platelet dysfunction, which collectively contribute to a hypercoagulable state in PD patients. Epidemiological studies have revealed a higher incidence of thrombotic events, such as deep vein thrombosis (DVT) and stroke, among PD patients, suggesting significant comorbidity between PD and coagulation disorders. This review explores the potential pathophysiological mechanisms underlying this association, focusing on the roles of inflammation and oxidative stress. Additionally, we discuss the limitations of current research and propose future directions. This comprehensive analysis underscores the importance of understanding the coagulation-neurodegeneration axis in PD, which may lead to novel diagnostic and therapeutic strategies for this debilitating condition.
Collapse
Affiliation(s)
- Xinqing Wang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
| | - Wenxin Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
2
|
Lualdi M, Casale F, Rizzone MG, Zibetti M, Monti C, Colugnat I, Calvo A, De Marco G, Moglia C, Fuda G, Comi C, Chiò A, Lopiano L, Fasano M, Alberio T. Shared and Unique Disease Pathways in Amyotrophic Lateral Sclerosis and Parkinson's Disease Unveiled in Peripheral Blood Mononuclear Cells. ACS Chem Neurosci 2023; 14:4240-4251. [PMID: 37939393 DOI: 10.1021/acschemneuro.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Recent evidence supports an association between amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Indeed, prospective population-based studies demonstrated that about one-third of ALS patients develop parkinsonian (PK) signs, even though different neuronal circuitries are involved. In this context, proteomics represents a valuable tool to identify unique and shared pathological pathways. Here, we used two-dimensional electrophoresis to obtain the proteomic profile of peripheral blood mononuclear cells (PBMCs) from PD and ALS patients including a small cohort of ALS patients with parkinsonian signs (ALS-PK). After the removal of protein spots correlating with confounding factors, we applied a sparse partial least square discriminant analysis followed by recursive feature elimination to obtain two protein classifiers able to discriminate (i) PD and ALS patients (30 spots) and (ii) ALS-PK patients among all ALS subjects (20 spots). Functionally, the glycolysis pathway was significantly overrepresented in the first signature, while extracellular interactions and intracellular signaling were enriched in the second signature. These results represent molecular evidence at the periphery for the classification of ALS-PK as ALS patients that manifest parkinsonian signs, rather than comorbid patients suffering from both ALS and PD. Moreover, we confirmed that low levels of fibrinogen in PBMCs is a characteristic feature of PD, also when compared with another movement disorder. Collectively, we provide evidence that peripheral protein signatures are a tool to differentially investigate neurodegenerative diseases and highlight altered biochemical pathways.
Collapse
Affiliation(s)
- Marta Lualdi
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Federico Casale
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Mario Giorgio Rizzone
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Maurizio Zibetti
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Chiara Monti
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Ilaria Colugnat
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Andrea Calvo
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Giovanni De Marco
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Cristina Moglia
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Giuseppe Fuda
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, University of Piemonte Orientale, and Sant'Andrea Hospital, I-13100 Vercelli, Italy
| | - Adriano Chiò
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Leonardo Lopiano
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Mauro Fasano
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Tiziana Alberio
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| |
Collapse
|
3
|
Chelliah SS, Bhuvanendran S, Magalingam KB, Kamarudin MNA, Radhakrishnan AK. Identification of blood-based biomarkers for diagnosis and prognosis of Parkinson's disease: A systematic review of proteomics studies. Ageing Res Rev 2022; 73:101514. [PMID: 34798300 DOI: 10.1016/j.arr.2021.101514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterised by the loss of motor function and dopamine neurons. Therapeutic avenues remain a challenge due to lack of accuracy in early diagnosis, monitoring of disease progression and limited therapeutic options. Proteomic platforms have been utilised to discover biomarkers for numerous diseases, a tool that may benefit the diagnosis and monitoring of disease progression in PD patients. Therefore, this systematic review focuses on analysing blood-based candidate biomarkers (CB) identified via proteomics platforms for PD. This study systematically reviewed articles across six databases (EMBASE, Cochrane, Ovid Medline, Scopus, Science Direct and PubMed) published between 2010 and 2020. Of the 504 articles identified, 12 controlled-PD studies were selected for further analysis. A total of 115 candidate biomarkers (CB) were identified across selected 12-controlled studies, of which 23 CB were found to be replicable in more than two cohorts. Using the PANTHER Go-Slim classification system and STRING network, the gene function and protein interactions between biomarkers were analysed. Our analysis highlights Apolipoprotein A-I (ApoA-I), which is essential in lipid metabolism, oxidative stress, and neuroprotection demonstrates high replicability across five cohorts with consistent downregulation across four cohorts. Since ApoA-I was highly replicable across blood fractions, proteomic platforms and continents, its relationship with cholesterol, statin and oxidative stress as PD biomarker, its role in the pathogenesis of PD is discussed in this paper. The present study identified ApoA-I as a potential biomarker via proteomics analysis of PD for the early diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
4
|
Dixit A, Mehta R, Singh AK. Proteomics in Human Parkinson's Disease: Present Scenario and Future Directions. Cell Mol Neurobiol 2019; 39:901-915. [PMID: 31190159 PMCID: PMC11457823 DOI: 10.1007/s10571-019-00700-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is an age-related, threatening neurodegenerative disorder with no reliable treatment till date. Identification of specific and reliable biomarker is a major challenge for disease diagnosis and designing effective therapeutic strategy against it. PD pathology at molecular level involves abnormal expression and function of several proteins, including alpha-synuclein. These proteins affect the normal functioning of neurons through various post-translational modifications and interaction with other cellular components. The role of protein anomalies during PD pathogenesis can be better understood by the application of proteomics approach. A number of proteomic studies conducted on brain tissue, blood, and cerebrospinal fluid of PD patients have identified a wide array of protein alterations underlying disease pathogenesis. However, these studies are limited by the types of brain regions or biofluids utilized in the research. For a complete understanding of PD mechanism and discovery of reliable protein biomarkers, it is essential to analyze the proteome of different PD-associated brain regions and easily accessible biofluids such as saliva and urine. The present review summarizes the major advances in the field of PD research in humans utilizing proteomic techniques. Moreover, potential samples for proteomic analysis and limitations associated with the analyses of different types of samples have also been discussed.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Rachna Mehta
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
5
|
Unequivocal Biomarker for Parkinson’s Disease: A Hunt that Remains a Pester. Neurotox Res 2019; 36:627-644. [DOI: 10.1007/s12640-019-00080-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
|
6
|
Kovaleva TF, Maksimova NS, Zhukov IY, Pershin VI, Mukhina IV, Gainullin MR. Cofilin: Molecular and Cellular Functions and Its Role in the Functioning of the Nervous System. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Alberio T, Forlani G, Lualdi M, Tosi G, Accolla RS, Fasano M. Neonatal Fc receptor is involved in the protection of fibrinogen after its intake in peripheral blood mononuclear cells. J Transl Med 2018. [PMID: 29540212 PMCID: PMC5853075 DOI: 10.1186/s12967-018-1446-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Fibrinogen is a central player in the blood coagulation cascade and one of the most abundant plasma proteins. This glycoprotein also triggers important events (e.g., cell spreading, the respiratory burst and degranulation) in neutrophil cells via a αMβ2 integrin-mediated binding to the cell surface. Yet, little is known about the interaction of fibrinogen with leukocytes other than neutrophils or stimulated monocytes, although high amounts of fibrinogen protein can also be found in lymphocytes, particularly in T-cells. The aim of the present work is to unveil the dynamics and the function of fibrinogen intake in T-cells. Methods Using the Jurkat cell line as a T-cells model we performed fibrinogen intake/competition experiments. Moreover, by means of a targeted gene knock-down by RNA-interference, we investigated the dynamics of the intake mechanism. Results Here we show that (i) fibrinogen, although not expressed in human peripheral blood mononuclear cells, can be internalized by these cells; (ii) fibrinogen internalization curves show a hyperbolic behavior, which is affected by the presence of serum in the medium, (iii) FITC-conjugated fibrinogen is released and re-internalized by adjacent cells, (iv) the presence of human serum albumin (HSA) or immunoglobulin G (IgG), which are both protected from intracellular degradation by the interaction with the neonatal Fc receptor (FcRn), results in a decreased amount of internalized fibrinogen, and (v) FcRn-knockdown affects the dynamics of fibrinogen internalization. Conclusions We demonstrated here for the first time that fibrinogen can be internalized and released by T-lymphocyte cells. Moreover, we showed that the presence of serum, HSA or IgG in the culture medium results in a reduction of the amount of internalized fibrinogen in these cells. Thus, we obtained experimental evidence for the expression of FcRn in T-lymphocyte cells and we propose this receptor as involved in the protection of fibrinogen from intracellular lysosomal degradation. Electronic supplementary material The online version of this article (10.1186/s12967-018-1446-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiziana Alberio
- Department of Science and High Technology, University of Insubria, Via Manara, 7, 21052, Busto Arsizio, VA, Italy. .,Center of Neuroscience, University of Insubria, Busto Arsizio, Italy. .,Center of Bioinformatics, University of Insubria, Como, Italy.
| | - Greta Forlani
- Center of Bioinformatics, University of Insubria, Como, Italy.,Department of Medicine and Surgery, University of Insubria, Via Ottorino Rossi, 9, 21100, Varese, Italy
| | - Marta Lualdi
- Department of Science and High Technology, University of Insubria, Via Manara, 7, 21052, Busto Arsizio, VA, Italy
| | - Giovanna Tosi
- Department of Medicine and Surgery, University of Insubria, Via Ottorino Rossi, 9, 21100, Varese, Italy
| | - Roberto S Accolla
- Center of Bioinformatics, University of Insubria, Como, Italy.,Department of Medicine and Surgery, University of Insubria, Via Ottorino Rossi, 9, 21100, Varese, Italy
| | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, Via Manara, 7, 21052, Busto Arsizio, VA, Italy.,Center of Neuroscience, University of Insubria, Busto Arsizio, Italy.,Center of Bioinformatics, University of Insubria, Como, Italy
| |
Collapse
|
8
|
Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress. Antioxidants (Basel) 2017; 6:antiox6030051. [PMID: 28698499 PMCID: PMC5618079 DOI: 10.3390/antiox6030051] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson's disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively), collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) and nitric oxide synthase (NOS). Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA) used routinely in the treatment of Parkinson's disease (not as a free radical scavenger), and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone) that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1). Although they share the targets in reversing the cytotoxic effects of H₂O₂, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein) with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.
Collapse
|
9
|
Li XZ, Zhang SN, Lu F, Liu SM. Microarray Expression Analysis for the Paradoxical Roles of Acanthopanax senticosus Harms in Treating α-Synucleinopathies. Phytother Res 2015; 30:243-52. [PMID: 26612828 DOI: 10.1002/ptr.5522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 01/04/2023]
Abstract
α-Synuclein is a key player in the pathogenesis of neurodegenerative disorders with Lewy bodies. Our previous studies have also showed that Acanthopanax senticosus harms (AS) could significantly suppress α-synuclein overexpression and toxicity. Identifying the RNAs related to α-synucleinopathies may facilitate understanding the pathogenesis of the diseases and the safe application of AS in the clinic. Microarray expression profiling of long non-coding RNAs (lncRNAs) and mRNAs was undertaken in control non-transgenic and human α-synuclein transgenic mice. The effects of AS on central nervous system (CNS) in pathology and physiology were investigated based on the lncRNA/mRNA targets analysis. In total, 341 lncRNAs and 279 mRNAs were differentially expressed by α-synuclein stimulus, among which 29 lncRNAs and 25 mRNAs were involved in the anti-α-synucleinopathies mechanism of AS. However, the levels of 19/29 lncRNAs and 12/25 mRNAs in AS group were similar to those in α-synuclein group, which may cause potential neurotoxicity analogous to α-synuclein. This study demonstrated that some of lncRNAs/mRNAs were involved in α-synuclein related pathophysiology, and AS produced the bidirectional effects on CNS under pathological and physiological conditions.
Collapse
Affiliation(s)
- Xu-zhao Li
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Pharmacy, GuiYang College of Traditional Chinese Medicine, GuiYang, 550025, China
| | - Shuai-nan Zhang
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fang Lu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shu-min Liu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
10
|
Conti A, Alessio M. Comparative Proteomics for the Evaluation of Protein Expression and Modifications in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:117-52. [PMID: 26315764 DOI: 10.1016/bs.irn.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Together with hypothesis-driven approaches, high-throughput differential proteomic analysis performed primarily not only in human cerebrospinal fluid and serum but also on protein content of other tissues (blood cells, muscles, peripheral nerves, etc.) has been used in the last years to investigate neurodegenerative diseases. Even if the goal for these analyses was mainly the discovery of neurodegenerative disorders biomarkers, the characterization of specific posttranslational modifications (PTMs) and the differential protein expression resulted in being very informative to better define the pathological mechanisms. In this chapter are presented and discussed the positive aspects and challenges of the outcomes of some of our investigations on neurological and neurodegenerative disease, in order to highlight the important role of protein PTMs studies in proteomics-based approaches.
Collapse
Affiliation(s)
- Antonio Conti
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Alessio
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
11
|
Perga S, Giuliano Albo A, Lis K, Minari N, Falvo S, Marnetto F, Caldano M, Reviglione R, Berchialla P, Capobianco MA, Malentacchi M, Corpillo D, Bertolotto A. Vitamin D Binding Protein Isoforms and Apolipoprotein E in Cerebrospinal Fluid as Prognostic Biomarkers of Multiple Sclerosis. PLoS One 2015; 10:e0129291. [PMID: 26046356 PMCID: PMC4457896 DOI: 10.1371/journal.pone.0129291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system with a heterogeneous and unpredictable course. To date there are no prognostic biomarkers even if they would be extremely useful for early patient intervention with personalized therapies. In this context, the analysis of inter-individual differences in cerebrospinal fluid (CSF) proteome may lead to the discovery of biological markers that are able to distinguish the various clinical forms at diagnosis. METHODS To this aim, a two dimensional electrophoresis (2-DE) study was carried out on individual CSF samples from 24 untreated women who underwent lumbar puncture (LP) for suspected MS. The patients were clinically monitored for 5 years and then classified according to the degree of disease aggressiveness and the disease-modifying therapies prescribed during follow up. RESULTS The hierarchical cluster analysis of 2-DE dataset revealed three protein spots which were identified by means of mass spectrometry as Apolipoprotein E (ApoE) and two isoforms of vitamin D binding protein (DBP). These three protein spots enabled us to subdivide the patients into subgroups correlated with clinical classification (MS aggressive forms identification: 80%). In particular, we observed an opposite trend of values for the two protein spots corresponding to different DBP isoforms suggesting a role of a post-translational modification rather than the total protein content in patient categorization. CONCLUSIONS These findings proved to be very interesting and innovative and may be developed as new candidate prognostic biomarkers of MS aggressiveness, if confirmed.
Collapse
Affiliation(s)
- Simona Perga
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Alessandra Giuliano Albo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Katarzyna Lis
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Nicoletta Minari
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Sara Falvo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Fabiana Marnetto
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Marzia Caldano
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Raffaella Reviglione
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marco A. Capobianco
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
| | - Maria Malentacchi
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
| | - Davide Corpillo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Antonio Bertolotto
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| |
Collapse
|
12
|
Giuliano S, Agresta AM, De Palma A, Viglio S, Mauri P, Fumagalli M, Iadarola P, Montalbetti L, Salvini R, Bardoni A. Proteomic analysis of lymphoblastoid cells from Nasu-Hakola patients: a step forward in our understanding of this neurodegenerative disorder. PLoS One 2014; 9:e110073. [PMID: 25470616 PMCID: PMC4254282 DOI: 10.1371/journal.pone.0110073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022] Open
Abstract
Nasu-Hakola disease (NHD) is a recessively inherited rare disorder characterized by a combination of neuropsychiatric and bone symptoms which, while being unique to this disease, do not provide a rationale for the unambiguous identification of patients. These individuals, in fact, are likely to go unrecognized either because they are considered to be affected by other kinds of dementia or by fibrous dysplasia of bone. Given that dementia in NHD has much in common with Alzheimer’s disease and other neurodegenerative disorders, it cannot be expected to achieve the differential diagnosis of this disease without performing a genetic analysis. Under this scenario, the availability of protein biomarkers would indeed provide a novel context to facilitate interpretation of symptoms and to make the precise identification of this disease possible. The work here reported was designed to generate, for the first time, protein profiles of lymphoblastoid cells from NHD patients. Two-dimensional electrophoresis (2-DE) and nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) have been applied to all components of an Italian family (seven subjects) and to five healthy subjects included as controls. Comparative analyses revealed differences in the expression profile of 21 proteins involved in glucose metabolism and information pathways as well as in stress responses.
Collapse
Affiliation(s)
- Serena Giuliano
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy; Laboratoire d'excellence-Ion channel science and therapeutics, UMR, CNRS, Nice, France
| | - Anna Maria Agresta
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Antonella De Palma
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Pierluigi Mauri
- Institute for Biochemical Technologies, Proteomics and Metabolomics Unit, National Research Council, Segrate (Milano), Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Lorenza Montalbetti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Licker V, Burkhard PR. Proteomics as a new paradigm to tackle Parkinson’s disease research challenges. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Lu W, Wan X, Liu B, Rong X, Zhu L, Li P, Li J, Wang L, Cui L, Wang X. Specific changes of serum proteins in Parkinson's disease patients. PLoS One 2014; 9:e95684. [PMID: 24769800 PMCID: PMC4000217 DOI: 10.1371/journal.pone.0095684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/28/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to identify and validate protein change in the serum from PD patients. We used serum samples from 21 PD patients and 20 age-matched normal people as control to conduct a comparative proteomic study. We performed 2-DE and analyzed the differentially expressed protein spots by LC-MS/MS. In PD group 13 spots were shown to be differentially expressed compared to control group. They were identified as 6 proteins. Among these, 3 proteins were confirmed by Western blot analysis. It showed that the frequency of fibrinogen γ-chain (FGG) appeared 70% in PD, which could not be detected in control group. The protein of inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4) was found to exist two forms in serum. The full size (120 kDa) of the protein was increased and the fragmented ITI-H4 (35 kDa) was decreased in PD group. The ratio of full size ITI-H4 to fragmented ITI-H4 in PD patients was 3.85±0.29-fold higher than in control group. Furthermore, fragmented Apo A-IV (∼26 kDa) was mainly detected in control group, while it was rare to be found in PD group. Above findings might be useful for diagnosis of PD. When the expressions of FGG and 120 kDa ITI-H4 are increase, as well as ∼26 kDa Apo A-IV disappear would provide strong evidence for PD.
Collapse
Affiliation(s)
- Wenwen Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinhua Wan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianfang Rong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (LC); (XW)
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (LC); (XW)
| |
Collapse
|
15
|
Srivastava G, Singh K, Tiwari MN, Singh MP. Proteomics in Parkinson’s disease: current trends, translational snags and future possibilities. Expert Rev Proteomics 2014; 7:127-39. [DOI: 10.1586/epr.09.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Saracchi E, Fermi S, Brighina L. Emerging candidate biomarkers for Parkinson's disease: a review. Aging Dis 2013; 5:27-34. [PMID: 24490114 DOI: 10.14366/ad.2014.050027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disorder leading to progressive motor impairment affecting more than 1% of the over-65 population. In spite of considerable progress in identifying the genetic and biochemical basis of PD, to date the diagnosis remains clinical and disease-modifying therapies continue to be elusive. A cornerstone in recent PD research is the investigation of biological markers that could help in identifying at-risk population or to track disease progression and response to therapies. Although none of these parameters has been validated for routine clinical practice yet, however some biochemical candidates hold great promise for application in PD patients, especially in the early stages of disease, and it is likely that in the future the diagnosis of PD will require a combination of genetic, imaging and laboratory data. In this review we discuss the most interesting biochemical markers for PD (including the "-omics" techniques), focusing on the methodological challenges in using ex vivo blood/CSF/tissue-based biomarkers and suggesting alternative strategies to overcome the difficulties that still prevent their actual use.
Collapse
Affiliation(s)
- Enrico Saracchi
- Department of Neurology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Silvia Fermi
- Neurology Department, Azienda Ospedaliera di Lodi, 26900 Lodi, Italy
| | - Laura Brighina
- Department of Neurology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
17
|
Alberio T, Pippione AC, Zibetti M, Olgiati S, Cecconi D, Comi C, Lopiano L, Fasano M. Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson's disease. Sci Rep 2012; 2:953. [PMID: 23233872 PMCID: PMC3518817 DOI: 10.1038/srep00953] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/19/2012] [Indexed: 12/26/2022] Open
Abstract
The diagnosis of Parkinson's disease (PD) is currently based on the clinical evaluation of extrapyramidal signs with a considerable error rate. The identification of specific markers might allow PD diagnosis before the onset of classical motor symptoms. By two-dimensional electrophoresis we identified proteome alterations in T-lymphocytes of 17 control subjects and 15 PD patients. The observed changes were used to build predictive models that were verified by the leave-one-out cross-validation. We further built two functions able to stage the subjects. We chose to verify by Western blotting the identity of spots corresponding to β-fibrinogen and transaldolase, two recurrent proteins in six out of 20 spots. β-Fibrinogen levels are lowered in PD patients, whereas a heavy transaldolase set of isoforms was more abundant. Eventually, we identified a list of seven proteins showing different levels in early-onset with respect to late-onset PD patients.
Collapse
Affiliation(s)
- Tiziana Alberio
- Division of Biomedical Sciences, Department of Theoretical and Applied Sciences, University of Insubria , Busto Arsizio, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Munsie LN, Desmond CR, Truant R. Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress. J Cell Sci 2012; 125:3977-88. [PMID: 22623727 DOI: 10.1242/jcs.097667] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cofilin protein is involved in regulating the actin cytoskeleton during typical steady state conditions, as well as during cell stress conditions where cofilin saturates F-actin, forming cofilin-actin rods. Cofilin can enter the nucleus through an active nuclear localization signal (NLS), accumulating in nuclear actin rods during stress. Here, we characterize the active nuclear export of cofilin through a leptomycin-B-sensitive, CRM1-dependent, nuclear export signal (NES). We also redefine the NLS of cofilin as a bipartite NLS, with an additional basic epitope required for nuclear localization. Using fluorescence lifetime imaging microscopy (FLIM) and Förster resonant energy transfer (FRET) between cofilin moieties and actin, as well as automated image analysis in live cells, we have defined subtle mutations in the cofilin NLS that allow cofilin to bind actin in vivo and affect cofilin dynamics during stress. We further define the requirement of cofilin-actin rod formation in a system of cell stress by temporal live-cell imaging. We propose that cofilin nuclear shuttling is critical for the cofilin-actin rod stress response with cofilin dynamically communicating between the nucleus and cytoplasm during cell stress.
Collapse
Affiliation(s)
- Lise Nicole Munsie
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | | | | |
Collapse
|
19
|
Ai S, Shen L, Guo J, Feng X, Tang B. DNA Methylation as a Biomarker for Neuropsychiatric Diseases. Int J Neurosci 2012; 122:165-76. [DOI: 10.3109/00207454.2011.637654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Proteomics in Parkinson's disease: An unbiased approach towards peripheral biomarkers and new therapies. J Biotechnol 2011; 156:325-37. [DOI: 10.1016/j.jbiotec.2011.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 06/24/2011] [Accepted: 08/08/2011] [Indexed: 12/27/2022]
|
21
|
van Dijk KD, Berendse HW, Drukarch B, Fratantoni SA, Pham TV, Piersma SR, Huisman E, Brevé JJP, Groenewegen HJ, Jimenez CR, van de Berg WDJ. The proteome of the locus ceruleus in Parkinson's disease: relevance to pathogenesis. Brain Pathol 2011; 22:485-98. [PMID: 21988495 DOI: 10.1111/j.1750-3639.2011.00540.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The locus ceruleus is among the earliest affected brain regions in Parkinson's disease (PD) showing Lewy body pathology and neuronal loss. To improve our understanding of the pathogenesis of PD, we performed the first proteomic analysis ever of post-mortem locus ceruleus tissue of six pathologically confirmed PD patients, and six age- and gender-matched non-neurological controls. In total 2495 proteins were identified, of which 87 proteins were differentially expressed in the locus ceruleus of PD patients compared with controls. The majority of these differentially expressed proteins are known to be involved in processes that have been implicated in the pathogenesis of PD previously, including mitochondrial dysfunction, oxidative stress, protein misfolding, cytoskeleton dysregulation and inflammation. Several individual proteins were identified that have hitherto not been associated with PD, such as regucalcin, which plays a role in maintaining intracellular calcium homeostasis, and isoform 1 of kinectin, which is involved in transport of cellular components along microtubules. In addition, pathway analysis suggests a pathogenetic role for aminoacyl-tRNA-biosynthesis. These findings indicate that the proteome of the locus ceruleus of PD patients and non-neurological controls provides data that are relevant to the pathogenesis of PD, reflecting both known and potentially novel pathogenetic pathways.
Collapse
Affiliation(s)
- Karin D van Dijk
- Department of Anatomy and Neurosciences, Section Functional Neuroanatomy, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Biomarkers of Parkinson's disease and Dementia with Lewy bodies. Prog Neurobiol 2011; 95:601-13. [PMID: 21983334 DOI: 10.1016/j.pneurobio.2011.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are progressive and disabling neurodegenerative disorders, in which signs and symptoms overlap with each other and with other neurodegenerative conditions. Currently, diagnosis, measurement of progression, and response to therapeutic intervention rely upon clinical observation. However, there remains a critical need for validated biomarkers in each of these areas. A definitive diagnostic test would improve clinical management and enrollment into clinical trials. An objective measure of progression is vitally important in identifying neuroprotective interventions. Biomarkers may also provide insight into pathogenesis, and might therefore suggest possible novel targets for therapeutic intervention. In addition, certain biomarkers might be of use in monitoring the biochemical and physiological effects of therapeutic interventions. Development of diagnostic biomarkers has focused until recently upon imaging techniques based upon measuring loss of dopamine neurons. Additionally, advances in understanding the genetic contribution to neurodegenerative disorders, in particular in PD, have identified multiple causative genes and risk factors that in some cases may help estimate PD risk. However, recent availability of increasingly sophisticated bioinformatics technology has rendered development of fluid biomarkers feasible, opening the possibility of generally accessible blood or cerebrospinal fluid (CSF) tests that could impact upon diagnosis, management, and research in PD, PDD, and DLB.
Collapse
|
23
|
Jackson VC, Dewilde S, Albo AG, Lis K, Corpillo D, Canepa B. The activity of aminoacyl-tRNA synthetase-interacting multi-functional protein 1 (AIMP1) on endothelial cells is mediated by the assembly of a cytoskeletal protein complex. J Cell Biochem 2011; 112:1857-68. [DOI: 10.1002/jcb.23104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Munsie L, Caron N, Atwal RS, Marsden I, Wild EJ, Bamburg JR, Tabrizi SJ, Truant R. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum Mol Genet 2011; 20:1937-51. [PMID: 21355047 PMCID: PMC3080606 DOI: 10.1093/hmg/ddr075] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/14/2011] [Accepted: 02/21/2011] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is caused by an expanded CAG tract in the Interesting transcript 15 (IT15) gene encoding the 350 kDa huntingtin protein. Cellular stresses can trigger the release of huntingtin from the endoplasmic reticulum, allowing huntingtin nuclear entry. Here, we show that endogenous, full-length huntingtin localizes to nuclear cofilin-actin rods during stress and is required for the proper stress response involving actin remodeling. Mutant huntingtin induces a dominant, persistent nuclear rod phenotype similar to that described in Alzheimer's disease for cytoplasmic cofilin-actin rods. Using live cell temporal studies, we show that this stress response is similarly impaired when mutant huntingtin is present, or when normal huntingtin levels are reduced. In clinical lymphocyte samples from HD patients, we have quantitatively detected cross-linked complexes of actin and cofilin with complex formation varying in correlation with disease progression. By live cell fluorescence lifetime imaging measurement-Förster resonant energy transfer studies and western blot assays, we quantitatively observed that stress-activated tissue transglutaminase 2 (TG2) is responsible for the actin-cofilin covalent cross-linking observed in HD. These data support a direct role for huntingtin in nuclear actin re-organization, and describe a new pathogenic mechanism for aberrant TG2 enzymatic hyperactivity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lise Munsie
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, CanadaL8N3Z5
| | - Nicholas Caron
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, CanadaL8N3Z5
| | - Randy Singh Atwal
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, CanadaL8N3Z5
| | - Ian Marsden
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA and
| | - Edward J. Wild
- Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 1NG, UK
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA and
| | - Sarah J. Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 1NG, UK
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, CanadaL8N3Z5
| |
Collapse
|
25
|
Alberio T, Anchieri C, Piacentini L, Gentile G, Simmaco M, Biasin M, Fasano M. Proteomic characterization of Jurkat T leukemic cells after dopamine stimulation: A model of circulating dopamine-sensitive cells. Biochimie 2011; 93:892-8. [DOI: 10.1016/j.biochi.2011.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
|
26
|
Robinson PA. Understanding the molecular basis of Parkinson's disease, identification of biomarkers and routes to therapy. Expert Rev Proteomics 2010; 7:565-78. [PMID: 20653510 DOI: 10.1586/epr.10.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
These are really exciting times in the field of Parkinson's disease research. Although the etiology of sporadic disease still remains a mystery, many of the proteins associated with hereditary disease (5-10% of all disease) have now been identified. Only time will tell whether proteins associated with hereditary disease are involved in the development of sporadic disease. The most valuable proteomic studies performed to date are, and continue to be, those aimed at identifying endogenous binding partners, substrates, post-translational modifications and cellular pathways affected by these proteins. Similar to global proteomic approaches, even these approaches have surprisingly often been characterized by the production of very long lists of proteins. Consequently, the parallel development of more refined protein-protein interactions maps has aided the chance of identifying those protein complexes and/or cellular pathways, which, when disrupted, lead to the development of disease. The knowledge gained from these studies is essential, as targeting the activities of these proteins, or the pathways they operate in, currently offers the best opportunity to develop new therapeutic strategies to treat the disease. They may include agents to modulators of kinase activities (e.g., PINK1 and LRRK2), modulators of the activity of the ubiquitin-protein ligase, Parkin, proteostasis agents to block alpha-synuclein filament assembly and toxicity, or promote the refolding of mutant proteins, modulators of alpha-synuclein transfer between cells, reagents to regulate cargo dynamics along axonal microtubule networks, stimulators of autophagy and/or modulators of cellular stress pathways. The second major challenge will be to identify biomarkers to enable population screening to identify those with asymptomatic early-stage disease. Whether the analysis of blood or urine samples will yield such a marker, remains to be determined. Success or failure will be highly dependent on adopting strict standard operating procedures for the collection, processing and storage of samples, combined with the need for the identification of the most robust methods of prefractionation of samples to remove the most abundant proteins prior to proteomic screening.
Collapse
Affiliation(s)
- Philip A Robinson
- Section of Ophthalmology and Neuroscience, Wellcome Trust Brenner Building, Leeds Institute for Molecular Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|