1
|
Tur EK, Ari BC. The impact of uric acid levels in the pathophysiology and its contribution to the prediction of diagnosis in restless legs syndrome. Sleep Biol Rhythms 2025; 23:39-45. [PMID: 39801939 PMCID: PMC11717730 DOI: 10.1007/s41105-024-00549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/15/2024] [Indexed: 01/16/2025]
Abstract
Restless legs syndrome (RLS) is characterized by an uncomfortable urge to move the legs, worsened in the evening, occurring at rest, and relieved temporarily by movement. Although its pathophysiology remains incompletely understood, oxidative stress has been suggested. Uric acid (UA) is a marker associated with oxidative stress, and its reduced levels pose a risk for certain neurodegenerative diseases. In this study, we aimed to assess serum UA concentrations in RLS patients to gain insights into its role in the etiopathogenesis of the condition.: This study involved 200 individuals. Serum UA levels were compared with clinical parameters. Disease severity was assessed, categorizing patients into "mild," "moderate," "severe," and "very severe" subgroups. Comparative analysis of UA levels was conducted between these subgroups and the control group. Patients exhibited a statistically significant reduction in UA levels compared to controls (p = 0.001; p < 0.01). No significant disparities in UA levels were observed among patients based on RLS scores (p > 0.05). The generalized linear model in which UA serves as the dependent variable revealed statistically significant associations with the "moderate" and "severe" stages of RLS, as well as age (p < 0.05). Additionally, a ROC curve analysis was executed to evaluate the potential of UA as a biomarker. The ROC analysis, focusing on the patient-control classification, revealed a statistically significant area under the curve (AUC = 0.848, p < 0.001). Our study supports the hypothesis implicating serum UA levels in RLS pathogenesis. Further understanding of UA and its physiological effects will clarify on its role in RLS pathophysiology.
Collapse
Affiliation(s)
- Esma Kobak Tur
- University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Neurology, Istanbul, Turkey
| | - Buse Cagla Ari
- Bahcesehir University Medical Faculty, Neurology, Istanbul, Turkey
| |
Collapse
|
2
|
Wang M, Tang Z. No causal relationship between serum urate and neurodegenerative diseases: A Mendelian randomization study. Exp Gerontol 2024; 194:112503. [PMID: 38955238 DOI: 10.1016/j.exger.2024.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Observational studies have shown that increased serum urate is associated with a lower risk of neurodegenerative diseases (NDs), but the causality remains unclear. We employed a two-sample Mendelian randomization (MR) approach to assess the causal relationship between serum urate and four common subtypes of NDs, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). METHODS Serum urate data came from the CKDGen Consortium. GWAS data for PD, AD, ALS, and MS were obtained from four databases in the primary analysis and then acquired statistics from the FinnGen consortium for replication and meta-analysis. Inverse variance weighted (IVW), weighted median (WM), and MR-Egger regression methods were applied in the MR analyses. Pleiotropic effects, heterogeneity, and leave-one-out analyses were evaluated to validate the results. RESULTS There was no evidence for the effect of serum urate on PD (OR: 1.00, 95 % CI: 0.90-1.11, P = 0.97), AD (OR: 1.02, 95 % CI: 1.00-1.04, P = 0.06), ALS (OR: 1.05, 95 % CI: 0.97-1.13, P = 0.22), and MS (OR: 1.01, 95 % CI: 0.89-1.14, P = 0.90) risk when combined with the FinnGen consortium, neither was any evidence of pleiotropy detected between the instrumental variables (IVs). CONCLUSION The MR analysis suggested that serum urate may not be causally associated with a risk of PD, AD, ALS, and MS.
Collapse
Affiliation(s)
- Min Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhiquan Tang
- People's Hospital of Yushan District, Ma'anshan, Anhui 243000, China.
| |
Collapse
|
3
|
Elango R, Banaganapalli B, Mujalli A, AlRayes N, Almaghrabi S, Almansouri M, Sahly A, Jadkarim GA, Malik MZ, Kutbi HI, Shaik NA, Alefishat E. Potential Biomarkers for Parkinson Disease from Functional Enrichment and Bioinformatic Analysis of Global Gene Expression Patterns of Blood and Substantia Nigra Tissues. Bioinform Biol Insights 2023; 17:11779322231166214. [PMID: 37153842 PMCID: PMC10155030 DOI: 10.1177/11779322231166214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 05/10/2023] Open
Abstract
The Parkinson disease (PD) is the second most common neurodegenerative disorder affecting the central nervous system and motor functions. The biological complexity of PD is yet to reveal potential targets for intervention or to slow the disease severity. Therefore, this study aimed to compare the fidelity of blood to substantia nigra (SN) tissue gene expression from PD patients to provide a systematic approach to predict role of the key genes of PD pathobiology. Differentially expressed genes (DEGs) from multiple microarray data sets of PD blood and SN tissue from GEO database are identified. Using the theoretical network approach and variety of bioinformatic tools, we prioritized the key genes from DEGs. A total of 540 and 1024 DEGs were identified in blood and SN tissue samples, respectively. Functional pathways closely related to PD such as ERK1 and ERK2 cascades, mitogen-activated protein kinase (MAPK) signaling, Wnt, nuclear factor-κB (NF-κB), and PI3K-Akt signaling were observed by enrichment analysis. Expression patterns of 13 DEGs were similar in both blood and SN tissues. Comprehensive network topological analysis and gene regulatory networks identified additional 10 DEGs functionally connected with molecular mechanisms of PD through the mammalian target of rapamycin (mTOR), autophagy, and AMP-activated protein kinase (AMPK) signaling pathways. Potential drug molecules were identified by chemical-protein network and drug prediction analysis. These potential candidates can be further validated in vitro/in vivo to be used as biomarkers and/or novel drug targets for the PD pathology and/or to arrest or delay the neurodegeneration over the years, respectively.
Collapse
Affiliation(s)
- Ramu Elango
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Laboratory Medicine,
Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi
Arabia
| | - Nuha AlRayes
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
- Department of Medical Laboratory
Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory
Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah,
Saudi Arabia
- Center of Innovation in Personalized
Medicine (CIPM), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Almansouri
- Department of Clinical Biochemistry,
Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Sahly
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Gada Ali Jadkarim
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Zubbair Malik
- School of Computational and Integrative
Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Hussam Ibrahim Kutbi
- Department of Pharmacy Practice,
Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty
of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of
Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah,
Saudi Arabia
| | - Eman Alefishat
- Department of Clinical Pharmacology,
College of Medicine, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Walk D, Nicholson K, Locatelli E, Chan J, Macklin EA, Ferment V, Manousakis G, Chase M, Connolly M, Dagostino D, Hall M, Ostrow J, Pothier L, Lieberman C, Gelevski D, Randall R, Sherman AV, Steinhart E, Walker DG, Walker J, Yu H, Wills AM, Schwarzschild MA, Beukenhorst AL, Onnela JP, Berry JD, Cudkowicz ME, Paganoni S. Randomized trial of inosine for urate elevation in amyotrophic lateral sclerosis. Muscle Nerve 2023; 67:378-386. [PMID: 36840949 DOI: 10.1002/mus.27807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION/AIMS Higher urate levels are associated with improved ALS survival in retrospective studies, however whether raising urate levels confers a survival advantage is unknown. In the Safety of Urate Elevation in Amyotrophic Lateral Sclerosis (SURE-ALS) trial, inosine raised serum urate and was safe and well-tolerated. The SURE-ALS2 trial was designed to assess longer term safety. Functional outcomes and a smartphone application were also explored. METHODS Participants were randomized 2:1 to inosine (n = 14) or placebo (n = 9) for 20 weeks, titrated to serum urate of 7-8 mg/dL. Primary outcomes were safety and tolerability. Functional outcomes were measured with the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R). Mobility and ALSFRS-R were also assessed by a smartphone application. RESULTS During inosine treatment, mean urate ranged 5.68-6.82 mg/dL. Treatment-emergent adverse event (TEAE) incidence was similar between groups (p > .10). Renal TEAEs occurred in three (21%) and hypertension in one (7%) of participants randomized to inosine. Inosine was tolerated in 71% of participants versus placebo 67%. Two participants (14%) in the inosine group experienced TEAEs deemed related to treatment (nephrolithiasis); one was a severe adverse event. Mean ALSFRS-R decline did not differ between groups (p = .69). Change in measured home time was similar between groups. Digital and in-clinic ALSFRS-R correlated well. DISCUSSION Inosine met pre-specified criteria for safety and tolerability. A functional benefit was not demonstrated in this trial designed for safety and tolerability. Findings suggested potential utility for a smartphone application in ALS clinical and research settings.
Collapse
Affiliation(s)
- David Walk
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katharine Nicholson
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eduardo Locatelli
- Department of Neurology, Holy Cross Hospital, Fort Lauderdale, Florida, USA
| | - James Chan
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric A Macklin
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Valerie Ferment
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Georgios Manousakis
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marianne Chase
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mariah Connolly
- Clinical Research Organization, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Derek Dagostino
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Meghan Hall
- Clinical Research Organization, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph Ostrow
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lindsay Pothier
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cassandra Lieberman
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dario Gelevski
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rebecca Randall
- Clinical Research Organization, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Alexander V Sherman
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin Steinhart
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniela Grasso Walker
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason Walker
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hong Yu
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anne-Marie Wills
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Boston, Massachusetts, USA
| | - Anna L Beukenhorst
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James D Berry
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Merit E Cudkowicz
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Thermodynamic Signatures of Blood Plasma Proteome in Neurodegenerative Pathologies. Int J Mol Sci 2023; 24:ijms24010789. [PMID: 36614231 PMCID: PMC9821040 DOI: 10.3390/ijms24010789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Discovery of diagnostic biomarkers for age-related neurodegenerative pathologies (NDDs) is essential for accurate diagnosis, following disease progression and drug development. Blood plasma and blood cells are important peripheral sources for NDDs' biomarkers that, although present in lower concentrations than in cerebrospinal fluid, would allow noninvasive diagnostics. To identify new biomarkers for Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), in this work we have evaluated the modifications in the thermodynamic behavior of blood plasma proteome exploring differential scanning calorimetry. The plasma thermodynamics reflected the complexity and heterogeneity of the two pathologies. The unfolding temperature of the most abundant plasma protein albumin and the weighted average center of the calorimetric profile appeared as the two thermodynamic signatures that reflected modifications of the plasma proteome, i.e., strong thermal stabilization of albumin and plasma proteins' interaction network, related to both pathologies. Based on those two signatures, both PD and ALS patients were stratified in two sets, except several cases with thermodynamic parameters that strongly differed from those of the calorimetric sets. Along with modifications of the plasma thermodynamic behavior, we found altered globulin levels in all PD and ALS patients' plasma (higher level of α- and β-globulin fractions and lower level of γ-globulin fraction than the respective reference values) employing capillary electrophoresis. The presented results reveal the potential of calorimetry to indirectly identify NDDs' biomarkers in blood plasma.
Collapse
|
6
|
Pou MA, Orfila F, Pagonabarraga J, Ferrer-Moret S, Corominas H, Diaz-Torne C. Risk of Parkinson's disease in a gout Mediterranean population: A case-control study. Joint Bone Spine 2022; 89:105402. [PMID: 35504516 DOI: 10.1016/j.jbspin.2022.105402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION High levels of serum urate has been associated to a neuroprotective effect in Parkinson's disease (PD) as an antioxidant agent. However, the relation between gout and PD remains contradictory. OBJECTIVE To study if the neuroprotective effect of serum urate is maintained in patients with gout in a large urban Mediterranean population. METHODS Primary care based matched case-control study, carried out using an electronic health record database from the public primary care health system of Barcelona. The database contains anonymous data from 1,520,934 patients. All patients, over 40 years old, with a new diagnostic record of PD, or a new prescription of dopaminergic drugs were included (incident cases). We randomly selected four controls for each case, matched by gender and age, with the frequency matching approach. Retrospective data of PD risk factors were also collected for each individual. A multivariate logistic regression model was used to evaluate the association of gout and PD, adjusted by the presence of other risk factors. RESULTS A new PD diagnosis was found in 17,629 individuals (incident diagnosis rate of 2.2 per 1000 individuals). Multivariate logistic regression model showed for gout: aOR=0.83 (0.76-0.91). When stratified by age, aOR for those under 75years was 0.99 (0.85-1.16) and 75 or over OR=0.77 (0.70-0.86). Dyslipidemia, hypertension and diabetes mellitus were associated with an increased risk of PD. Tobacco consumption was protective. CONCLUSION Our study, the first one made in a Mediterranean population, shows a PD protective effect of gout in both men and women over 75years old.
Collapse
Affiliation(s)
- Maria A Pou
- EAP Encants, Institut Català de la Salut, Barcelona, Spain
| | - Francesc Orfila
- Unitat de Suport a la Recerca, Ambit Barcelona Ciutat, Barcelona, Spain
| | | | | | - Hector Corominas
- Servei de Reumatologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cesar Diaz-Torne
- Servei de Reumatologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Takahashi F, Kano O, Nagano Y, Yoneoka T, Nelson S, Ushirogawa Y. Associations Between the
ALSFRS‐R
Score and Urate Levels During 12 Months of Edaravone Treatment for Amyotrophic Lateral Sclerosis: Post Hoc Analysis of
ALSFRS‐R
Scores in Clinical Studies
MCI186
‐16,
MCI186
‐17, and
MCI186
‐19. Muscle Nerve 2022; 66:593-602. [DOI: 10.1002/mus.27700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Osamu Kano
- Department of Neurology Toho University Faculty of Medicine, Ota‐ku Japan
| | | | | | - Sally Nelson
- Mitsubishi Tanabe Pharma America, Inc. Jersey City NJ USA
| | | |
Collapse
|
8
|
Song Y, March J. Hyperuricemia and the small intestine: Transport mechanisms and co-morbidities. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:32-37. [PMID: 39416456 PMCID: PMC11446379 DOI: 10.1016/j.biotno.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2024]
Abstract
There is a global increase in cases of hyperuricemia over the last 10 years. A critical component of serum uric acid control is the transport of uric acid to the intestinal lumen, which accounts for 30% of the uric acid eliminated from the serum. This mini review looks at two important aspects of elevated uric acid: the dynamics of intestinal uric acid transport and hyperuricemia co-morbidities. Elevated serum uric acid can lead to gout and it can also impact other diseases such as diabetes, cardiovascular diseases and nervous system diseases. The level of uric acid in the intestine could be related to the potential for uric acid to impact other morbidities. We review the evidence for this and what it would mean for persons with elevated serum uric acid.
Collapse
Affiliation(s)
- Yanbo Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
- Johnson and Johnson, China
| | - John March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review. Biomedicines 2022; 10:biomedicines10030653. [PMID: 35327454 PMCID: PMC8945026 DOI: 10.3390/biomedicines10030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Parkinson’s disease and arterial hypertension are likely to coexist in the elderly, with possible bidirectional interactions. We aimed to assess the role of antihypertensive agents in PD emergence and/or progression. (2) We performed a systematic search on the PubMed database. Studies enrolling patients with Parkinson’s disease who underwent treatment with drugs pertaining to one of the major antihypertensive drug classes (β-blockers, diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium-channel blockers) prior to or after the diagnosis of parkinsonism were scrutinized. We divided the outcome into two categories: neuroprotective and disease-modifying effect. (3) We included 20 studies in the qualitative synthesis, out of which the majority were observational studies, with only one randomized controlled trial. There are conflicting results regarding the effect of antihypertensive drugs on Parkinson’s disease pathogenesis, mainly because of heterogeneous protocols and population. (4) Conclusions: There is low quality evidence that antihypertensive agents might be potential therapeutic targets in Parkinson’s disease, but this hypothesis needs further testing.
Collapse
|
10
|
Plasma Metabolite Signature Classifies Male LRRK2 Parkinson’s Disease Patients. Metabolites 2022; 12:metabo12020149. [PMID: 35208223 PMCID: PMC8876175 DOI: 10.3390/metabo12020149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease, causing loss of motor and nonmotor function. Diagnosis is based on clinical symptoms that do not develop until late in the disease progression, at which point the majority of the patients’ dopaminergic neurons are already destroyed. While many PD cases are idiopathic, hereditable genetic risks have been identified, including mutations in the gene for LRRK2, a multidomain kinase with roles in autophagy, mitochondrial function, transcription, molecular structural integrity, the endo-lysosomal system, and the immune response. A definitive PD diagnosis can only be made post-mortem, and no noninvasive or blood-based disease biomarkers are currently available. Alterations in metabolites have been identified in PD patients, suggesting that metabolomics may hold promise for PD diagnostic tools. In this study, we sought to identify metabolic markers of PD in plasma. Using a 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) NMR spectroscopy metabolomics platform coupled with machine learning (ML), we measured plasma metabolites from approximately age/sex-matched PD patients with G2019S LRRK2 mutations and non-PD controls. Based on the differential level of known and unknown metabolites, we were able to build a ML model and develop a Biomarker of Response (BoR) score, which classified male LRRK2 PD patients with 79.7% accuracy, 81.3% sensitivity, and 78.6% specificity. The high accuracy of the BoR score suggests that the metabolomics/ML workflow described here could be further utilized in the development of a confirmatory diagnostic for PD in larger patient cohorts. A diagnostic assay for PD will aid clinicians and their patients to quickly move toward a definitive diagnosis, and ultimately empower future clinical trials and treatment options.
Collapse
|
11
|
Odeniyi O, Ojo O, Odeniyi I, Okubadejo N. Association of serum uric acid and non-motor symptoms in Parkinson's disease: A cross-sectional study from a movement disorders clinic in Lagos, Nigeria. JOURNAL OF CLINICAL SCIENCES 2022. [DOI: 10.4103/jcls.jcls_29_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Increased homocysteine levels correlate with cortical structural damage in Parkinson's disease. J Neurol Sci 2022; 434:120148. [DOI: 10.1016/j.jns.2022.120148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
|
13
|
Zhang K, Paul KC, Jacobs JP, Chou HC(L, Folle AD, Del Rosario I, Yu Y, Bronstein JM, Keener AM, Ritz B. Parkinson's Disease and the Gut Microbiome in Rural California. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2441-2452. [PMID: 36442206 PMCID: PMC9890728 DOI: 10.3233/jpd-223500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Increasing evidence connects the gut microbiome to Parkinson's disease (PD) etiology, but little is known about microbial contributions to PD progression and its clinical features. OBJECTIVE We aim to explore the association between the gut microbiome with PD, and the microbial association with PD-specific clinical features. METHODS In a community-based case-control study of 96 PD patients and 74 controls, microbiome data were obtained from 16S rRNA gene sequencing of fecal samples, and analyzed for microbial diversity, taxa abundance, and predicted functional pathways that differed in PD patients and controls, and their association with PD-specific features (disease duration, motor subtypes, L-DOPA daily dose, and motor function). RESULTS PD patients' gut microbiome showed lower species diversity (p = 0.04) and were compositionally different (p = 0.002) compared to controls but had a higher abundance of three phyla (Proteobacteria, Verrucomicrobiota, Actinobacteria) and five genera (Akkermansia, Enterococcus, Hungatella, and two Ruminococcaceae) controlling for sex, race, age, and sequencing platform. Also, 35 Metacyc pathways were predicted to be differentially expressed in PD patients including biosynthesis, compound degradation/utilization/assimilation, generation of metabolites and energy, and glycan pathways. Additionally, the postural instability gait dysfunction subtype was associated with three phyla and the NAD biosynthesis pathway. PD duration was associated with the Synergistota phylum, six genera, and the aromatic compound degradation pathways. Two genera were associated with motor function. CONCLUSION PD patients differed from controls in gut microbiome composition and its predicted metagenome. Clinical features were also associated with bacterial taxa and altered metabolic pathways of interest for PD progression.
Collapse
Affiliation(s)
- Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan P. Jacobs
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA,Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA,UCLA Microbiome Center, Los Angeles, CA, USA,Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | | | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yu Yu
- Department of Environmental Health Science, UCLA Fielding School of Public Health, Los Angeles, CA, USA,UCLA Center for Health Policy Research, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Adrienne M. Keener
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA,Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA,Department of Environmental Health Science, UCLA Fielding School of Public Health, Los Angeles, CA, USA,Correspondence to: Professor Beate Ritz, MD, PhD, UCLA Fielding School of Public Health, 650 Charles E. Young Drive South, 73-320A Center for Health Sciences, Los Angeles, CA 90095, USA. Tel.: +1 310 206 7458;
| |
Collapse
|
14
|
Gupta M, Paliwal VK, Babu GN. Serum fractalkine and 3-nitrotyrosine levels correlate with disease severity in Parkinson's disease: a pilot study. Metab Brain Dis 2022; 37:209-217. [PMID: 34342811 DOI: 10.1007/s11011-021-00801-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) and Parkinsonian syndromes; Progressive supranuclear palsy (PSP), and Multiple system atrophy (MSA) are debilitating neurodegenerative disorders. Fractalkine is a chemokine involved in neuroinflammation, whereas, 3-nitrotyrosine (3-NT) is a marker of early neurodegenerative cellular-damage. We measured Fractalkine and 3-NT levels in the serum of these patients to examine the neuroinflammation hypothesis and also to decipher the propensity of these biologics to be used as early (5 years from onset) biochemical markers in neurodegenerative Parkinsonism. The diagnoses of PD, PSP and MSA were performed as per the respective clinical criteria. 21 PD, 9 PSP and 8 MSA patients along with controls participated in this study. Serum concentrations of Fractalkine and 3-NT were measured by ELISA. Fractalkine levels were increased in PD, PSP and MSA cohorts in comparison with controls with p < 0.001, p < 0.05 and p < 0.05 respectively. Levels of 3-NT also showed elevation in PD (p < 0.01) vs. controls. However, Pearson plot showed that Fractalkine levels were high in the patients with unified Parkinson's disease rating scale (UPDRS) part III motor score of 1, meaning slight disability, but gradually dropped in patients with motor score of 4, which is a measure of severe motor disability. This negative correlation (- .565, p < .0.01) also accentuates the neuroprotectant/anti-inflammatory nature of Fractalkine in PD. Continuous rise of 3-NT in PD, positively correlating (.512, p < 0.05) with worsening motor symptoms points to deleterious consequences of nitrosative stress. To our knowledge, this is the first report providing evidence that serum Fractalkine and 3-NT have early diagnostic/prognostic significance as PD biomarkers.
Collapse
Affiliation(s)
- Manjeet Gupta
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, UP, 226014, India
| | - Vimal Kumar Paliwal
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, UP, 226014, India
| | - G Nagesh Babu
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
15
|
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, 260 Stetson St., Suite 2300, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Quintero ME, Pontes JGDM, Tasic L. Metabolomics in degenerative brain diseases. Brain Res 2021; 1773:147704. [PMID: 34744014 DOI: 10.1016/j.brainres.2021.147704] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022]
Abstract
Among the most studied diseases that affect the central nervous system are Parkinson's, Alzheimer's, and Huntington's diseases, but the lack of effective biomarkers, accurate diagnosis, and precise treatment for each of them is currently an issue. Due to the contribution of biomarkers in supporting diagnosis, many recent efforts have focused on their identification and validation at the beginning or during the progression of the mental illness. Metabolome reveals the metabolic processes that result from protein activities under the guided gene expression and environmental factors, either in healthy or pathological conditions. In this context, metabolomics has proven to be a valuable approach. Currently, magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the most commonly used bioanalytical techniques for metabolomics. MS-assisted profiling is considered the most versatile technique, and the NMR is the most reproductive. However, each one of them has its drawbacks. In this review, we summarized several alterations in metabolites that have been reported for these three classic brain diseases using MS and NMR-based research, which might suggest some possible biomarkers to support the diagnosis and/or new targets for their treatment.
Collapse
Affiliation(s)
- Melissa Escobar Quintero
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - João Guilherme de Moraes Pontes
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
17
|
Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-Dos-Santos F, Santos ARS. Inosine as a Tool to Understand and Treat Central Nervous System Disorders: A Neglected Actor? Front Neurosci 2021; 15:703783. [PMID: 34504414 PMCID: PMC8421806 DOI: 10.3389/fnins.2021.703783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Francisney Pinto Nascimento
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Fernando Cezar-Dos-Santos
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Adair R S Santos
- Programa de Pós-Graduação em Neurociências, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
18
|
Ciobanu AM, Ionita I, Buleandra M, David IG, Popa DE, Ciucu AA, Budisteanu M. Current advances in metabolomic studies on non-motor psychiatric manifestations of Parkinson's disease (Review). Exp Ther Med 2021; 22:1010. [PMID: 34345292 PMCID: PMC8311266 DOI: 10.3892/etm.2021.10443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Life expectancy has increased worldwide and, along with it, a greater prevalence of age-dependent disorders, chronic illnesses and comorbidities can be observed. In 2019, in both Europe and the Americas, dementias ranked 3rd among the top 10 causes of death. Parkinson's disease (PD) is the second most frequent type of neurodegenerative disease. In the last decades, globally, the number of people suffering from PD has more than doubled to over 6 million. Of all the neurological disorders, PD increased with the fastest rate. This troubling trend highlights the stringent need for accurate diagnostic biomarkers, especially in the early stages of the disease and to evaluate treatment response. To gain a broad and complex understanding of the recent advances in the '-omics' research fields, electronic databases such as PubMed, Google Academic, and Science Direct were searched for publications regarding metabolomic studies on PD to identify specific biomarkers for PD, and especially PD with associated psychiatric symptomatology. Discoveries in the fields of metagenomics, transcriptomics and proteomics, may lead to an improved comprehension of the metabolic pathways involved in disease etiology and progression and contribute to the discovery of novel therapeutic targets for effective treatment options.
Collapse
Affiliation(s)
- Adela Magdalena Ciobanu
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatric Hospital, 041914 Bucharest, Romania
- Department of Neurosciences, Discipline of Psychiatry, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ionita
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatric Hospital, 041914 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Anton Alexandru Ciucu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Magdalena Budisteanu
- Laboratory of Medical Genetics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
- Psychiatry Research Laboratory, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| |
Collapse
|
19
|
Gopar-Cuevas Y, Duarte-Jurado AP, Diaz-Perez RN, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Pursuing Multiple Biomarkers for Early Idiopathic Parkinson's Disease Diagnosis. Mol Neurobiol 2021; 58:5517-5532. [PMID: 34350555 DOI: 10.1007/s12035-021-02500-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) ranks first in the world as a neurodegenerative movement disorder and occurs most commonly in an idiopathic form. PD patients may have motor symptoms, non-motor symptoms, including cognitive and behavioral changes, and symptoms related to autonomic nervous system (ANS) failures, such as gastrointestinal, urinary, and cardiovascular symptoms. Unfortunately, the diagnostic accuracy of PD by general neurologists is relatively low. Currently, there is no objective molecular or biochemical test for PD; its diagnosis is based on clinical criteria, mainly by cardinal motor symptoms, which manifest when patients have lost about 60-80% of dopaminergic neurons. Therefore, it is urgent to establish a panel of biomarkers for the early and accurate diagnosis of PD. Once the disease is accurately diagnosed, it may be easier to unravel idiopathic PD's pathogenesis, and ultimately, finding a cure. This review discusses several biomarkers' potential to set a panel for early idiopathic PD diagnosis and future directions.
Collapse
Affiliation(s)
- Yareth Gopar-Cuevas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Ana P Duarte-Jurado
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Rosa N Diaz-Perez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.,Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Delegación Nuevo León, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Maria J Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Aracely Garcia-Garcia
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| |
Collapse
|
20
|
Ganguly U, Singh S, Pal S, Prasad S, Agrawal BK, Saini RV, Chakrabarti S. Alpha-Synuclein as a Biomarker of Parkinson's Disease: Good, but Not Good Enough. Front Aging Neurosci 2021; 13:702639. [PMID: 34305577 PMCID: PMC8298029 DOI: 10.3389/fnagi.2021.702639] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder of the elderly, presenting primarily with symptoms of motor impairment. The disease is diagnosed most commonly by clinical examination with a great degree of accuracy in specialized centers. However, in some cases, non-classical presentations occur when it may be difficult to distinguish the disease from other types of degenerative or non-degenerative movement disorders with overlapping symptoms. The diagnostic difficulty may also arise in patients at the early stage of PD. Thus, a biomarker could help clinicians circumvent such problems and help them monitor the improvement in disease pathology during anti-parkinsonian drug trials. This review first provides a brief overview of PD, emphasizing, in the process, the important role of α-synuclein in the pathogenesis of the disease. Various attempts made by the researchers to develop imaging, genetic, and various biochemical biomarkers for PD are then briefly reviewed to point out the absence of a definitive biomarker for this disorder. In view of the overwhelming importance of α-synuclein in the pathogenesis, a detailed analysis is then made of various studies to establish the biomarker potential of this protein in PD; these studies measured total α-synuclein, oligomeric, and post-translationally modified forms of α-synuclein in cerebrospinal fluid, blood (plasma, serum, erythrocytes, and circulating neuron-specific extracellular vesicles) and saliva in combination with certain other proteins. Multiple studies also examined the accumulation of α-synuclein in various forms in PD in the neural elements in the gut, submandibular glands, skin, and the retina. The measurements of the levels of certain forms of α-synuclein in some of these body fluids or their components or peripheral tissues hold a significant promise in establishing α-synuclein as a definitive biomarker for PD. However, many methodological issues related to detection and quantification of α-synuclein have to be resolved, and larger cross-sectional and follow-up studies with controls and patients of PD, parkinsonian disorders, and non-parkinsonian movement disorders are to be undertaken.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Sukhpal Singh
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Soumya Pal
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Suvarna Prasad
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Bimal K. Agrawal
- Department of General Medicine, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar Deemed University, Ambala, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar Deemed University, Ambala, India
| |
Collapse
|
21
|
Sinclair E, Trivedi DK, Sarkar D, Walton-Doyle C, Milne J, Kunath T, Rijs AM, de Bie RMA, Goodacre R, Silverdale M, Barran P. Metabolomics of sebum reveals lipid dysregulation in Parkinson's disease. Nat Commun 2021; 12:1592. [PMID: 33707447 PMCID: PMC7952564 DOI: 10.1038/s41467-021-21669-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, which is characterised by degeneration of distinct neuronal populations, including dopaminergic neurons of the substantia nigra. Here, we use a metabolomics profiling approach to identify changes to lipids in PD observed in sebum, a non-invasively available biofluid. We used liquid chromatography-mass spectrometry (LC-MS) to analyse 274 samples from participants (80 drug naïve PD, 138 medicated PD and 56 well matched control subjects) and detected metabolites that could predict PD phenotype. Pathway enrichment analysis shows alterations in lipid metabolism related to the carnitine shuttle, sphingolipid metabolism, arachidonic acid metabolism and fatty acid biosynthesis. This study shows sebum can be used to identify potential biomarkers for PD.
Collapse
Affiliation(s)
- Eleanor Sinclair
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Drupad K Trivedi
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Depanjan Sarkar
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Caitlin Walton-Doyle
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Joy Milne
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Tilo Kunath
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Royston Goodacre
- Institute of Systems, Molecular and Integrative Biology, Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, UK
| | - Monty Silverdale
- Department of Neurology, Salford Royal Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Perdita Barran
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Gusev EI, Blokhin VE, Vartanov SA, Martynov MY, Katunina EA, Alesenko AV, Denisova IA, Pavlova EN, Polterovich VM, Kucheryanu VG, Shupik MA, Nodel MR, Kalinkin AL, Sokolov SA, Chubarova TV, Shakleina MV, Pronina TS, Ugryumov MV. [Development of early diagnosis of Parkinson's disease and comprehensive economic analysis of the effect of its implementation]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:9-20. [PMID: 33580755 DOI: 10.17116/jnevro20211210119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The paper summarizes the literature and author's data on the development of early (preclinical) diagnosis of Parkinson's disease (PD). Implementation of this diagnosis will promote the use of preventive therapy and change investments in diagnosis and treatment of patients. The paper declares that at present the only approach to early diagnosis of PD is positron-emission tomography of the nigrostriatal dopaminergic system, but it cannot be used for preventive examination due to its high cost. The authors consider that a less specific, but more promising approach to the development of early diagnosis of PD is the search for markers in body fluids, mainly in the blood, in patients at the prodromal stage of PD. Indeed, a number of markers as changes in the level of metabolites of monoamines, sphingolipids, urates, and indicators of oxidative stress were found in patients selected for the risk group of the prodromal stage of PD, according to characteristic premotor symptoms. In addition, it is assumed that the search for blood markers at an earlier - pre-prodromal stage is possible only in animal models of PD at the early preclinical stage. This approach can also be used to verify blood markers identified in patients at the clinical stage of PD. It is also evident that the complex socio-economic factors influencing the incidence of PD is different in developed versus developing countries. The societal and medical costs of Parkinson's are huge and efforts to improve early preclinical diagnosis of PD will lead to considerable economical and societal benefits. For instance this will allow efficient selection of patients for preclinical diagnostic tests. To assess the effectiveness of this strategy considering the uncertainty of socio-economic issues, a modification of the «cost-utility» analysis is proposed. For the first time, a Markov model of PD including preclinical diagnostic tests and possible neuroprotective therapy was developed and studied. Analytical outcomes of this process suggest that the idea of developing a new multimodal strategy is promising from a socio-economic point of view.
Collapse
Affiliation(s)
- E I Gusev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V E Blokhin
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - S A Vartanov
- Moscow School of Economics of the Lomonosov Moscow State University, Moscow, Russia
| | - M Yu Martynov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E A Katunina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnology, Moscow, Russia
| | - A V Alesenko
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - I A Denisova
- Moscow School of Economics of the Lomonosov Moscow State University, Moscow, Russia
| | - E N Pavlova
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - V M Polterovich
- Moscow School of Economics of the Lomonosov Moscow State University, Moscow, Russia.,Central Economic and Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
| | - V G Kucheryanu
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M A Shupik
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - M R Nodel
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A L Kalinkin
- Medical Research and Education Center of the Lomonosov Moscow State University, Moscow, Russia
| | - S A Sokolov
- Medical Research and Education Center of the Lomonosov Moscow State University, Moscow, Russia
| | - T V Chubarova
- Institute of Economics of the Russian Academy of Sciences, Moscow, Russia
| | - M V Shakleina
- Moscow School of Economics of the Lomonosov Moscow State University, Moscow, Russia
| | - T S Pronina
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - M V Ugryumov
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Gusev EI, Katunina EA, Martinov MY, Blokhin VE, Kalinkin AL, Alesenko AV, Nodel MR, Malykhina EA, Titova NV, Katunin DA, Shupik MA, Gutner UA, Maloshitskaya OA, Sokolov SA, Kucheryanu VG, Pavlova EN, Ugrumov MV. [Development of early diagnosis of Parkinson's disease based on the search for biomarkers such as premotor symptoms and changes in blood]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:7-17. [PMID: 33459535 DOI: 10.17116/jnevro20201201217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine changes in the chemical composition of blood plasma in subjects at risk of Parkinson's disease (PD) at the prodromal stage compared with age control. MATERIAL AND METHODS Subjects at risk were selected for the presence of characteristic premotor symptoms, including impairments of sleep, olfaction and constipation.The risk group included 12 people, the control group - 8 people. RESULTS Among seven catecholamines and their metabolites detected in the blood, only the concentration of L-dioxiphenylalanine (L-DOPA) changed (decreased) in subjects at risk compared with the control. A decrease in the concentration of L-DOPA is considered as a manifestation (marker) of selective degeneration of central and peripheral catecholaminergic neurons in PD. In contrast to L-DOPA, the concentration of seven of the twelve detected sphingomyelins in the blood of the subjects at risk increased. Given that a change in the metabolism of sphingomyelins is associated with processes such as apoptosis, autophagy, and synucleinopathy, an increase in their concentration in the blood of patients at risk is considered as a manifestation of systemic general degeneration of central and peripheral neurons. Finally, in the blood of subjects at risk, we found a trend towards a decrease in the concentration of urates, which are endogenous neuroprotectors. CONCLUSION The changes in the level of L-DOPA, sphingmyelins and urates in the blood of subjects at risk may serve as diagnostic markers of PD at the prodromal stage.
Collapse
Affiliation(s)
- E I Gusev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E A Katunina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - M Yu Martinov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V E Blokhin
- Koltsov Institute of Developmental Biology RAS, Moscow, Russia
| | - A L Kalinkin
- Medical Research and Education Center of Lomonosov Moscow State University, Moscow, Russia
| | - A V Alesenko
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - M R Nodel
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E A Malykhina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - N V Titova
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - D A Katunin
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - M A Shupik
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | - U A Gutner
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
| | | | - S A Sokolov
- Lomonosov Moscow State University, Moscow, Russia
| | - V G Kucheryanu
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - E N Pavlova
- Koltsov Institute of Developmental Biology RAS, Moscow, Russia
| | - M V Ugrumov
- Koltsov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
24
|
Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson's disease. J Neuroinflammation 2021; 18:23. [PMID: 33461598 PMCID: PMC7814625 DOI: 10.1186/s12974-021-02079-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Microglia activation induced by α-synuclein (α-syn) is one of the most important factors in Parkinson’s disease (PD) pathogenesis. However, the molecular mechanisms by which α-syn exerts neuroinflammation and neurotoxicity remain largely elusive. Targeting metabotropic glutamate receptor 5 (mGluR5) has been an attractive strategy to mediate microglia activation for neuroprotection, which might be an essential regulator to modulate α-syn-induced neuroinflammation for the treatment of PD. Here, we showed that mGluR5 inhibited α-syn-induced microglia inflammation to protect from neurotoxicity in vitro and in vivo. Methods Co-immunoprecipitation assays were utilized to detect the interaction between mGluR5 and α-syn in microglia. Griess, ELISA, real-time PCR, western blotting, and immunofluorescence assays were used to detect the regulation of α-syn-induced inflammatory signaling, cytokine secretion, and lysosome-dependent degradation. Results α-syn selectively interacted with mGluR5 but not mGluR3, and α-syn N terminal deletion region was essential for binding to mGluR5 in co-transfected HEK293T cells. The interaction between these two proteins was further detected in BV2 microglia, which was inhibited by the mGluR5 specific agonist CHPG without effect by its selective antagonist MTEP. Moreover, in both BV2 cells and primary microglia, activation of mGluR5 by CHPG partially inhibited α-syn-induced inflammatory signaling and cytokine secretion and also inhibited the microglia activation to protect from neurotoxicity. We further found that α-syn overexpression decreased mGluR5 expression via a lysosomal pathway, as evidenced by the lysosomal inhibitor, NH4Cl, by blocking mGluR5 degradation, which was not evident with the proteasome inhibitor, MG132. Additionally, co-localization of mGluR5 with α-syn was detected in lysosomes as merging with its marker, LAMP-1. Consistently, in vivo experiments with LPS- or AAV-α-syn-induced rat PD model also confirmed that α-syn accelerated lysosome-dependent degradation of mGluR5 involving a complex, to regulate neuroinflammation. Importantly, the binding is strengthened with LPS or α-syn overexpression but alleviated by urate, a potential clinical biomarker for PD. Conclusions These findings provided evidence for a novel mechanism by which the association of α-syn with mGluR5 was attributed to α-syn-induced microglia activation via modulation of mGluR5 degradation and its intracellular signaling. This may be a new molecular target for an effective therapeutic strategy for PD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02079-1.
Collapse
|
25
|
Elevated salivary uric acid levels among adolescents with eating disorders. Eat Weight Disord 2020; 25:1821-1825. [PMID: 31667778 DOI: 10.1007/s40519-019-00799-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Uric acid (UA) is increasingly recognized as having important physiological roles and associated with several peripheral and central pathophysiological outcomes, and might play a role in eating disorders (ED) pathogenesis. We investigated whether UA levels are altered among adolescents with ED. METHODS Morning salivary UA concentrations were compared between adolescents referred to treatment at the Herman Dana Center receiving a DSM-V diagnosis of an ED and matched healthy controls. RESULTS Salivary UA was significantly elevated among ED compared with control values (ED mean 3.9 ± 1.2 mg/dl, control mean 2.9 ± 1.9 mg/dl, t = - 3.13 df = 81, p = 0.003). DISCUSSION Salivary UA is elevated among adolescents with ED. Further studies are required to replicate and extend this finding and evaluate its generalizability as a state or trait marker as regards ED subtypes, other body fluids (plasma and cerebrospinal fluid), and recovery or premorbid stages, as well as its putative mechanistic relevance to ED. LEVEL OF EVIDENCE Level III, case-control analytic study.
Collapse
|
26
|
Yakhine-Diop SM, Morales-García JA, Niso-Santano M, González-Polo RA, Uribe-Carretero E, Martinez-Chacon G, Durand S, Maiuri MC, Aiastui A, Zulaica M, Ruíz-Martínez J, López de Munain A, Pérez-Tur J, Pérez-Castillo A, Kroemer G, Bravo-San Pedro JM, Fuentes JM. Metabolic alterations in plasma from patients with familial and idiopathic Parkinson's disease. Aging (Albany NY) 2020; 12:16690-16708. [PMID: 32903216 PMCID: PMC7521510 DOI: 10.18632/aging.103992] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/15/2020] [Indexed: 01/24/2023]
Abstract
The research of new biomarkers for Parkinson's disease is essential for accurate and precocious diagnosis, as well as for the discovery of new potential disease mechanisms and drug targets. The main objective of this work was to identify metabolic changes that might serve as biomarkers for the diagnosis of this neurodegenerative disorder. For this, we profiled the plasma metabolome from mice with neurotoxin-induced Parkinson's disease as well as from patients with familial or sporadic Parkinson's disease. By using mass spectrometry technology, we analyzed the complete metabolome from healthy volunteers compared to patients with idiopathic or familial (carrying the G2019S or R1441G mutations in the LRRK2 gene) Parkinson's disease, as well as, from mice treated with 6-hydroxydopamine to induce Parkinson disease. Both human and murine Parkinson was accompanied by an increase in plasma levels of unconjugated bile acids (cholic acid, deoxycholic acid and lithocholic acid) and purine base intermediary metabolites, in particular hypoxanthine. The comprehensive metabolomic analysis of plasma from Parkinsonian patients underscores the importance of bile acids and purine metabolism in the pathophysiology of this disease. Therefore, plasma measurements of certain metabolites related to these pathways might contribute to the diagnosis of Parkinson's Disease.
Collapse
Affiliation(s)
- Sokhna M.S. Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - José A. Morales-García
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain,Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Rosa A. González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Guadalupe Martinez-Chacon
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Sylvere Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
| | - Ana Aiastui
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián, Spain,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain
| | - Miren Zulaica
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain
| | - Javier Ruíz-Martínez
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain,Donostia University Hospital, Department of Neurology, OSAKIDETZA, Spain,Ilundain Foundation, San Sebastian, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain,Donostia University Hospital, Department of Neurology, OSAKIDETZA, Spain,Ilundain Foundation, San Sebastian, Spain,Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
| | - Jordi Pérez-Tur
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto de Biomedicina de Valencia-CSIC, Unidad de Genética Molecular, Valencia, Spain,Unidad Mixta de Genética y Neurología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Ana Pérez-Castillo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, France,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - José M. Bravo-San Pedro
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
27
|
Franco R, Rivas-Santisteban R, Reyes-Resina I, Navarro G, Martínez-Pinilla E. Microbiota and Other Preventive Strategies and Non-genetic Risk Factors in Parkinson's Disease. Front Aging Neurosci 2020; 12:12. [PMID: 32226375 PMCID: PMC7080700 DOI: 10.3389/fnagi.2020.00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
The exact cause of Parkinson’s disease (PD), the second most prevalent neurodegenerative disease in modern societies, is still unknown. Many scientists point out that PD is caused by a complex interaction between different factors. Although the main risk factor is age, there are other influences, genetic and environmental, that individually or in combination may trigger neurodegenerative changes leading to PD. Nowadays, research remains focused on better understanding which environmental factors are related to the risk of developing PD and why. In line with the knowledge on evidence on exposures that prevent/delay PD onset or that impact on disease progression, the aims of this review were: (i) to comment on the non-genetic risk factors that mainly affect idiopathic PD; and (ii) to comment on seemingly reliable preventive interventions. We discuss both environmental factors that may affect the central nervous system (CNS) or the intestinal tract, and the likely mechanisms underlying noxious or protective actions. Knowledge on risk, protective factors, and mechanisms may help to envisage why nigral dopaminergic neurons are so vulnerable in PD and, eventually, to design new strategies for PD prevention and/or anti-PD therapy. This article reviews the variety of the known and suspected environmental factors, such as lifestyle, gut microbiota or pesticide exposition, and distinguishes between those that are harmful or beneficial for the PD acquisition or progression. In fact, the review covers one of the most novel players in the whole picture, and we address the role of microbiota on keeping a healthy CNS and/or on preventing the “side-effects” related to aging.
Collapse
Affiliation(s)
- Rafael Franco
- Chemistry School, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Rivas-Santisteban
- Chemistry School, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
28
|
Abstract
BACKGROUND Formate is a one-carbon molecule at the crossroad between cellular and whole body metabolism, between host and microbiome metabolism, and between nutrition and toxicology. This centrality confers formate with a key role in human physiology and disease that is currently unappreciated. SCOPE OF REVIEW Here we review the scientific literature on formate metabolism, highlighting cellular pathways, whole body metabolism, and interactions with the diet and the gut microbiome. We will discuss the relevance of formate metabolism in the context of embryonic development, cancer, obesity, immunometabolism, and neurodegeneration. MAJOR CONCLUSIONS We will conclude with an outlook of some open questions bringing formate metabolism into the spotlight.
Collapse
Affiliation(s)
| | - Johannes Meiser
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Alexei Vazquez
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
29
|
Baik K, Chung SJ, Yoo HS, Lee YH, Jung JH, Sohn YH, Lee PH. Sex‐dependent association of urate on the patterns of striatal dopamine depletion in Parkinson’s disease. Eur J Neurol 2020; 27:773-778. [DOI: 10.1111/ene.14152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- K. Baik
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - S. J. Chung
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - H. S. Yoo
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - Y. H. Lee
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - J. H. Jung
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - Y. H. Sohn
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - P. H. Lee
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
- Severance Biomedical Science Institute Yonsei University College of Medicine Seoul South Korea
| |
Collapse
|
30
|
Al-Rawhani MA, Hu C, Giagkoulovits C, Annese VF, Cheah BC, Beeley J, Velugotla S, Accarino C, Grant JP, Mitra S, Barrett MP, Cochran S, Cumming DRS. Multimodal Integrated Sensor Platform for Rapid Biomarker Detection. IEEE Trans Biomed Eng 2020; 67:614-623. [PMID: 31226063 DOI: 10.1109/tbme.2019.2919192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Precision metabolomics and quantification for cost-effective rapid diagnosis of disease are the key goals in personalized medicine and point-of-care testing. At present, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern computing and communications possible by integration of complex functions within a single chip. As More than Moore technology increases in importance, integrated circuits for densely patterned sensor chips have grown in significance. Here, we present a versatile single complementary metal-oxide-semiconductor chip forming a platform to address personalized needs through on-chip multimodal optical and electrochemical detection that will reduce the number of tests that patients must take. The chip integrates interleaved sensing subsystems for quadruple-mode colorimetric, chemiluminescent, surface plasmon resonance, and hydrogen ion measurements. These subsystems include a photodiode array and a single photon avalanche diode array with some elements functionalized to introduce a surface plasmon resonance mode. The chip also includes an array of ion sensitive field-effect transistors. The sensor arrays are distributed uniformly over an active area on the chip surface in a scalable and modular design. Bio-functionalization of the physical sensors yields a highly selective simultaneous multiple-assay platform in a disposable format. We demonstrate its versatile capabilities through quantified bio-assays performed on-chip for glucose, cholesterol, urea, and urate, each within their naturally occurring physiological range.
Collapse
|
31
|
Çelık RGG, Köksal A, Şahın B, Şen A, Sakalli NK, Nalbantoğlu M. The Relationship Between Serum Uric Acid Levels and Clinical Features in Essential Tremor. ACTA ACUST UNITED AC 2020; 57:33-36. [PMID: 32110148 DOI: 10.29399/npa.24761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/06/2019] [Indexed: 01/01/2023]
Abstract
Introduction In this study, we aimed to investigate the effect of uric acid on the disease, its severity and progression in ET patients with partially co-clinical features with Parkinson's disease (PD). Methods Serum UA levels of 87 consecutive ET patients were measured and were matched according to age and sex with 87 healthy controls. Fahn-Tolosa-Marin scale was used for the severity of tremor. Sociodemographic characteristics, type of ET, duration of disease, and treatment modalities were evaluated. Results The mean uric acid level was calculated as 4.986±2.1458 mg/dL and 6.004±1.523 mg/dL in the patient and control groups, respectively (p≤0.005). The blood UA level of patients with sporadic (n: 61) ET was found to be lower than the familial ET (n: 26) (p≤0.005). The tremor severity of the family ET patients was lower than the sporadic ET. (n: 61) (p≤0.005). The mean blood UA level (4.429±1.216 mg/dL) in the patients with high total tremor severity scores (n: 48) was found lower than in the patients with low total tremor severity scores (n: 39) (5.673±2.106 mg/dL) (P=0.000). The serum UA level was significantly lower in the patients whose disease duration longer than 5 years than in patients whose duration of the disease was shorter than 5 years. 5.732±1.240 for ≥5 years; 6.438±0.286≤5 years) (P=0.001). Conclusion We hypothesize that as a result of high antioxidant properties of high serum uric acid levels, it is a biomarker that can show disease risk and progression in patients with ET as well as PD.
Collapse
Affiliation(s)
- R Gökçen Gözübatik Çelık
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, İstanbul, Turkey
| | - Ayhan Köksal
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, İstanbul, Turkey
| | - Buket Şahın
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, İstanbul, Turkey
| | - Aysu Şen
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, İstanbul, Turkey
| | - Nazan Karagöz Sakalli
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, İstanbul, Turkey
| | - Mecbure Nalbantoğlu
- Department of Neurology, Bilim University School of Medicine, İstanbul, Turkey
| |
Collapse
|
32
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
33
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
34
|
Chamorro A, Mir P. Raising serum urate levels in Parkinson disease: A strategy only for women? Neurology 2019; 93:611-612. [PMID: 31484716 DOI: 10.1212/wnl.0000000000008191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Angel Chamorro
- From the Comprehensive Stroke Center, Department of Neuroscience (A.C.), Hospital Clinic of Barcelona; School of Medicine (A.C.), University of Barcelona; August Pi I Sunyer Biomedical Research Institute (IDIBAPS) (A.C.), Barcelona; Unidad de Trastornos del Movimiento (P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (P.M.), Seville, Spain.
| | - Pablo Mir
- From the Comprehensive Stroke Center, Department of Neuroscience (A.C.), Hospital Clinic of Barcelona; School of Medicine (A.C.), University of Barcelona; August Pi I Sunyer Biomedical Research Institute (IDIBAPS) (A.C.), Barcelona; Unidad de Trastornos del Movimiento (P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (P.M.), Seville, Spain
| |
Collapse
|
35
|
Assessment of serum uric acid levels in patients with restless legs syndrome. Acta Neurol Belg 2019; 119:461-466. [PMID: 31228019 DOI: 10.1007/s13760-019-01177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
In our study, the aim was to collect data in relation to our hypothesis that oxidative stress is effective in the etiopathogenesis of restless legs syndrome (RLS) by assessing the serum uric acid levels, an important biomarker of oxidative stress, among RLS patients. The study included a total of 281 patients with restless legs syndrome diagnosis according to the "2012 Revised International Restless Legs Syndrome Study Group Diagnostic Criteria". Disease severity was assessed according to the "International Restless Legs Syndrome Study Group Severity Scale". The control group comprised 237 healthy individuals with the same age and gender features as the control group. The result showed no statistically significant difference in the mean age and gender between RLS and control group (p = 0.923; p = 0.433). The hemoglobin, ferritin, and uric acid levels of patients with RLS were found to be low (p < 0.001). Total iron-binding capacity level was higher in patients (p < 0.01; p < 0.05). In RLS patients, the serum uric acid level was not affected by disease severity (p > 0.05). Variables affecting uric acid level in RLS patients were determined to be age, disease duration, and hemoglobin level. The hypothesis that uric acid level, accepted as a biomarker of oxidative stress, is important in the pathogenesis of restless legs syndrome is supported by our study.
Collapse
|
36
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Shao Y, Le W. Recent advances and perspectives of metabolomics-based investigations in Parkinson's disease. Mol Neurodegener 2019; 14:3. [PMID: 30634989 PMCID: PMC6330496 DOI: 10.1186/s13024-018-0304-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system (CNS), which affects mostly older adults. In recent years, the incidence of PD has been dramatically increasing with the aging population expanding. Due to the lack of effective biomarkers, the accurate diagnosis and precise treatment of PD are currently compromised. Notably, metabolites have been considered as the most direct reflection of the physiological and pathological conditions in individuals and represent attractive candidates to provide deep insights into disease phenotypes. By profiling the metabolites in biofluids (cerebrospinal fluid, blood, urine), feces and brain tissues, metabolomics has become a powerful and promising tool to identify novel biomarkers and provide valuable insights into the etiopathogenesis of neurological diseases. In this review, we will summarize the recent advancements of major analytical platforms implemented in metabolomics studies, dedicated to the improvement and extension of metabolome coverage for in-depth biological research. Based on the current metabolomics studies in both clinical populations and experimental PD models, this review will present new findings in metabolomics biomarkers research and abnormal metabolic pathways in PD, and will discuss the correlation between metabolomic changes and clinical conditions of PD. A better understanding of the biological underpinning of PD pathogenesis might offer novel diagnostic, prognostic, and therapeutic approaches to this devastating disease.
Collapse
Affiliation(s)
- Yaping Shao
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Chinese Multidisciplinary Expert Consensus on the Diagnosis and Treatment of Hyperuricemia and Related Diseases. Chin Med J (Engl) 2018; 130:2473-2488. [PMID: 29052570 PMCID: PMC5684625 DOI: 10.4103/0366-6999.216416] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Peripheral Biomarkers for Early Detection of Alzheimer's and Parkinson's Diseases. Mol Neurobiol 2018; 56:2256-2277. [PMID: 30008073 DOI: 10.1007/s12035-018-1151-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/24/2018] [Indexed: 01/18/2023]
Abstract
Neurological disorders are found to be influencing the peripheral tissues outside CNS. Recent developments in biomarkers for CNS have emerged with various diagnostic and therapeutic shortcomings. The role of central biomarkers including CSF-based and molecular imaging-based probes are still unclear for early diagnosis of major neurological diseases. Current trends show that early detection of neurodegenerative diseases with non-invasive methods is a major focus of researchers, and the development of biomarkers aiming peripheral tissues is in demand. Alzheimer's and Parkinson's diseases are known for the progressive loss in neural structures or functions, including the neural death. Various dysfunctions of metabolic and biochemical pathways are associated with early occurrence of neuro-disorders in peripheral tissues including skin, blood cells, and eyes. This article reviews the peripheral biomarkers explored for early detection of Alzheimer's and Parkinson's diseases including blood cells, skin fibroblast, proteomics, saliva, olfactory, stomach and colon, heart and peripheral nervous system, and others. Graphical Abstract.
Collapse
|
40
|
Zhong LL, Song YQ, Tian XY, Cao H, Ju KJ. Level of uric acid and uric acid/creatinine ratios in correlation with stage of Parkinson disease. Medicine (Baltimore) 2018; 97:e10967. [PMID: 29952939 PMCID: PMC6039589 DOI: 10.1097/md.0000000000010967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate relationship between the level of uric acid (UA) and UA/creatinine ratios (UA/Cr) to the stage of Parkinson disease (PD).A total of 120 cases of PD patients who were admitted in our hospital between 2013 and 2015 were enrolled into this study; these 120 cases of PD patients were divided into 3 groups, according to Hoehn-Yahr (H-Y) classification: early stage (1-2 classification), medium stage (2.5-3 classification), and advanced stage (4-5 classification); UA and UA/Cr level in each group was compared. Then, factors including age, gender, dopamine dosage, UA, and UA/Cr levels were analyzed to find the independent predictive factors of PD by logistic regression.UA and UA/Cr levels in the early and medium stage PD patients were significantly higher than in the advanced stage ones. UA and UA/Cr levels in patients with good prognosis were significantly higher than in the poor ones.UA and UA/Cr levels are negatively correlated with the stages of PD and are independent negatively predicting biological indexes of PD incidence and progression.
Collapse
Affiliation(s)
| | - Ya-Qi Song
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
- Department of Hematology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an, Jiangsu, P.R. China
| | | | | | | |
Collapse
|
41
|
Bao LH, Zhang YN, Zhang JN, Gu L, Yang HM, Huang YY, Xia N, Zhang H. Urate inhibits microglia activation to protect neurons in an LPS-induced model of Parkinson's disease. J Neuroinflammation 2018; 15:131. [PMID: 29720230 PMCID: PMC5932803 DOI: 10.1186/s12974-018-1175-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 01/30/2023] Open
Abstract
Background Multiple risk factors contribute to the progression of Parkinson’s disease, including oxidative stress and neuroinflammation. Epidemiological studies have revealed a link between higher urate level and a lower risk of developing PD. However, the mechanistic basis for this association remains unclear. Urate protects dopaminergic neurons from cell death induced by oxidative stress. Here, we investigated a novel role of urate in microglia activation in a lipopolysaccharide (LPS)-induced PD model. Methods We utilized Griess, ELISA, real-time PCR, Western blot, immunohistochemistry, and immunofluorescence to detect the neuroinflammation. For Griess, ELISA, Western blot, and immunofluorescence assay, cells were seeded in 6-well plates pre-coated with poly-l-lysine (PLL) and incubated for 24 h with the indicated drugs. For real-time PCR assay, cells were seeded in 6-well plates pre-coated with PLL and incubated for 6 h with the indicated drugs. For animal experiments, rats were injected with urate or its vehicle twice daily for five consecutive days before and after stereotaxic surgery. Rats were killed and brain tissues were harvested after 4 weeks of LPS injection. Results In cultured BV2 cells and rat primary microglia, urate suppressed proinflammatory cytokine production and inducible cyclooxygenase 2 and nitric oxide synthase expression to protect dopaminergic neurons from the toxic effects of activated microglia. The neuroprotective effects of urate may also be associated with the stimulation of anti-inflammatory factors interleukin 10 and transforming growth factor β1. Intracellular urate level was increased in a dose-dependent manner upon co-treatment with urate and LPS as compared with LPS alone, an effect that was abrogated by pretreatment with probenecid (PBN), an inhibitor of both glucose transporter 9 and urate transporter 1 (URAT1). PBN also abolished the anti-inflammatory effect of urate. Consistent with these in vitro observations, the number of tyrosine hydroxylase-positive neurons was decreased and the loss of motor coordination was reversed by urate administration in an LPS-induced rat model of PD. Additionally, increased plasma urate level abolished the reduction of URAT1 expression, the increase in the expression of interleukin-1β, and the number of ionized calcium-binding adaptor molecule 1-positive microglia along with changes in their morphology. Conclusions Urate protects neurons against cytotoxicity induced by microglia activation via modulating urate transporter-mediated intracellular urate level. Electronic supplementary material The online version of this article (10.1186/s12974-018-1175-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Hui Bao
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ya-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Yi-Ying Huang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ning Xia
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
42
|
Hughes KC, Gao X, O'Reilly EJ, Kim IY, Wang M, Weisskopf MG, Schwarzschild MA, Ascherio A. Genetic variants related to urate and risk of Parkinson's disease. Parkinsonism Relat Disord 2018; 53:4-9. [PMID: 29789205 DOI: 10.1016/j.parkreldis.2018.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Higher urate concentrations have been associated with a lower risk of developing Parkinson's disease (PD) and with slower rates of clinical decline in PD patients. Whether these associations reflect a neuroprotective effect of urate is unclear. Our objective was to assess whether genetic variants that modify circulating urate levels are also associated with altered PD risk. METHODS Participants were from three large ongoing cohort studies: the Nurses' Health Study (NHS), the Health Professionals Follow-up Study (HPFS), and the Cancer Prevention Study II Nutrition Cohort (CPS-IIN). We examined associations between single nucleotide polymorphisms (SNPs) in SLC2A9 and other genes involved in urate transport and PD risk using conditional logistic regression among 1451 cases and 3135 matched controls. We assessed associations between SNPs and plasma urate levels in a subset of 1174 control participants with linear regression models. RESULTS We found the expected associations between SNPs in SLC2A9 and plasma urate levels among men and women; however, SNPs in other genes tended not to be associated with urate. Each SNP in SLC2A9 explained less than 7% of the variance in plasma urate. We did not find significant associations between the SNPs in SLC2A9 and PD risk among men or women. CONCLUSION Our results do not support an association between genetic variants associated with circulating urate levels and risk of PD, but larger investigations are needed to determine whether the modest genetic effects on blood urate contribute to predict PD risk.
Collapse
Affiliation(s)
- Katherine C Hughes
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiang Gao
- Department of Nutritional Health, The Pennsylvania State University, University Park, PA, USA
| | - Eilis J O'Reilly
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; School of Public Health, College of Medicine, University College Cork, Ireland
| | - Iris Y Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Stoessel D, Schulte C, Teixeira dos Santos MC, Scheller D, Rebollo-Mesa I, Deuschle C, Walther D, Schauer N, Berg D, Nogueira da Costa A, Maetzler W. Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease. Front Aging Neurosci 2018; 10:51. [PMID: 29556190 PMCID: PMC5844983 DOI: 10.3389/fnagi.2018.00051] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0-4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD.
Collapse
Affiliation(s)
- Daniel Stoessel
- Metabolomic Discoveries GmbH, Potsdam, Germany
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | - Irene Rebollo-Mesa
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Christian Deuschle
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Dirk Walther
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | | | - Daniela Berg
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andre Nogueira da Costa
- Experimental Medicine and Diagnostics, Global Exploratory Development, UCB Biopharma SPRL, Brussels, Belgium
| | - Walter Maetzler
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
44
|
Paganoni S, Nicholson K, Chan J, Shui A, Schoenfeld D, Sherman A, Berry J, Cudkowicz M, Atassi N. Urate levels predict survival in amyotrophic lateral sclerosis: Analysis of the expanded Pooled Resource Open-Access ALS clinical trials database. Muscle Nerve 2017; 57:430-434. [PMID: 28857199 DOI: 10.1002/mus.25950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Urate has been identified as a predictor of amyotrophic lateral sclerosis (ALS) survival in some but not all studies. Here we leverage the recent expansion of the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database to study the association between urate levels and ALS survival. METHODS Pooled data of 1,736 ALS participants from the PRO-ACT database were analyzed. Cox proportional hazards regression models were used to evaluate associations between urate levels at trial entry and survival. RESULTS After adjustment for potential confounders (i.e., creatinine and body mass index), there was an 11% reduction in risk of reaching a survival endpoint during the study with each 1-mg/dL increase in uric acid levels (adjusted hazard ratio 0.89, 95% confidence interval 0.82-0.97, P < 0.01). DISCUSSION Our pooled analysis provides further support for urate as a prognostic factor for survival in ALS and confirms the utility of the PRO-ACT database as a powerful resource for ALS epidemiological research. Muscle Nerve 57: 430-434, 2018.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 600 Boston, Massachusetts, 02114.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts
| | - Katharine Nicholson
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 600 Boston, Massachusetts, 02114
| | - James Chan
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts
| | - Amy Shui
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts
| | - David Schoenfeld
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts
| | - Alexander Sherman
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 600 Boston, Massachusetts, 02114
| | - James Berry
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 600 Boston, Massachusetts, 02114
| | - Merit Cudkowicz
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 600 Boston, Massachusetts, 02114
| | - Nazem Atassi
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 600 Boston, Massachusetts, 02114
| | | |
Collapse
|
45
|
Abstract
Oxidative stress has been implicated as a core contributor to the initiation and progression of multiple neurological diseases. Genetic and environmental factors can produce oxidative stress through mitochondrial dysfunction leading to the degeneration of dopaminergic and other neurons underlying Parkinson disease (PD). Although clinical trials of antioxidants have thus far failed to demonstrate slowed progression of PD, oxidative stress remains a compelling target. Rather than prompting abandonment of antioxidant strategies, these failures have raised the bar for justifying drug and dosing selections and for improving study designs to test for disease modification by antioxidants. Urate, the main antioxidant found in plasma as well as the end product of purine metabolism in humans, has emerged as a promising potential neuroprotectant with advantages that distinguish it from previously tested antioxidant agents. Uniquely, higher urate levels in plasma or cerebrospinal fluid (CSF) have been linked to both a lower risk of developing PD and to a slower rate of its subsequent progression in numerous large prospective epidemiological and clinical cohorts. Laboratory evidence that urate confers neuroprotection in cellular and animal models of PD, possibly via the Nrf2 antioxidant response pathway, further strengthened its candidacy for rapid clinical translation. An early phase trial of the urate precursor inosine demonstrated its capacity to safely produce well tolerated, long-term elevation of plasma and CSF urate in early PD, supporting a phase 3 trial now underway to determine whether oral inosine dosed to elevate urate to concentrations predictive of favorable prognosis in PD slows clinical decline in people with recently diagnosed, dopamine transporter-deficient PD.
Collapse
Affiliation(s)
- Grace F Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Alberto Ascherio
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
46
|
Goncharova ZA, Kolmakova TS, Gelpei MA. Alpha-synuclein and oxidative stress enzymes as biomarkers of Parkinson’s disease. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Titova N, Qamar MA, Chaudhuri KR. Biomarkers of Parkinson's Disease: An Introduction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:183-196. [PMID: 28554407 DOI: 10.1016/bs.irn.2017.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of biomarkers is of great importance in Parkinson's disease (PD) as it may contribute to confirmation and support of the diagnosis, tracking of progression, and prediction of the natural history of PD. Biomarkers also help in the identification of targets for treatment and measuring the efficacy of interventions. Biomarkers are, therefore, crucial to understanding the pathophysiology of PD, the second commonest neurodegenerative disorder in the world. Modern understanding of PD suggests that it is a multipeptide, multiorgan disorder presenting with a heterogeneous clinical condition, both motor and nonmotor. Biomarkers need to reflect this neuropathological and clinical heterogeneity of PD. In this review, we outline some key advances in the field of clinical, genetic, neuroimaging, and tissue-based biomarkers proposed or used for PD. The individual sections will be covered in relevant chapters and our review is largely a primer aimed to alert readers to the current state of the various biomarkers proposed for PD. In doing so, we have also underlined the important role multimodal rather than single biomarkers could play in our future understanding of PD.
Collapse
Affiliation(s)
- Nataliya Titova
- Federal State Budgetary Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.
| | - Mubasher A Qamar
- National Parkinson Foundation International Centre of Excellence, Kings College and Kings College Hospital, London, United Kingdom; Maurice Wohl Clinical Neuroscience Institute, Kings College, London, United Kingdom; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre (BRC) and Dementia Unit at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - K Ray Chaudhuri
- National Parkinson Foundation International Centre of Excellence, Kings College and Kings College Hospital, London, United Kingdom; Maurice Wohl Clinical Neuroscience Institute, Kings College, London, United Kingdom; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre (BRC) and Dementia Unit at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
48
|
Wen M, Zhou B, Chen YH, Ma ZL, Gou Y, Zhang CL, Yu WF, Jiao L. Serum uric acid levels in patients with Parkinson's disease: A meta-analysis. PLoS One 2017; 12:e0173731. [PMID: 28319195 PMCID: PMC5358777 DOI: 10.1371/journal.pone.0173731] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background Lower serum uric acid (UA) levels have been reported as a risk factor in Parkinson’s disease (PD). However, the results have been inconsistent so far. Objectives The aim of the present study was to clarify the potential relationship of uric acid with PD. Methods Comprehensive electronic search in pubmed, web of science, and the Cochrane Library database to find original articles about the association between PD and serum uric acid levels published before Dec 2015. Literature quality assessment was performed with the Newcastle-Ottawa Scale. Random-effects model was used to estimate the standardized mean differences (SMDs) with 95% confidence intervals (CIs). Heterogeneity across studies was assessed using I2 and H2 statistics. Sensitivity analyses to assess the influence of individual studies on the pooled estimate. Publication bias was investigated using funnel plots and Egger’s regression test. Analyses were performed by using Review Manager 5.3 and Stata 11.0. Results Thirteen studies with a total of 4646 participants (2379 PD patients and 2267 controls) were included in this meta-analysis. The current results showed that the serum UA levels in PD patients were significantly lower compared to sex and age-matched healthy controls (SMD: -0.49, 95% CI: [-0.67, -0.30], Z = 5.20, P < 0.001) and these results showed no geographic regional (Asia: SMD = −0.65, 95% CI [−0.84, −0.46], Z = 6.75, p <0.001; Non-Asia: SMD = −0.25, 95% CI [−0.43, −0.07], Z = 2.70, p = 0.007) and sex differences (women: SMD = −0.53, 95% CI [−0.70, −0.35], z = 5.98, p <0.001; men: SMD = −0.66, 95% CI [−0.87, −0.44], z = 6.03, p <0.001). Serum UA levels in middle-late stage PD patients with higher H&Y scales were significantly lower than early stage PD patients with lower H&Y scales (SMD = 0.63, 95% CI [0.36,0.89], z = 4.64, p <0.001). Conclusions Our study showed that the serum UA levels are significantly lower in PD and the level is further decreased as the disease progresses. Thus it might be a potential biomarker to indicate the risk and progression of PD.
Collapse
Affiliation(s)
- Min Wen
- Department of Anatomy, Guizhou Medical University, Guiyang, China
| | - Bo Zhou
- Department of Biology, Guizhou Medical University, Guiyang, China
| | - Yun-Hua Chen
- Department of Anatomy, Guizhou Medical University, Guiyang, China
| | - Zhao-Lei Ma
- Department of Neurology, BaiYun Hospital, Guizhou Medical University, Guiyang, China
| | - Yun Gou
- Department of Anatomy, Guizhou Medical University, Guiyang, China
| | - Chun-Lin Zhang
- Department of Biology, Guizhou Medical University, Guiyang, China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, P. R. China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guizhou Province, Guiyang, P. R. China
- * E-mail: (WFY); (LJ)
| | - Ling Jiao
- Department of Neurology, Affiliated Hospital, Guizhou Medical University, Guiyang, China
- * E-mail: (WFY); (LJ)
| |
Collapse
|
49
|
Schlee S, Bollheimer LC, Bertsch T, Sieber CC, Härle P. Crystal arthritides - gout and calcium pyrophosphate arthritis : Part 3: Treatment. Z Gerontol Geriatr 2017; 51:703-710. [PMID: 28246893 DOI: 10.1007/s00391-017-1199-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/17/2017] [Indexed: 10/24/2022]
Abstract
The treatment of gout is based on several principles. Symptom control and termination of the inflammatory process are important early goals, whereas the urate level should be lowered in the long term to prevent further gout attacks and complications. The non-pharmacological approach is based on individually informing the patient on dietary measures and changes of life style. Besides physical measures, such as cold applications on the affected joint, various medications are available for treatment of an acute gout attack. The choice of drug depends on the individual risk profile. If non-steroidal anti-inflammatory drugs (NSAID) and coxibs are chosen it should be taken into account that the use is restricted in patients with renal insufficiency. Moreover, these drugs may have gastrointestinal side effects and are associated with increased cardiovascular morbidity and mortality. Colchicine has gastrointestinal side effects at high dosages but can also be used for differential diagnostics if there is a quick response to treatment. Steroids are an effective alternative and can be given orally or parenterally in patients with dysphagia. Moreover, steroids can be used in cases of renal insufficiency. After symptoms of the acute attack have subsided, urate lowering therapy should be initiated to prevent further attacks. Low-dose urate lowering therapy can be started during an acute gout attack when acute therapy is initiated. Allopurinol is still the medication of choice but its use is restricted in patients with renal insufficiency. A rare but serious side effect is allopurinol hypersensitivity syndrome. Febuxostat can be an alternative in patients who do not tolerate allopurinol. In February 2016, lesinurad, an URAT-1 and OAT-4 inhibitor, was approved in combination with allopurinol or febuxostat. Data on the effectiveness and safety of synthetic uricases and biologicals are still sparse for elderly patients. These substances are reserved for severe cases of gout.
Collapse
Affiliation(s)
- S Schlee
- Klinik für Allgemeine Innere Medizin und Geriatrie, Krankenhaus der Barmherzigen Brüder Regensburg, Prüfeninger Str. 86, 93049, Regensburg, Germany.
| | - L C Bollheimer
- Lehrstuhl für Altersmedizin, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - T Bertsch
- Institut für Klinische Chemie, Laboratoriumsmedizin und Transfusionsmedizin, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Germany
| | - C C Sieber
- Klinik für Allgemeine Innere Medizin und Geriatrie, Krankenhaus der Barmherzigen Brüder Regensburg, Prüfeninger Str. 86, 93049, Regensburg, Germany
- Institut für Biomedizin des Alterns, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90408, Koberger Straße 60, Nürnberg, Germany
| | - P Härle
- Klinik für Rheumatologie, Klinische Immunologie und Physikalische Therapie, Zentrum für Akutdiagnostik, Katholisches Klinikum Mainz, An der Goldgrube 11, 55131, Mainz, Germany
| |
Collapse
|
50
|
Schlee S, Bollheimer LC, Bertsch T, Sieber CC, Härle P. Crystal arthritides – gout and calcium pyrophosphate arthritis. Z Gerontol Geriatr 2017; 51:453-460. [DOI: 10.1007/s00391-017-1197-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
|