1
|
Liu Y, Jiang X, Yan X, Yang S, Bian X, Wang Y, You Q, Zhang L. Elevated mRNA level indicates FSIP1 promotes EMT and gastric cancer progression by regulating fibroblasts in tumor microenvironment. Open Med (Wars) 2024; 19:20240964. [PMID: 38737444 PMCID: PMC11087735 DOI: 10.1515/med-2024-0964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Fiber sheath interaction protein 1 (FSIP1) plays a crucial role in cancer development and occurrence, but its influence on gastric cancer is still unclear. In this study, differential mRNA analysis was performed by TCGA database for the Limma analysis algorithm, and the gene ontology, the Kyoto Encyclopedia of Genes and Genomes, and the gene set enrichment analysis (GSEA) were used for bioinformatics functional enrichment analysis. A gastric cancer cell model with FSIP1 mRNA knockdown was constructed by RNA interference. Cell counting kit-8 and transwell migration/invasion assay were performed to verify the cell function, and western blotting was employed to confirm the expression of target genes. The GSEA analysis revealed that FSIP1 was associated with epithelial-mesenchymal transition (EMT). The high expression group also had a significant positive correlation with the markers of fibroblast in tumor microenvironment (TME). Western blotting showed that FSIP1 was generally upregulated in gastric cancer cell lines. FSIP1 mRNA knockdown cell lines inhibited gastric cells proliferation, migration, and metastasis in vitro, and the protein levels of EMT-related markers N-cadherin and vimentin were reduced. Our work proved that FSIP1 promoted EMT by regulating fibroblasts in the TME, thereby promoting the carcinogenic activity of cancer cells in proliferation, invasion, and migration. FSIP1 may take a role of the occurrence and could be a potential therapeutic target and offer a new insight into the underlying mechanism of gastric cancer.
Collapse
Affiliation(s)
- Yao Liu
- Department of Cancer Prevention and Physical Examination Center, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Xinju Jiang
- Department of Pathology, Harbin Medical University, Harbin, 150076, P. R. China
| | - Xiuchun Yan
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Shuo Yang
- Department of Pathology, Harbin Medical University, Harbin, 150076, P. R. China
| | - Xiulan Bian
- Department of Pathology, Harbin Medical University, Harbin, 150076, P. R. China
| | - Yue Wang
- Department of Pharmacology & Toxicology, Wright State University, Dayton, 45435, United States of America
| | - Qi You
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150076, P. R. China
| |
Collapse
|
2
|
Gamallat Y, Fang X, Mai H, Liu X, Li H, Zhou P, Han D, Zheng S, Liao C, Yang M, Li Y, Zuo L, Sun L, Hu H, Li N. Bi-allelic mutation in Fsip1 impairs acrosome vesicle formation and attenuates flagellogenesis in mice. Redox Biol 2021; 43:101969. [PMID: 33901807 PMCID: PMC8099781 DOI: 10.1016/j.redox.2021.101969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Fibrous sheath interacting protein 1 (Fsip1) is a cytoskeletal structural protein of the sperm flagellar proteome. A few studies have reported that it plays a vital role in the tumorigenesis and cancer progression. However, little is known about the role of Fsip1 in spermatogenesis and mammalian sperm flagellogenesis. Fsip1 protein showed the highest expression in round spermatids, and was translocated from nucleus to the anterior region of the elongating spermatid head. To investigate its role we constructed homozygous Fsip1 null (Fsip1−/−) mice. We found that the homozygous Fsip1−/− mutant mice were infertile, with a low sperm count and impaired motility. Interestingly, a subtle phenotype characterized by abnormal head shape, and flagella deformities was observed in the sperm of Fsip1−/− mutant mice similar to the partial globozoospermia phenotype. Electron microscopy analysis of Fsip1−/− sperm revealed abnormal accumulation of mitochondria, disrupted axoneme and retained cytoplasm. Testicular sections showed increased cytoplasmic vacuoles in the elongated spermatid of Fsip1–/–mice, which indicated an intraflagellar transport (IFT) defect. Using proteomic approaches, we characterized the cellular components and the mechanism underlying this subtle phenotype. Our result indicated that Fsip1–/–downregulates the formation of acrosomal membrane and vesicles proteins, intraflagellar transport particles B, and sperm flagellum components. Our results suggest that Fsip1 is essential for normal spermiogenesis, and plays an essential role in the acrosome biogenesis and flagellogenesis by attenuating intraflagellar transport proteins. Disruption of Fsip1 leads to infertility with partial globozoospermia phenotype. Homozygous deletion of Fsip1 alters spermiogenesis. Fsip1 Knockout disrupts acrosome vesicle formation. Fsip1 motif analysis involves in internal fertilization.
Collapse
Affiliation(s)
- Yaser Gamallat
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanran Mai
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaonan Liu
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China; Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
3
|
Wu HY, Yang B, Geng DH. Clinical significance of expression of fibrous sheath interacting protein 1 in colon cancer. World J Gastrointest Oncol 2020; 12:677-686. [PMID: 32699582 PMCID: PMC7340994 DOI: 10.4251/wjgo.v12.i6.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/11/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The occurrence and development of colon cancer are complex, involving a variety of genetic changes, such as mutation and activation of oncogenes, inactivation of tumour suppressor genes, and aberrant proliferation and apoptosis regulation mechanisms. Fibrous sheath interacting protein 1 (FSIP1) is a newly discovered oncogene that is frequently activated in a variety of tumours such as breast cancer and bladder cancer. However, the clinical significance of FSIP1 in colon cancer is unclear. In this study, we analysed the clinical significance of expression of FSIP1 in human colon cancer, aimed to clarify the biological role of FSIP1 in the development and progression of colon cancer.
AIM To investigate the clinical significance of expression of FSIP1 in colon cancer.
METHODS From March 2011 to March 2014, 302 specimens of tumour tissues and paracancerous tissues were obtained from patients pathologically diagnosed with colon cancer at Shengjing Hospital of China Medical University. Immunohistochemistry was used to detect FSIP1 expression in colon cancer tissues and adjacent normal tissues. Spearman correlation coefficient and Cox regression analyses were used to determine the relationship between FSIP1 expression and clinicopathological factors and prognosis, as well as the impact on survival.
RESULTS Compared with its expression in adjacent normal tissues, FSIP1 was expressed at higher levels in colon cancer tissues. Spearman correlation analysis showed that high expression of FSIP1 was positively correlated with clinicopathological stage, lymph node metastasis, and poor prognosis in colon cancer; it was negatively correlated with the degree of tumour differentiation. Cox regression analysis showed that high FSIP1 expression was an independent risk factor for the prognosis of colon cancer patients.
CONCLUSION High expression of FSIP1 may be one of the important factors affecting the clinical outcome of colon cancer patients and leading to poor prognosis.
Collapse
Affiliation(s)
- Hui-Ying Wu
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Bin Yang
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dong-Hua Geng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
4
|
Chen F, Li Y, Qin N, Wang F, Du J, Wang C, Du F, Jiang T, Jiang Y, Dai J, Hu Z, Lu C, Shen H. RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer. J Biomed Res 2020; 34:129-138. [PMID: 32305967 DOI: 10.7555/jbr.34.20190111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer that currently lacks effective biomarkers and therapeutic targets required to investigate the diagnosis and treatment of TNBC. Here we performed a comprehensive differential analysis of 165 TNBC samples by integrating RNA-seq data of breast tumor tissues and adjacent normal tissues from both our cohort and The Cancer Genome Atlas (TCGA). Pathway enrichment analysis was conducted to evaluate the biological function of TNBC-specific expressed genes. Further multivariate Cox proportional hazard regression was performed to evaluate the effect of these genes on TNBC prognosis. In this report, we identified a total of 148 TNBC-specific expressed genes that were primarily enriched in mammary gland morphogenesis and hormone levels related pathways, suggesting that mammary gland morphogenesis might play a unique role in TNBC patients differing from other breast cancer types. Further survival analysis revealed that nine genes ( FSIP1, ADCY5, FSD1, HMSD, CMTM5, AFF3, CYP2A7, ATP1A2, and C11orf86) were significantly associated with the prognosis of TNBC patients, while three of them ( ADCY5, CYP2A7, and ATP1A2) were involved in the hormone-related pathways. These findings indicated the vital role of the hormone-related genes in TNBC tumorigenesis and may provide some independent prognostic markers as well as novel therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Fei Chen
- Department of Breast Surgery, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China;Department of Epidemiology, Center for Global Health, School of Public Health
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Fengliang Wang
- Department of Breast Surgery, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Jiangbo Du
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Fangzhi Du
- Department of Clinical Management, National Center for STD Control, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, China
| | - Tao Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health
| | - Cheng Lu
- Department of Breast Surgery, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health
| |
Collapse
|
5
|
Barcelona V, Huang Y, Brown K, Liu J, Zhao W, Yu M, Kardia SL, Smith JA, Taylor JY, Sun YV. Novel DNA methylation sites associated with cigarette smoking among African Americans. Epigenetics 2019; 14:383-391. [PMID: 30915882 PMCID: PMC6557550 DOI: 10.1080/15592294.2019.1588683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Cigarette smoking has been associated with adverse health outcomes for mothers and children and is a major contributor to heart disease. Although cigarette smoking is known to affect the epigenome, few studies have been done in African American populations. In this study, we investigated the association between cigarette smoking and DNA methylation (DNAm) among African Americans from the Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure Study (InterGEN), and the Genetic Epidemiology Network of Arteriopathy (GENOA). METHODS The InterGEN study aims to examine the effects of genetic and psychological factors on blood pressure among African American women and their children. Current cigarette smoking was assessed at baseline. DNAm of saliva was assessed using the 850K EPIC Illumina BeadChip for Epigenome-Wide Association analyses. A replication study was conducted among 1100 participants in the GENOA study using the same BeadChip. RESULTS After controlling for age, body mass index, population structure and cell composition, 26 epigenome-wide significant sites (FDR q < 0.05) were identified, including the AHRR and PHF14 genes associated with atherosclerosis and lung disease, respectively. Six novel CpG sites were discovered in the InterGEN sample and replicated in the GENOA sample. Genes mapped include RARA, FSIP1, ALPP, PIK3R5, KIAA0087, and MGAT3, which were largely associated with cancer development. CONCLUSION We observed significant epigenetic associations between smoking and disease-associated genes (e.g., cardiovascular disease, lung cancer). Six novel CpG sites were identified and replicated across saliva and blood samples.
Collapse
Affiliation(s)
| | - Yunfeng Huang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Kristen Brown
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Jiaxuan Liu
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Wei Zhao
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Miao Yu
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Sharon L.R. Kardia
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | | | - Yan V. Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
6
|
Abstract
Fibrous sheath interacting protein 1 (FSIP1) is a cancer antigen expressed in the majority of breast cancer tissues and is associated with poor prognosis. However, the role of FSIP1 in the progression and drug sensitivity of triple-negative breast cancer (TNBC) has not been explored. Here, we show that FSIP1 deficiency by shRNA-mediated knockdown or CRISPR-Cas9-mediated knockout significantly inhibits the proliferation and invasion of TNBC cells and impairs chemotherapy-induced growth inhibition in vivo. Computational modeling predicted that FSIP1 binds to ULK1, and this was established by coimmunoprecipitation. FSIP1 deficiency promoted autophagy, enhanced AMP-activated protein kinase (AMPK) signaling, and decreased mechanistic target of rapamycin (mTOR) and Wnt/β-catenin activity. In contrast, knockdown of AMPK or inhibition of autophagy restored the sensitivity to chemotherapy drugs in TNBC cells. Our findings uncover a role of FSIP1 as well as mechanisms underlying FSIP1 action in drug sensitivity and may, therefore, aid in design of TNBC therapies.
Collapse
|
7
|
Begam AJJ, Basheer KA, Jubie S, Jupudi S, Azam MA, Dhanabal P. A New Class of Pure Estrogen Alpha Receptor Antagonists; Design, Synthesis and in-vitro Screening. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180327124634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background:
In view of the estrogenic receptor inhibitory properties of coumarin
nucleus, long chain nature of fatty acid and anti-breast cancer activity of fatty acids, it was proposed
to attach long chain fatty acids at 3rd,4th and 7th position of coumarin nucleus and evaluate for their
anti-breast cancer activity through suitable in-vitro methods.
Methods:
The present study focuses a library of fatty acid coumarin conjugates as ligands to the
ligand-binding domain of the human estrogen receptor α (PDB ID 2IOG) and their binding affinities
using GLIDE module of Schrodinger after ascertaining their drug-likeness with QIKPROP. The
compounds LNAC 8, SAC 1 and OAC 5 are the best hits based on their docking scores as well as
the Prime MM-GBSA free energy of binding. Based on the in-silico results and synthetic feasibility
the compounds SAC 1 PAC 1 and OAC 1 are synthesized, characterized and investigated for their
time interval growth inhibitory effect on MCF-7 which is an ER positive breast cancer cell lines.
Results:
SAC 1, showed better in vitro growth inhibitory effect in sub micromolar range as
compared to Tamoxifen, a standard estrogen receptor modulator.
Conclusion:
Conclusively, in silico molecular docking studies have been very useful in predicting
the pharmacokinetic profiles and the binding affinities of new hits before a detailed preclinical and
clinical evaluation.
Collapse
Affiliation(s)
- Akbar John Jameera Begam
- Department of Pharmaceutical Chemistry, J.S.S.College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Mysuru, India
| | - Katike Ahamed Basheer
- Department of Pharmaceutical Chemistry, J.S.S.College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Mysuru, India
| | - Selvaraj Jubie
- Department of Pharmaceutical Chemistry, J.S.S.College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Mysuru, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, J.S.S.College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Mysuru, India
| | - Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, J.S.S.College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Mysuru, India
| | - Palanisamy Dhanabal
- Department of Pharmacognosy and Phytopharmacy, J.S.S.College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Mysuru, India
| |
Collapse
|
8
|
Lacher MD, Bauer G, Fury B, Graeve S, Fledderman EL, Petrie TD, Coleal-Bergum DP, Hackett T, Perotti NH, Kong YY, Kwok WW, Wagner JP, Wiseman CL, Williams WV. SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4 + T Lymphocytes. Front Immunol 2018; 9:776. [PMID: 29867922 PMCID: PMC5962696 DOI: 10.3389/fimmu.2018.00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted cancer immunotherapy with irradiated, granulocyte–macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study (ClinicalTrials.gov NCT00095862), a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs) such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC) class II genes (HLA-DRA, HLA-DRB3, HLA-DMA, HLA-DMB), in addition to several other factors known to play immunostimulatory roles. These factors include MHC class I components (B2M, HLA-A, HLA-B), ADA (encoding adenosine deaminase), ADGRE5 (CD97), CD58 (LFA3), CD74 (encoding invariant chain and CLIP), CD83, CXCL8 (IL8), CXCL16, HLA-F, IL6, IL18, and KITLG. Moreover, both SV-BR-1-GM cells and the responding study subject carried an HLA-DRB3*02:02 allele, raising the question of whether SV-BR-1-GM cells can directly present endogenous antigens to T cells, thereby inducing a tumor-directed immune response. In support of this, SV-BR-1-GM cells (which also carry the HLA-DRB3*01:01 allele) treated with yellow fever virus (YFV) envelope (Env) 43–59 peptides reactivated YFV-DRB3*01:01-specific CD4+ T cells. Thus, the partial HLA allele match between SV-BR-1-GM and the clinical responder might have enabled patient T lymphocytes to directly recognize SV-BR-1-GM TAAs as presented on SV-BR-1-GM MHCs. Taken together, our findings are consistent with a potentially unique mechanism of action by which SV-BR-1-GM cells can act as APCs for previously primed CD4+ T cells.
Collapse
Affiliation(s)
| | - Gerhard Bauer
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Brian Fury
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Sanne Graeve
- BriaCell Therapeutics Corp., Berkeley, CA, United States
| | - Emily L Fledderman
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Tye D Petrie
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Dane P Coleal-Bergum
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Tia Hackett
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Nicholas H Perotti
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Ying Y Kong
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | | | | | | |
Collapse
|
9
|
Sun M, Chen Z, Tan S, Liu C, Zhao W. Knockdown of fibrous sheath interacting protein 1 expression reduces bladder urothelial carcinoma cell proliferation and induces apoptosis via inhibition of the PI3K/AKT pathway. Onco Targets Ther 2018; 11:1961-1971. [PMID: 29670371 PMCID: PMC5896667 DOI: 10.2147/ott.s158275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background FSIP1 plays a vital role in tumorigenesis and cancer progression. In bladder cancer, FSIP1 overexpression was associated with poor prognosis of bladder urothelial carcinoma. In this study, we investigated whether FSIP1 is essential in the progression of bladder cancer and the mechanism by which it mediates this effect. Methods FSIP1 expression was knocked down in bladder cancer cells using lentiviral-mediated short hairpin RNA (shRNA). FSIP1 expression was detected using Western blotting, immunohistochemistry (IHC), and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The effects of FSIP1 knockdown on tumor cells were assessed using colony formation, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and flow cytometry (FCM) apoptosis assays in vitro and BALB/c nude mouse xenograft model in vivo. Results The findings suggested that FSIP1 protein was highly expressed in bladder cancer cell lines. Knockdown of FSIP1 resulted in reduced tumor cell viability, cell cycle arrest at G0/G1 phase and apoptosis of bladder cancer cell lines (P<0.05). Moreover, knockdown of FSIP1 expression suppressed the tumor formation and growth of bladder cancer xenografts (P<0.05). At the gene level, knockdown of FSIP1 expression downregulated the activity of the PI3K/AKT signaling pathway. Conclusion This study demonstrated that knockdown of FSIP1 suppressed bladder cancer cell malignant behaviors in vitro and in vivo through the inhibition of the PI3K/AKT signaling pathway, suggesting that targeting FSIP1 could be further evaluated as a potential therapeutic strategy in bladder cancer.
Collapse
Affiliation(s)
| | | | | | | | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Mao Y, Xu R, Liu X, Shi W, Han Y. Elevated fibrous sheath interacting protein 1 levels are associated with poor prognosis in non-small cell lung cancer patients. Oncotarget 2017; 8:12186-12193. [PMID: 28086239 PMCID: PMC5355335 DOI: 10.18632/oncotarget.14575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we examined the expression and prognostic value of fibrous sheath interacting protein 1 (FSIP1) in 202 non-small cell lung cancer (NSCLC) patients who underwent lung cancer resection at Shengjing Hospital of China Medical University. FSIP1 mRNA and protein expression were measured in NSCLC tissues and non-tumor adjacent tissues (NATs), and Harrell's concordance index (c-index) was used to evaluate the ability of FSIP1 to predict prognosis. FSIP1 mRNA and protein expression was higher in NSCLC tissues than in NATs. Survival analysis revealed the 5-year overall survival rate to be 35.4% in the FSIP1-positive group and 56.3% in the FSIP1-negative group, and FSIP1-positive status was an independent prognostic factor for poor overall survival. The c-index value of FSIP1 for overall survival was greater than that of Ki67, and the addition of FSIP1 status increased the c-index value of the TNM staging system. These results suggest that evaluating FSIP1 status in addition to TNM stage during routine pathological examinations could improve prognostic predictions in NSCLC patients.
Collapse
Affiliation(s)
- Yuqiang Mao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoying Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wenjun Shi
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
11
|
Sun M, Zhao W, Zeng Y, Zhang D, Chen Z, Liu C, Wu B. Fibrous sheath interacting protein 1 overexpression is associated with unfavorable prognosis in bladder cancer: a potential therapeutic target. Onco Targets Ther 2017; 10:3949-3956. [PMID: 28860802 PMCID: PMC5558570 DOI: 10.2147/ott.s143491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The study aimed to investigate the clinical significance of fibrous sheath interacting protein 1 (FSIP1) in bladder cancer, and its potential relevance to the survival of patients with bladder cancer. A total of 225 surgical excised-bladder cancer tissues were collected from the patients with the follow-up data >5 years. The FSIP1 expressions were assayed using immunohistochemistry. The messenger RNA (mRNA) and/or protein levels of FSIP1 in fresh bladder tumor tissues as well as bladder cancer cell lines were measured by quantitative real-time polymerase chain reaction (PCR) and Western blotting analysis. The correlation of FSIP1 expression with clinicopathological parameters was also evaluated. Western blotting analysis revealed that FSIP1 protein was detected in 94.1% (16/17) of bladder tumor specimens and in all three bladder cancer cell lines (5637, BIU-87, and T24 in particular), with significantly higher expression than those of their controls. Quantitative real-time PCR demonstrated an increased FSIP1 mRNA expression level in bladder cancer tissues than in normal adjacent tissues (P=0.012). FSIP1 overexpression showed good correlation with tumor stage and lymph node metastasis (P=0.027 and 0.000, respectively). Positive FSIP1 expression was independently associated with an unfavorable overall and disease-free survival by multivariate Cox regression (P=0.037 and 0.019, respectively). FSIP1 overexpression is associated with unfavorable prognosis in patients with bladder cancer. Thus, FSIP1 represents a potential therapeutic or predictive target for bladder cancer.
Collapse
Affiliation(s)
| | | | - Yuecan Zeng
- Department of Medical Oncology, Shengjing Hospital of China Medical University
| | - Di Zhang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University
| | | | - Caigang Liu
- Department of Breast Cancer Surgery Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | | |
Collapse
|
12
|
FSIP1 binds HER2 directly to regulate breast cancer growth and invasiveness. Proc Natl Acad Sci U S A 2017; 114:7683-7688. [PMID: 28674022 DOI: 10.1073/pnas.1621486114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fibrous sheath interacting protein 1 (FSIP1), a spermatogenesis-related testicular antigen, is expressed in abundance in breast cancers, particularly in those overexpressing human epidermal growth factor receptor 2 (HER2); however, little is known about its role in regulating the growth and metastasis of breast cancer cells. We and others have shown previously that FSIP1 expression in breast cancer correlates positively with HER2-positivity, recurrence, and metastases and negatively with survival. Here, using coimmunoprecipitation and microscale thermophoresis, we find that FSIP1 binds to the intracellular domain of HER2 directly. We further show that shRNA-induced FSIP1 knockdown in SKBR3 and MCF-7 breast cancer cells inhibits proliferation, stimulates apoptosis, attenuates epithelial-mesenchymal transition, and impairs migration and invasiveness. Consistent with reduced proliferation and enhanced apoptosis, xenotransplantation of SKBR3 cells stably transfected with sh-FSIP1 into nu/nu mice results in reduced tumor volumes compared with sh-NC transplants. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping using sh-FSIP1 gene signature yielded associations with extracellular matrix protein pathways, and a reduction in SNAI2 protein expression was confirmed on Western blot analysis. Complementarily, interrogation of the Connectivity Map using the same gene signature yielded, as top hits, chemicals known to inhibit epithelial-mesenchymal transition, including rapamycin, 17-N-allylamino-17-demethoxygeldanamycin, and LY294002. These compounds phenocopy the effects of sh-FSIP1 on SKBR3 cell viability. Thus, FSIP1 suppression limits oncogenesis and invasiveness in breast cancer cells and, considering its absence in most other tissues, including normal breast, may become a potential target for breast cancer therapy.
Collapse
|
13
|
Nielsen AY, Gjerstorff MF. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability. Int J Mol Sci 2016; 17:E890. [PMID: 27275820 PMCID: PMC4926424 DOI: 10.3390/ijms17060890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aaraby Yoheswaran Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark.
| |
Collapse
|
14
|
Zhang H, Luo M, Jin Z, Wang D, Sun M, Zhao X, Zhao Z, Lei H, Li M, Liu C. Expression and clinicopathological significance of FSIP1 in breast cancer. Oncotarget 2016; 6:10658-66. [PMID: 25826084 PMCID: PMC4496383 DOI: 10.18632/oncotarget.3381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/14/2015] [Indexed: 12/19/2022] Open
Abstract
Aim To investigate the clinicopathological significance of the expression of fibrous sheath interacting protein 1 (FSIP1) in breast cancer, serum samples, and wound fluid from patients with breast cancer. Methods Wound fluid and serum samples from female patients with primary breast cancer, recurrent and metastatic breast cancer, and benign tumors were analyzed for FSIP1 expression using ELISA. 286 paraffin-embedded surgical specimens from breast cancer patients with at least 5 years of follow-up were included for FSIP1 expression assay using immunohistochemistry. Results Expression of FSIP1 protein was significantly higher in breast cancer tissues compared to tumor-adjacent tissues (p = 0.001). Strong correlation was observed between FSIP1 expression and human epidermal growth factor receptor 2 (Her-2) or Ki67 expression in breast cancer (p = 0.027 and 0.002, respectively). Similarly, serum level of FSIP1 was higher in patients with recurrent and metastatic breast cancer compared to that of primary breast cancer (7, 713 ± 3, 065 vs. 4, 713 ± 3, 065 pg/ml, p = 0.003). Finally, patients with high FSIP1 expression showed a worse post-operative disease-specific survival (p = 0.024). Conclusion FSIP1 may play an important role in the tumorigenesis and invasion of breast cancer and is a potential biomarker for breast cancer diagnosis or prognosis.
Collapse
Affiliation(s)
- Hao Zhang
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Minna Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Dan Wang
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ming Sun
- Shengjing Hospital, China Medical University, Shenyang, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zuowei Zhao
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Man Li
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| | - Caigang Liu
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Nourashrafeddin S, Dianatpour M, Aarabi M, Mobasheri MB, Kazemi-oula G, Modarressi MH. Elevated Expression of the Testis-specific Gene WBP2NL in Breast Cancer. BIOMARKERS IN CANCER 2015; 7:19-24. [PMID: 26157336 PMCID: PMC4489666 DOI: 10.4137/bic.s19079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 01/28/2023]
Abstract
Breast cancer is one of the most common causes of cancer death in women; therefore, the study of molecular aspects of breast cancer for finding new biomarkers is important. Recent studies have shown that WW domain-binding protein 2 (WBP2) is important for the oncogenic property of breast cancer. WWP2 N-terminal-like (WBP2NL) is a testis-specific signaling protein that induces meiotic resumption and oocyte activation events. Our previous study revealed that WBP2NL gene expression is elevated in actively dividing cells and it might be associated with cellular proliferation and tumorigenic process. However, the clinical relevance and importance of WBP2NL gene in cancer has not been understood yet. Therefore, we were interested in analyzing the expression of WBP2NL gene in human breast cancer tissues and breast cancer cell lines, for the first time. We used reverse transcription-polymerase chain reaction (RT-PCR) and semi-nested RT-PCR to evaluate the expression of WBP2NL in malignant breast cancer and adjacent noncancerous tissue (ANCT) samples, as well as MCF-7 and MDA-MB-231 cell lines. The WBP2NL gene was expressed in 45 out of 50 (90%) breast cancer tissues and overexpressed in the MDA-MB-231 cell line. We suggest that WBP2NL may play roles in breast cancer activation maybe through binding to a group I WW domain protein. The elevated expression of WBP2NL gene in breast cancer and MDA-MB-231 cell line leads us to suggest that WBP2NL might be considered as a novel prognostic factor for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Seyedmehdi Nourashrafeddin
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mehdi Dianatpour
- Department of Medical Genetics, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Aarabi
- Department of Human Genetics, School of Medicine, McGill University, Montreal, Canada
| | - Maryam Beigom Mobasheri
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnesa Kazemi-oula
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
Ghafouri-Fard S, Shamsi R, Seifi-Alan M, Javaheri M, Tabarestani S. Cancer-testis genes as candidates for immunotherapy in breast cancer. Immunotherapy 2014; 6:165-79. [PMID: 24491090 DOI: 10.2217/imt.13.165] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer-testis (CT) antigens are tumor-associated antigens attracting immunologists for their possible application in the immunotherapy of cancer. Several clinical trials have assessed their therapeutic potentials in cancer patients. Breast cancers, especially triple-negative cancers are among those with significant expression of CT genes. Identification of CT genes with high expression in cancer patients is the prerequisite for any immunotherapeutic approach. CT genes have gained attention not only for immunotherapy of cancer patients, but also for immunoprevention in high-risk individuals. Many CT genes have proved to be immunogenic in breast cancer patients suggesting the basis for the development of polyvalent vaccines.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | | | | | | |
Collapse
|