1
|
Najjar SM, Shively JE. Regulation of lipid storage and inflammation in the liver by CEACAM1. Eur J Clin Invest 2024; 54 Suppl 2:e14338. [PMID: 39674882 DOI: 10.1111/eci.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/11/2024] [Indexed: 12/17/2024]
Abstract
This review focuses on a special aspect of hepatic lipid storage and inflammation that occurs during nutritional excess in obesity. Mounting evidence supports that prolonged excess fatty acid (FA) uptake in the liver is strongly associated with hepatic lipid storage and inflammation and that the two processes are closely linked by a homeostatic mechanism. There is also strong evidence that bacterial lipids may enter the gut by a common mechanism with lipid absorption and that there is a set point to determine when their uptake triggers an inflammatory response in the liver. In fact, the progression from high uptake of FAs in the liver resulting in Metabolic dysfunction-associated steatotic liver disease (MASLD) to the development of the more serious Metabolic dysfunction-associated steatohepatitis (MASH) depends on the degree of inflammation and its progression from an acute to a chronic state. Thus, MASLD/MASH implicates both excess fatty acids and progressive inflammation in the aetiology of liver disease. We start the discussion by introduction of CD36, a major player in FA and lipopolysaccharide (LPS) uptake in the duodenum, liver and adipose tissue. We will then introduce CEACAM1, a major player in the regulation of hepatic de novo lipogenesis and the inflammatory response in the liver, and its dual association with CD36 in enterocytes and hepatocytes. We conclude that CEACAM1 and CD36 together regulate lipid droplet formation and inflammation in the liver.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - John E Shively
- Department of Immunology and Theranostics, Arthur D. Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
2
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
3
|
Abdalla M, El-Arabey AA, Gai Z. PDL-1 and insulin resistance in obesity: a possible pathway for macrovascular disease. Hum Cell 2024; 37:568-570. [PMID: 38267700 DOI: 10.1007/s13577-024-01029-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Mohnad Abdalla
- Research Institute of Pediatrics Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Zhongtao Gai
- Research Institute of Pediatrics Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| |
Collapse
|
4
|
Agarwal S, Saha S, Ghosh R, Sarmadhikari D, Asthana S, Maiti TK, Khadgawat R, Guchhait P. Elevated glycosylation of CD36 in platelets is a risk factor for oxLDL-mediated platelet activation in type 2 diabetes. FEBS J 2024; 291:376-391. [PMID: 37845743 DOI: 10.1111/febs.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Platelet activation and related cardiovascular complications are the hallmarks of type 2 diabetes (T2D). We investigated the mechanism of platelet activation in T2D using MS-based identification of differentially expressed platelet proteins with a focus on glycosylated forms. Glycosylation is considered one of the common post-translational modifications in T2D, and N/O-linked glycosylation of glycoproteins (GPs)/integrins is known to play crucial roles in platelet activation. Our platelet proteome data revealed elevated levels of GPs GPIbα, GPIIbIIIa, GPIV (CD36), GPV and integrins in T2D patients. T2D platelets had elevated N-linked glycosylation of CD36 at asparagine (Asn)408,417 . Enrichment analysis revealed a close association of glycosylated CD36 with thrombospondin-1, fibrinogen and SERPINA1 in T2D platelets. The glycosylation of CD36 has previously been reported to increase cellular uptake of long-chain fatty acids. Our in silico molecular docking data also showed a favorable binding of cholesterol with glycosylated Asn417 CD36 compared to the non-glycosylated form. We further investigated the CD36:LDL cholesterol axis in T2D. Elevated levels of oxidized-low density lipoprotein (oxLDL) were found to cause significant platelet activation via CD36-mediated stimulation of Lyn-JNK signaling. Sulfo-N-succinimidyl oleate, an inhibitor of CD36, effectively inhibited oxLDL-mediated platelet activation and adhesion in vitro. Our study suggests increased glycosylation of CD36 in T2D platelets as a potential route for oxLDL-mediated platelet activation. The oxLDL:CD36 axis may thus be exploited as a prospective target to develop therapeutics against thrombosis in T2D.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sandhini Saha
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Debapriyo Sarmadhikari
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Shailendra Asthana
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
5
|
Eichhorn T, Weiss R, Huber S, Ebeyer-Masotta M, Mostageer M, Emprechtinger R, Knabl L, Knabl L, Würzner R, Weber V. Expression of Tissue Factor and Platelet/Leukocyte Markers on Extracellular Vesicles Reflect Platelet-Leukocyte Interaction in Severe COVID-19. Int J Mol Sci 2023; 24:16886. [PMID: 38069209 PMCID: PMC10707108 DOI: 10.3390/ijms242316886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Severe COVID-19 is frequently associated with thromboembolic complications. Increased platelet activation and platelet-leukocyte aggregate formation can amplify thrombotic responses by inducing tissue factor (TF) expression on leukocytes. Here, we characterized TF-positive extracellular vesicles (EVs) and their cellular origin in 12 patients suffering from severe COVID-19 (time course, 134 samples overall) and 25 healthy controls. EVs exposing phosphatidylserine (PS) were characterized by flow cytometry. Their cellular origin was determined by staining with anti-CD41, anti-CD45, anti-CD235a, and anti-CD105 as platelet, leukocyte, red blood cell, and endothelial markers. We further investigated the association of EVs with TF, platelet factor 4 (PF4), C-reactive protein (CRP), and high mobility group box-1 protein (HMGB-1). COVID-19 patients showed higher levels of PS-exposing EVs compared to controls. The majority of these EVs originated from platelets. A higher amount of EVs in patient samples was associated with CRP, HMGB-1, PF4, and TF as compared to EVs from healthy donors. In COVID-19 samples, 16.5% of all CD41+ EVs displayed the leukocyte marker CD45, and 55.5% of all EV aggregates (CD41+CD45+) co-expressed TF, which reflects the interaction of platelets and leukocytes in COVID-19 on an EV level.
Collapse
Affiliation(s)
- Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Marwa Mostageer
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Robert Emprechtinger
- Faculty of Health and Medicine, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Ludwig Knabl
- Department of Internal Medicine, Hospital St. Vinzenz, 6511 Zams, Austria;
| | | | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| |
Collapse
|
6
|
Thrombosis and Anticoagulation Therapy in Systemic Lupus Erythematosus. Autoimmune Dis 2022; 2022:3208037. [PMID: 35795725 PMCID: PMC9252713 DOI: 10.1155/2022/3208037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease in which pathogenic autoantibodies and immune complexes are formed and mediate multiple organ and tissue damage. Thrombosis is one of the most common causes of death in patients with SLE. Anticoagulant therapy blocks the vicious cycle between inflammation and thrombosis, which may greatly improve the long-term prognosis of patients with SLE. However, the etiology and pathogenesis of this disease are very complicated and have not yet been fully clarified. Therefore, in the present review, we will highlight the characteristics and mechanisms of thrombosis and focus on the anticoagulant drugs commonly used in clinical practice, thus, providing a theoretical basis for scientific and reasonable anticoagulant therapy in clinical practice.
Collapse
|
7
|
The Early Immune Response of Lymphoid and Myeloid Head-Kidney Cells of Rainbow Trout (Oncorhynchus mykiss) Stimulated with Aeromonas salmonicida. FISHES 2022. [DOI: 10.3390/fishes7010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The teleost head kidney is a highly relevant immune organ, and myeloid cells play a major role in this organ’s innate and adaptive immune responses. Because of their complexity, the early phases of the innate immune reaction of fish against bacteria are still poorly understood. In this study, naïve rainbow trout were stimulated with inactivated A. salmonicida and sampled at 12 h, 24 h and 7 d poststimulation. Cells from the head kidney were magnetically sorted with a monoclonal antibody mAB21 to obtain one (MAb21-positive) fraction enriched with myeloid cells and one (MAb21-negative) fraction enriched with lymphocytes and thrombocytes. The gene expression pattern of the resulting cell subpopulations was analysed using a panel of 43 immune-related genes. The results show an overall downregulation of the complement pathway and cytokine production at the considered time points. Some of the selected genes may be considered as parameters for diagnosing bacterial furunculosis of rainbow trout.
Collapse
|
8
|
Al Subayyil A, Basmaeil YS, Alenzi R, Khatlani T. Human Placental Mesenchymal Stem/Stromal cells (pMSCs) inhibit agonist-induced platelet functions reducing atherosclerosis and thrombosis phenotypes. J Cell Mol Med 2021; 25:9268-9280. [PMID: 34535958 PMCID: PMC8500971 DOI: 10.1111/jcmm.16848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem/stromal cells isolated from human term placenta (pMSCs) have potential to treat clinically manifested inflammatory diseases. Atherosclerosis is a chronic inflammatory disease, and platelets play a contributory role towards its pathogenesis. During transplantation, MSCs interact with platelets and exert influence on their functional outcome. In this study, we investigated the consequences of interaction between pMSCs and platelets, and its impact on platelet-mediated atherosclerosis in vitro. Human platelets were treated with various types of pMSCs either directly or with their secretome, and their effect on agonist-mediated platelet activation and functional characteristics were evaluated. Human umbilical vein endothelial cells (HUVECs) were used as control. The impact of pMSCs treatment on platelets was evaluated by the expression of activation markers and by platelet functional analysis. A subset of pMSCs reduced agonist-induced activation of platelets, both via direct contact and with secretome treatments. Decrease in platelet activation translated into diminished spreading, limited adhesion and minimized aggregation. In addition, pMSCs decreased oxidized LDL (ox-LDL)-inducedCD36-mediated platelet activation, establishing their protective role in atherosclerosis. Gene expression and protein analysis show that pMSCs express pro- and anti-thrombotic proteins, which might be responsible for the modulation of agonist-induced platelet functions. These data suggest the therapeutic benefits of pMSCs in atherosclerosis.
Collapse
Affiliation(s)
- Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Reem Alenzi
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Stamenkovic A, O'Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G, Dibrov E, Aghanoori M, Kirshenbaum LA, Fernyhough P, Aliani M, Pierce GN, Ravandi A. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2021; 320:H1170-H1184. [PMID: 33513080 DOI: 10.1152/ajpheart.00237.2020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury. Adult rat ventricular cardiomyocytes were treated with increasing concentrations of various purified fragmented OxPCs. Cardiomyocyte viability, bioenergetic response, and calcium transients were determined in the presence of OxPCs. Five different fragmented OxPCs resulted in a decrease in cell viability, with 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC) having the most potent cardiotoxic effect in both a concentration and time dependent manner (P < 0.05). POVPC and PONPC also caused a significant decrease in Ca2+ transients and net contraction in isolated cardiomyocytes compared to vehicle treated control cells (P < 0.05). PONPC depressed maximal respiration rate (P < 0.01; 54%) and spare respiratory capacity (P < 0.01; 54.5%). Notably, neither caspase 3 activation or TUNEL staining was observed in cells treated with either POVPC or PONPC. Further, cardiac myocytes treated with OxPCs were indistinguishable from vehicle-treated control cells with respect to nuclear high-mobility group box protein 1 (HMGBP1) activity. However, glutathione peroxidase 4 activity was markedly suppressed in cardiomyocytes treated with POVPC and PONPC coincident with increased ferroptosis. Importantly, cell death induced by OxPCs could be suppressed by E06 Ab, directed against OxPCs or by ferrostatin-1, which bound the sn-2 aldehyde of POVPC during I/R. The findings of the present study demonstrate that oxidation of phosphatidylcholines during I/R generate bioactive phospholipid intermediates that disrupt mitochondrial bioenergetics and calcium transients and provoke wide spread cell death through ferroptosis. Neutralization of OxPC with E06 or with ferrostatin-1 prevents cell death during reperfusion. Our study demonstrates a novel signaling pathway that operationally links generation of OxPC during cardiac I/R to ferroptosis. Interventions designed to target OxPCs may prove beneficial in mitigating ferroptosis during I/R injury in individuals with ischemic heart disease.NEW & NOTEWORTHY Oxidized phosphatidylcholines (OxPC) generated during reperfusion injury are potent inducers of cardiomyocyte death. Our studies have shown that OxPCs exert this effect through a ferroptotic process that can be attenuated. A better understanding of the OxPC cell death pathway can prove a novel strategy for prevention of cell death during myocardial reperfusion injury.
Collapse
Affiliation(s)
- Aleksandra Stamenkovic
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kimberley A O'Hara
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - David C Nelson
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Thane G Maddaford
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Andrea L Edel
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Graham Maddaford
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - MohamadReza Aghanoori
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, St. Boniface Hospital, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Döhrmann M, Makhoul S, Gross K, Krause M, Pillitteri D, von Auer C, Walter U, Lutz J, Volf I, Kehrel BE, Jurk K. CD36-fibrin interaction propagates FXI-dependent thrombin generation of human platelets. FASEB J 2020; 34:9337-9357. [PMID: 32463151 DOI: 10.1096/fj.201903189r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Thrombin converts fibrinogen to fibrin and activates blood and vascular cells in thrombo-inflammatory diseases. Platelets are amplifiers of thrombin formation when activated by leukocyte- and vascular cell-derived thrombin. CD36 on platelets acts as sensitizer for molecules with damage-associated molecular patterns, thereby increasing platelet reactivity. Here, we investigated the role of CD36 in thrombin-generation on human platelets, including selected patients with advanced chronic kidney disease (CKD). Platelets deficient in CD36 or blocked by anti-CD36 antibody FA6.152 showed impaired thrombin generation triggered by thrombin in calibrated automated thrombography. Using platelets with congenital function defects, blocking antibodies, pharmacological inhibitors, and factor-depleted plasma, CD36-sensitive thrombin generation was dependent on FXI, fibrin, and platelet signaling via GPIbα and SFKs. CD36-deficiency or blocking suppressed thrombin-induced platelet αIIbβ3 activation, granule exocytosis, binding of adhesion proteins and FV, FVIII, FIX, FX, but not anionic phospholipid exposure determined by flow cytometry. CD36 ligated specifically soluble fibrin, which recruited distinct coagulation factors via thiols. Selected patients with CKD showed elevated soluble fibrin plasma levels and enhanced thrombin-induced thrombin generation, which was normalized by CD36 blocking. Thus, CD36 is an important amplifier of platelet-dependent thrombin generation when exposure of anionic phospholipids is limited. This pathway might contribute to hypercoagulability in CKD.
Collapse
Affiliation(s)
- Mareike Döhrmann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kathrin Gross
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuela Krause
- Deutsche Klinik für Diagnostik HELIOS Klinik, Wiesbaden, Germany
| | | | - Charis von Auer
- Third Department of Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jens Lutz
- Section of Nephrology, I. Department of Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Medical Clinic, Section of Nephrology and Infectious Diseases, Gemeinschaftsklinikum Mittelrhein, Koblenz, Germany
| | - Ivo Volf
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Beate E Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Muenster, Muenster, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Muenster, Muenster, Germany
| |
Collapse
|
11
|
Bou Khzam L, Son NH, Mullick AE, Abumrad NA, Goldberg IJ. Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair. Am J Transl Res 2020; 12:7737-7761. [PMID: 33437358 PMCID: PMC7791529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/23/2020] [Indexed: 03/16/2023]
Abstract
Endothelial cells (ECs) maintain vascular integrity and mediate vascular repair and angiogenesis, by which new blood vessels are formed from pre-existing blood vessels. Hyperglycemia has been shown to increase EC angiogenic potential. However, few studies have investigated effects of fatty acids (FAs) on EC angiogenesis. Cluster of differentiation 36 (CD36) is a FA transporter expressed by ECs, but its role in EC proliferation, migration, and angiogenesis is unknown. We sought to determine if circulating FAs regulate angiogenic function in a CD36-dependent manner. CD36-dependent effects of FAs on EC proliferation and migration of mouse heart ECs (MHECs) and lung ECs (MLECs) were studied. We used both silencing RNA and antisense oligonucleotides to reduce CD36 expression. Oleic acid (OA) did not affect EC proliferation, but significantly increased migration of ECs in wound healing experiments. CD36 knockdown prevented OA-induced increases in wound healing potential. In EC transwell migration experiments, OA increased recruitment and migration of ECs, an effect abolished by CD36 knockdown. Phospho-AMP-activated protein kinase (AMPK) increased in MHECs exposed to OA in a CD36-dependent manner. To test whether in vivo CD36 affects angiogenesis, we studied 21-day recovery in post-hindlimb ischemia. EC-specific CD36 knockout mice had reduced blood flow recovery as assessed by laser Doppler imaging. EC content in post-ischemic muscle, assessed from CD31 expression, increased in ischemic muscle of control mice. However, mice with EC-specific CD36 deletion lacked the increase in CD31 and matrix metalloprotease 9 expression observed in controls. EC expression of CD36 and its function in FA uptake modulate angiogenic function and response to ischemia, likely due to reduced activation of the AMPK pathway.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| | - Ni-Huiping Son
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| | | | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Ira J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| |
Collapse
|
12
|
Zhou L, Li HY, Wang JH, Deng ZZ, Shan YL, Tan S, Shi YH, Zhang MX, Liu SX, Zhang BJ, Hong MF, Lu ZQ, Huang XM. Correlation of gene polymorphisms of CD36 and ApoE with susceptibility of Alzheimer disease: A case-control study. Medicine (Baltimore) 2018; 97:e12470. [PMID: 30235742 PMCID: PMC6160023 DOI: 10.1097/md.0000000000012470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/25/2018] [Indexed: 11/26/2022] Open
Abstract
This research was aimed to explore correlation of gene polymorphisms of CD36 and ApoE with susceptibility of Alzheimer disease (AD).This study was a case-control study. Two hundred eleven AD hospitalized patients were selected as the AD group and 241 subjects were selected as the control group. PCR-RFLP was used to detect three loci (rs7755, rs3211956, and rs10499859) of CD36 gene and ApoE genotype. Chi-square test and univariate nonconditional logistic regression analysis were used to calculate the odds ratio (OR) and 95% confidence interval (95% CI). The haplotypes were constructed using SHEsis online software and the correlation between haplotypes and AD was analyzed. Meanwhile, differences of 3 alleles of ApoE and 6 genotypes (E2/E2, E2/E3, E2/E4, E3/E3, E3/E4, E4/E4) were compared between AD and control groups.The frequencies of rs7755 genotype (χ = 10.780, P = .005) and allele (χ = 10.549, P = .001) were statistically different between 2 groups. The genotype frequency of rs3211956 was statistically different between AD and control groups (χ = 10.119, P = .006). For the rs7755 locus, GG genotype (OR: 2.013, 95% CI: 1.098-3.699) was an independent risk factor for AD compared with AA genotype. In the dominant model, the risk to develop AD in AG/GG genotype was 1.686 times higher than AA genotype. For the rs3211956 locus, compared with TT genotype, GT genotype (OR: 0.536, 95% CI: 0.340-0.846) was a protective factor for AD after adjusting various physiological and biochemical factors. In the dominant model, the risk of GT/GG genotype to develop AD was reduced by 41.6%. For ApoE gene, the distribution differences of E2/E3 (χ = 9.216, P = .002), E3/E4 (χ = 7.728, P = .005), and E4/E4 had statistical significance between the 2 groups. The frequencies of allele E2 (χ = 9.359, P = .002) and E4 (χ = 13.995, P < .001) were statistically significant between AD and control groups.The rs7755 and rs3211956 loci polymorphisms of CD36 gene and genotype E2/E3, E3/E4, E4/E4 of ApoE gene, and E2 and E4 alleles were statistically related with AD.
Collapse
Affiliation(s)
- Li Zhou
- Department of Rehabilitative Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong, Pharmaceutical University
| | - Hai-Yan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Ji-Hui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Zhe-Zhi Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Yi-Long Shan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Sha Tan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Yi-Hua Shi
- Department of Rehabilitative Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong, Pharmaceutical University
| | - Ming-Xing Zhang
- Department of Rehabilitative Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong, Pharmaceutical University
| | - San-Xin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Bing-Jun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Ming-Fan Hong
- Department of Neurology, Rehabilitative Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Zheng-Qi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University
| | - Xu-Ming Huang
- Department of Rehabilitative Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong, Pharmaceutical University
| |
Collapse
|
13
|
Santilli F, Marchisio M, Lanuti P, Boccatonda A, Miscia S, Davì G. Microparticles as new markers of cardiovascular risk in diabetes and beyond. Thromb Haemost 2018; 116:220-34. [DOI: 10.1160/th16-03-0176] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
SummaryThe term microparticle (MP) identifies a heterogeneous population of vesicles playing a relevant role in the pathogenesis of vascular diseases, cancer and metabolic diseases such as diabetes mellitus. MPs are released by virtually all cell types by shedding during cell growth, proliferation, activation, apoptosis or senescence processes. MPs, in particular platelet- and endothelial-derived MPs (PMPs and EMPs), are increased in a wide range of thrombotic disorders, with an interesting relationship between their levels and disease pathophysiology, activity or progression. EMP plasma levels have been associated with several cardiovascular diseases and risk factors. PMPs are also shown to be involved in the progressive formation of atherosclerotic plaque and development of arterial thrombosis, especially in diabetic patients. Indeed, diabetes is characterised by an increased procoagulant state and by a hyperreactive platelet phenotype, with enhanced adhesion, aggregation, and activation. Elevated MP levels, such as TF+ MPs, have been shown to be one of the procoagulant determinants in patients with type 2 diabetes mellitus. Atherosclerotic plaque constitutes an opulent source of sequestered MPs, called “plaque” MPs. Otherwise, circulating MPs represent a TF reservoir, named “blood-borne” TF, challenging the dogma that TF is a constitutive protein expressed in minute amounts. “Blood-borne” TF is mainly harboured by PMPs, and it can be trapped within the developing thrombus. MP detection and enumeration by polychromatic flow cytometry (PFC) have opened interesting perspectives in clinical settings, particularly for the evaluation of MP numbers and phenotypes as independent marker of cardiovascular risk, disease and outcome in diabetic patients.
Collapse
|
14
|
Silverstein RL. Atherothrombosis. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Wang ZT, Wang Z, Hu YW. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis 2016; 248:10-6. [PMID: 26978582 DOI: 10.1016/j.atherosclerosis.2016.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed.
Collapse
Affiliation(s)
- Zhi-Ting Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zi Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
16
|
Masuda Y, Tamura S, Matsuno K, Nagasawa A, Hayasaka K, Shimizu C, Moriyama T. Diverse CD36 expression among Japanese population: defective CD36 mutations cause platelet and monocyte CD36 reductions in not only deficient but also normal phenotype subjects. Thromb Res 2015; 135:951-7. [PMID: 25798958 DOI: 10.1016/j.thromres.2015.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION CD36 is a multifunctional glycoprotein expressed on various human cells, including platelets and monocytes. Five CD36 gene mutations (C268T, 949insA, 329-339del, 1228-1239del and 629-631del/insAAAAC) are mainly responsible for CD36-deficient phenotypes in Japan. It has also been reported that platelet CD36 expression varies widely among normal phenotype individuals. Here, in order to obtain further insight into CD36 expression, we investigated the association between platelet and monocyte CD36 expression levels and defective mutations in the Japanese population. MATERIALS AND METHODS Blood samples were collected from 135 healthy Japanese volunteers. CD36 expression levels on platelets and monocytes were quantitatively analyzed by flow cytometry. Real-time PCR, PCR-RFLP and allele-specific PCR were performed to detect mutant genotypes. RESULTS In this population, we found 2 (1.5%) and 9 (6.7%) CD36-deficient subjects as type I and type II, respectively. Among normal phenotype subjects, CD36 expression levels ranged from 1,259 to 11,002 (4,487±2,017) molecules/platelet and from 211 to 5,150 (1,628±986) molecules/monocyte. Genotyping assay showed that heterozygotes with the defective mutations were present in normal (12.9%) and type II-deficient (66.7%) subjects, and that these heterozygous mutations led to decreases in CD36 surface expression on platelets and monocytes. CONCLUSIONS Heterozygous CD36 mutations, previously known to lead to deficiency in this molecule, are one of the factors responsible for the diversity of CD36 surface expression levels on platelets and monocytes in normal phenotype subjects.
Collapse
Affiliation(s)
- Yuya Masuda
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan; Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Shogo Tamura
- Department of Clinical Laboratory of Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan; Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazuhiko Matsuno
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Ayumi Nagasawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Koji Hayasaka
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Chikara Shimizu
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takanori Moriyama
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
17
|
Nkambule BB, Davison G, Ipp H. The value of flow cytometry in the measurement of platelet activation and aggregation in human immunodeficiency virus infection. Platelets 2014; 26:250-7. [PMID: 24831969 DOI: 10.3109/09537104.2014.909021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency deficiency virus (HIV) infection is associated with chronic inflammation and an increased risk of thrombotic events. Activated platelets (PLTs) play an important role in both thrombosis and inflammation, and HIV has been shown to induce PLT activation by both direct and indirect mechanisms. P-selectin (CD62P) is a well-described marker of PLT activation, and PLT glycoprotein (GP) IV (CD36) has been identified as a marker of PLT aggregation. Data on PLT function in the context of HIV infection remain inconclusive. Laboratory techniques, such as flow cytometry, enable the assessment of PLTs in their physiological state and environment, with minimal artifactual in vitro activation and aggregation. In this study, we describe a novel flow cytometry PLT assay, which enabled the measurement of PLT function in HIV infection. Forty-one antiretroviral-naïve HIV-positive individuals and 41 HIV-negative controls were recruited from a clinic in the Western Cape. Platelet function was evaluated by assessing the response of platelets to adenosine diphosphate (ADP) at two concentrations (0.04 mM, 0.2 mM). The percentage expression and mean fluorescence intensity (MFI) of CD62P and CD36 was used to evaluate platelet function. These were then correlated with platelet (PLT) count; CD4 count; % CD38/8; viral load and D-dimers. The % CD62P levels were higher in HIV-positive patients (HIV % CD62P 11.33[5.96-29.36] vs. control 2.48[1.56-6.04]; p < 0.0001). In addition, the HIV group showed higher CD62P MFI levels (HIV CD62P MFI 3.25 ± 7.23 vs. control 2.35 ± 1.31, p = 0.0292). Baseline levels of %CD36 expression were significantly higher in HIV-positive patients (%CD36 12.41[6.31-21.83] vs. control 6.04[1.34-13.15]; p = 0.0091). However, the baseline CD36MFI showed no significant difference between the two groups (HIV CD36 MFI 3.09 ± 0.64 vs. control 2.44 ± 0.11, p = 0.4591). The HIV group showed higher levels of % CD36 expression post stimulation with 0.04 mM ADP 43.32 ± 27.41 vs. control 27.47 ± 12.95; p < 0.0214) and no significant difference at 0.2 mM ADP (HIV % CD36 39.06 ± 17.91 vs. control 44.61 ± 18.76; p = 0.3277). Furthermore, the HIV group showed a single phase response to ADP as compared to the control group, which showed a normal biphasic response. We concluded that PLT flow cytometry is valuable in the assessment of levels of PLT activation, and further, that the addition of an endogenous agonist, such as ADP, enabled the measurement of PLT function in HIV infection. We were able to show that, although PLTs are significantly activated in HIV compared to uninfected controls, they retain their functional capacity.
Collapse
Affiliation(s)
- Bongani B Nkambule
- Divisions of Haematology, Department of Pathology, Stellenbosch University and NHLS , Tygerberg , South Africa and
| | | | | |
Collapse
|
18
|
Guardiola S, Mach N. Potencial terapéutico del Hibiscus sabdariffa: una revisión de las evidencias científicas. ACTA ACUST UNITED AC 2014; 61:274-95. [DOI: 10.1016/j.endonu.2013.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022]
|
19
|
Wilhelmsen P, Kjær J, Thomsen KL, Nielsen CT, Dige A, Maniecki MB, Heegaard N, Grønbæk H, Dahlerup J, Handberg A. Elevated platelet expression of CD36 may contribute to increased risk of thrombo-embolism in active inflammatory bowel disease. Arch Physiol Biochem 2013; 119:202-8. [PMID: 23862574 DOI: 10.3109/13813455.2013.808671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Inflammatory bowel disease (IBD) induces increased risk of thrombo-embolism. CD36 is involved in platelet activation, glucose metabolism and inflammation. OBJECTIVE The relationship between CD36 expression on platelets and monocytes, plasma sCD36, and CD36-positive platelet-derived microparticles (PDMPs) and inflammation in both active IBD and after one week of anti-tumour necrosis alpha antibody (anti-TNF) treatment was investigated. MATERIAL AND METHODS Patients with exacerbation of Crohn's disease (n = 8) or ulcerative colitis (n = 5) and 13 healthy controls were enrolled. Seven patients underwent anti-TNF treatment for one week. Platelet, monocyte, and PDMP-CD36 were measured by flow-cytometry. RESULTS Platelet CD36 expression was 34% higher in patients, and correlated with insulin resistance and fasting glucose. sCD36 was 37% lower and restored after anti-TNF treatment. CONCLUSION Elevated platelet CD36 expression may contribute to increased risk of thrombo-embolism in active IBD. This may not entirely be attributed to inflammation and secondary insulin resistance may play a role.
Collapse
Affiliation(s)
- Peter Wilhelmsen
- Department of Clinical Biochemistry, Aarhus University Hospital , Aarhus , Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sundaresan S, Shahid R, Riehl TE, Chandra R, Nassir F, Stenson WF, Liddle RA, Abumrad NA. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J 2012. [PMID: 23233532 DOI: 10.1096/fj.12‐217703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genetic variants in the fatty acid (FA) translocase FAT/CD36 associate with abnormal postprandial lipids and influence risk for the metabolic syndrome. CD36 is abundant on apical enterocyte membranes in the proximal small intestine, where it facilitates FA uptake and FA-initiated signaling. We explored whether CD36 signaling influences FA-mediated secretion of cholecystokinin (CCK) and secretin, peptides released by enteroendocrine cells (EECs) in the duodenum/jejunum, which regulate events important for fat digestion and homeostasis. CD36 was immunodetected on apical membranes of secretin- and CCK-positive EECs and colocalized with cytosolic granules. Intragastric lipid administration to CD36 mice released less secretin (-60%) and CCK (-50%) compared with wild-type mice. Likewise, diminished secretin and CCK responses to FA were observed with CD36 intestinal segments in vitro, arguing against influence of alterations in fat absorption. Signaling mechanisms underlying peptide release were examined in STC-1 cells stably expressing human CD36 or a signaling-impaired mutant (CD36K/A). FA stimulation of cells expressing CD36 (vs. vector or CD36K/A) released more secretin (3.5- to 4-fold) and CCK (2- to 3-fold), generated more cAMP (2- to 2.5-fold), and enhanced protein kinase A activation. Protein kinase A inhibition (H-89) blunted secretin (80%) but not CCK release, which was reduced (50%) by blocking of calmodulin kinase II (KN-62). Coculture of STC-1 cells with Caco-2 cells stably expressing CD36 did not alter secretin or CCK release, consistent with a minimal effect of adjacent enterocytes. In summary, CD36 is a major mediator of FA-induced release of CCK and secretin. These peptides contribute to the role of CD36 in fat absorption and to its pleiotropic metabolic effects.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, 660 S. Euclid Ave., Campus Box 8031, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sundaresan S, Shahid R, Riehl TE, Chandra R, Nassir F, Stenson WF, Liddle RA, Abumrad NA. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J 2012; 27:1191-202. [PMID: 23233532 DOI: 10.1096/fj.12-217703] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genetic variants in the fatty acid (FA) translocase FAT/CD36 associate with abnormal postprandial lipids and influence risk for the metabolic syndrome. CD36 is abundant on apical enterocyte membranes in the proximal small intestine, where it facilitates FA uptake and FA-initiated signaling. We explored whether CD36 signaling influences FA-mediated secretion of cholecystokinin (CCK) and secretin, peptides released by enteroendocrine cells (EECs) in the duodenum/jejunum, which regulate events important for fat digestion and homeostasis. CD36 was immunodetected on apical membranes of secretin- and CCK-positive EECs and colocalized with cytosolic granules. Intragastric lipid administration to CD36 mice released less secretin (-60%) and CCK (-50%) compared with wild-type mice. Likewise, diminished secretin and CCK responses to FA were observed with CD36 intestinal segments in vitro, arguing against influence of alterations in fat absorption. Signaling mechanisms underlying peptide release were examined in STC-1 cells stably expressing human CD36 or a signaling-impaired mutant (CD36K/A). FA stimulation of cells expressing CD36 (vs. vector or CD36K/A) released more secretin (3.5- to 4-fold) and CCK (2- to 3-fold), generated more cAMP (2- to 2.5-fold), and enhanced protein kinase A activation. Protein kinase A inhibition (H-89) blunted secretin (80%) but not CCK release, which was reduced (50%) by blocking of calmodulin kinase II (KN-62). Coculture of STC-1 cells with Caco-2 cells stably expressing CD36 did not alter secretin or CCK release, consistent with a minimal effect of adjacent enterocytes. In summary, CD36 is a major mediator of FA-induced release of CCK and secretin. These peptides contribute to the role of CD36 in fat absorption and to its pleiotropic metabolic effects.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, 660 S. Euclid Ave., Campus Box 8031, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Luzak B, Rywaniak J, Stanczyk L, Watala C. Pravastatin and simvastatin improves acetylsalicylic acid-mediated in vitro blood platelet inhibition. Eur J Clin Invest 2012; 42:864-72. [PMID: 22409214 DOI: 10.1111/j.1365-2362.2012.02661.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Insight into the pathophysiology of atherothrombosis indicates that an integrated risk factor approach, focusing particularly on the management of dyslipidaemia (with statins) and thrombosis (with ASA), may constitute an optimal therapeutic approach. We investigated whether pravastatin, simvastatin and atorvastatin may directly modulate under in vitro conditions the reactivity of blood platelets originating from healthy volunteers. In addition, we analysed the influence of statins on the platelet sensitivity to ASA under such conditions. MATERIALS AND METHODS We monitored collagen- or ADP-induced platelet aggregation, CD36, PAC-1 and CD62 expression on platelet surface and thromboxane generation after incubation with pravastatin, simvastatin, atorvastatin and/or ASA. RESULTS The incubation of whole blood with simvastatin and pravastatin significantly decreased CD36 expression. In the presence of 50 μM ASA, simvastatin and pravastatin significantly reduced the PAC-1 expression (30% reduction for simvastatin, P < 0·01, and 15% reduction for pravastatin, P < 0·01), platelet aggregation (20% reduction for both statins, P < 0·01) and thromboxane generation (35% reduction for simvastatin, P < 0·001, and 30% reduction for pravastatin, P < 0·001) compared to ASA alone. Atorvastatin changed neither baseline platelet aggregation nor ASA-mediated platelet inhibition. CONCLUSIONS Our results suggested that statins may directly interact with platelet membranes or may modulate a signalling pathway in platelets (the pleiotropic effects of statins). It is possible that the statin effect on CD36 and ASA-mediated protein acetylation can be reached by the modulation of a distribution or a function of membrane-associated proteins. Further studies are certainly needed to better elucidate the mechanism(s) underlying the statins' effects on platelet sensitivity to ASA.
Collapse
Affiliation(s)
- Boguslawa Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland.
| | | | | | | |
Collapse
|
23
|
Alexandru N, Popov D, Georgescu A. Intraplatelet oxidative/nitrative stress: inductors, consequences, and control. Trends Cardiovasc Med 2012; 20:232-8. [PMID: 22293024 DOI: 10.1016/j.tcm.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article provides an overview of the current knowledge on intraplatelet oxidative/nitrative stress, an abnormality associated with platelet activation and hyper-reactivity. The first issue discussed is related to induction of platelet endogenous stress by the molecules present within the circulating (extracellular) milieu that bathes these cells. The second issue concerns the intraplatelet oxidative/nitrative stress associated with specific pathologies or clinical procedures and action of particular molecules and platelet agonists as well as of the specialized intraplatelet milieu and its redox system; the biomarkers of endogenous oxidative/nitrative stress are also briefly outlined. Next, the association between intraplatelet oxidative/nitrative stress and the risk factors of the metabolic syndrome is presented. Then, the most recent strategies aimed at the control/regulation of platelet endogenous oxidative/nitrative stress, such as exploitation of circulating extracellular reactive oxygen species scavengers, manipulation of platelet molecules, and the use of antioxidants, are discussed. Finally, the results of studies on platelet-dependent redox mechanisms, which deserve immediate attention for potential clinical exploitation, are illustrated.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania. @icbp.ro
| | | | | |
Collapse
|
24
|
The association of CD36 variants with polypoidal choroidal vasculopathy compared to typical neovascular age-related macular degeneration. Mol Vis 2012; 18:121-7. [PMID: 22275803 PMCID: PMC3265175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/12/2012] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To clarify the association of cluster of differentiation 36 (CD36) variants with polypoidal choroidal vasculopathy (PCV) and compare them with those in typical neovascular age-related macular degeneration (tAMD). METHODS We included 349 Japanese AMD patients (210 PCV, 139 tAMD) and 198 age-matched controls. Four tag single-nucleotide polymorphisms (SNPs)-rs10499862, rs3173798, rs3211883, and rs3173800-in the CD36 region were genotyped using the TaqMan assay. Allelic and genotypic frequencies of the SNPs were tested. RESULTS Although none of the SNPs tested were associated with PCV, the allelic frequencies of rs3173798 and rs3173800 were significantly different between PCV and tAMD patients. Genotype association analysis demonstrated different associations of these two SNPs between PCV and tAMD in the genotype model. Haplotype analysis revealed that the association of the major haplotype (T-T-T-T) at four selected SNPs in CD36 differed significantly between PCV and tAMD patients. CONCLUSIONS The CD36 region may be associated with the difference in genetic susceptibility for PCV and tAMD.
Collapse
|
25
|
Virella G, Lopes-Virella MF. The Pathogenic Role of the Adaptive Immune Response to Modified LDL in Diabetes. Front Endocrinol (Lausanne) 2012; 3:76. [PMID: 22715334 PMCID: PMC3375400 DOI: 10.3389/fendo.2012.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023] Open
Abstract
The main causes of morbidity and mortality in diabetes are macro and microvascular complications, including atherosclerosis, nephropathy, and retinopathy. As the definition of atherosclerosis as a chronic inflammatory disease became widely accepted, it became important to define the triggers of vascular inflammation. Oxidative and other modifications of lipids and lipoproteins emerged as major pathogenic factors in atherosclerosis. Modified forms of LDL (mLDL) are pro-inflammatory by themselves, but, in addition, mLDLs including oxidized, malondialdehyde (MDA)-modified, and advanced glycation end (AGE)-product-modified LDL induce autoimmune responses in humans. The autoimmune response involves T cells in the arterial wall and synthesis of IgG antibodies. The IgG auto-antibodies that react with mLDLs generate immune complexes (IC) both intra and extravascularly, and those IC activate the complement system as well as phagocytic cells via the ligation of Fcγ receptors. In vitro studies proved that the pro-inflammatory activity of IC containing mLDL (mLDL-IC) is several-fold higher than that of the modified LDL molecules. Clinical studies support the pathogenic role of mLDL-IC in the development of macrovascular disease patients with diabetes. In type 1 diabetes, high levels of oxidized and AGE-LDL in IC were associated with internal carotid intima-media thickening and coronary calcification. In type 2 diabetes, high levels of MDA-LDL in IC predicted the occurrence of myocardial infarction. There is also evidence that mLDL-IC are involved in the pathogenesis of diabetic nephropathy and retinopathy. The pathogenic role of mLDL-IC is not unique to diabetic patients, because those IC are also detected in non-diabetic individuals. But mLDL-IC are likely to reach higher concentrations and have a more prominent pathogenic role in diabetes due to increased antigenic load secondary to high oxidative stress and to enhanced autoimmune responses in type 1 diabetes.
Collapse
Affiliation(s)
- Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- *Correspondence: Gabriel Virella, Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, MSC 504, Charleston, SC 29425-5040, USA. e-mail:
| | - Maria F. Lopes-Virella
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- Ralph E. Johnson VA Medical CenterCharleston, SC, USA
| |
Collapse
|
26
|
Ueno M, Nakagawa T, Nagai Y, Nishi N, Kusaka T, Kanenishi K, Onodera M, Hosomi N, Huang C, Yokomise H, Tomimoto H, Sakamoto H. The expression of CD36 in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Neuropathol Appl Neurobiol 2011; 37:727-37. [DOI: 10.1111/j.1365-2990.2011.01172.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
|