1
|
Goodla L, Xue X. The Role of Inflammatory Mediators in Colorectal Cancer Hepatic Metastasis. Cells 2022; 11:2313. [PMID: 35954156 PMCID: PMC9367504 DOI: 10.3390/cells11152313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of death in cancer patients in the USA, whereas the major cause of CRC deaths is hepatic metastases. The liver is the most common site of metastasis in patients with CRC due to hepatic portal veins receiving blood from the digestive tract. Understanding the cellular and molecular mechanisms of hepatic metastases is of dire need for the development of potent targeted therapeutics. Immuno-signaling molecules including cytokines and chemokines play a pivotal role in hepatic metastases from CRC. This brief review discusses the involvement of three representative cytokines (TNF-α, IL-6 and IL-1β), a lipid molecule PGE2 and two chemokines (CXCL1 and CXCL2) in the process of CRC liver metastases.
Collapse
Affiliation(s)
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| |
Collapse
|
2
|
Wei Y, Liu J, Zhang H, Du X, Luo Q, Sun J, Liu F, Li M, Xu F, Wei K, Dong J. Ligustrazine attenuates inflammation and the associated chemokines and receptors in ovalbumine-induced mouse asthma model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:55-61. [PMID: 27438894 DOI: 10.1016/j.etap.2016.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Ligustrazine which is isolated from Chinese herb ligusticum chuanxiong hort, has been widely used in traditional Chinese medicine (TCM) for asthma treatment. In this study, we aim to observe the effect of ligustrazine on inflammation and the associated chemokines and receptors in ovalbumin (OVA)-induced mouse asthma model. Our data demonstrates that ligustrazine suppresses airway hyperresponsiveness to methacholine and lung inflammation in OVA-induced mouse asthma model. Ligustrazine also induces inhibition of inflammatory cells including neutrophils, lymphocytes and eosinophils. In addition, ligustrazine significantly reduces IL-4, IL-5, IL-17A, CCL3, CCL19 and CCL21 level in BALF of asthma mice. Furthermore, ligustrazine induces down-regulation of CCL19 receptor CCR7, STAT3 and p38 MAPK protein expression. Collectively, these results suggest that ligustrazine is effective in attenuation of allergic airway inflammatory changes and related chemokines and receptors in OVA-induced asthma model, and this action might be associated with inhibition of STAT3 and p38 MAPK pathway, which indicates that ligustrazine may be used as a potential therapeutic method to treat asthma.
Collapse
Affiliation(s)
- Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Xin Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Fei Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Kai Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, China; The Academy of Integrative Medicine, Fudan University, China.
| |
Collapse
|
3
|
Whelan J, Gowdy KM, Shaikh SR. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. Eur J Pharmacol 2015; 785:10-17. [PMID: 26022530 DOI: 10.1016/j.ejphar.2015.03.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/15/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.
Collapse
Affiliation(s)
- Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Microbiology & Immunology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
4
|
Hua J, Jin Y, Chen Y, Inomata T, Lee H, Chauhan SK, Petasis NA, Serhan CN, Dana R. The resolvin D1 analogue controls maturation of dendritic cells and suppresses alloimmunity in corneal transplantation. Invest Ophthalmol Vis Sci 2014; 55:5944-51. [PMID: 25146982 DOI: 10.1167/iovs.14-14356] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To analyze the effect of a resolvin D1 (RvD1) analogue (RvD1a) on dendritic cell maturation, T-cell sensitization, and allograft rejection in corneal allotransplantation. METHODS The receptor expression of RvD1 (ALX/FPR2) on bone marrow-derived dendritic cells (BMDC) was measured using quantitative real-time PCR. We determined BMDC maturation after treatment with RvD1a using ELISA to measure interleukin (IL)-12 protein expression and flow cytometry to assess the expression of CD40, major histocompatibility complex (MHC) II, CD80, and CD86. After corneal transplantation in BALB/c mice, we analyzed T-cell infiltration in the cornea and the draining lymph nodes using flow cytometry. The enzyme-linked immunospot (ELISPOT) assay was used to measure T-cell sensitization via the direct and indirect pathway. Angiogenesis and lymphangiogenesis in the cornea after transplantation were measured using immunohistochemistry. Graft opacity and survival were evaluated by slit lamp biomicroscopy. RESULTS The receptor for RvD1, lipoxin A4/formyl peptide receptor 2 (ALX/FPR2), was expressed at a significantly lower level on immature than mature dendritic cells (DCs), and RvD1a reduced DC expression of MHC II, CD40, and IL-12 following lipopolysaccharide (LPS) stimulation. Using a murine model of corneal transplantation, RvD1a-treated hosts exhibited significantly reduced allosensitization as demonstrated by decreased frequencies of interferon-gamma-secreting T cells in the draining lymph nodes, and reduced T-cell infiltration into the grafts. Graft survival was significantly enhanced and angiogenesis at the graft site was suppressed in RvD1a-treated hosts compared with vehicle-treated hosts. CONCLUSIONS These results suggest that RvD1 inhibits DC maturation and reduces alloimmune sensitization following transplantation, thereby establishing a novel connection between resolvin D1 and the regulation of DC-mediated, antigen-specific immunity.
Collapse
Affiliation(s)
- Jing Hua
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Yiping Jin
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Yihe Chen
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Takenori Inomata
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - HyunSoo Lee
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Nicos A Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Reza Dana
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Benedetti G, Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol 2014; 44:339-47. [PMID: 24310226 DOI: 10.1002/eji.201344184] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction and bone resorption. The proinflammatory cytokine interleukin 17 (IL-17), primarily produced by Th17 cells, has been shown to be involved in all stages of the disease and to be an important contributor of RA chronicity. Three major processes drive the IL-17-mediated chronicity. Several epigenetic events, enhanced in RA patients, lead to the increased production of IL-17 by Th17 cells. IL-17 then induces the production of several inflammatory mediators in the diseased synovium, which are further synergistically enhanced via combinations of IL-17 with other cytokines. IL-17 also promotes the survival of both the synoviocytes and inflammatory cells and promotes the maturation of these immune cells. This leads to an increased number of synoviocytes and inflammatory cells in the synovial fluid and in the synovium leading to the hyperplasia and exacerbated inflammation observed in joints of RA patients. Furthermore, these IL-17-driven events initiate several feedback-loop mechanisms leading to increased expansion of Th17 cells and thereby increased production of IL-17. In this review, we aim to depict a complete picture of the IL-17-driven vicious circle leading to RA chronicity and to pinpoint the key aspects that require further exploration.
Collapse
Affiliation(s)
- Giulia Benedetti
- Immunogenomics and Inflammation Research Unit, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | | |
Collapse
|
6
|
Dietel B, Cicha I, Kallmünzer B, Tauchi M, Yilmaz A, Daniel WG, Schwab S, Garlichs CD, Kollmar R. Suppression of dendritic cell functions contributes to the anti-inflammatory action of granulocyte-colony stimulating factor in experimental stroke. Exp Neurol 2012; 237:379-87. [PMID: 22750328 DOI: 10.1016/j.expneurol.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/14/2012] [Accepted: 06/20/2012] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia provokes an inflammatory cascade, which is assumed to secondarily worsen ischemic tissue damage. Linking adaptive and innate immunity dendritic cells (DCs) are key regulators of the immune system. The hematopoietic factor G-CSF is able to modulate DC-mediated immune processes. Although G-CSF is under investigation for the treatment of stroke, only limited information exists about its effects on stroke-induced inflammation. Therefore, we investigated the impact of G-CSF on cerebral DC migration and maturation as well as on the mediated immune response in an experimental stroke model in rats by means of transient middle cerebral artery occlusion (tMCAO). Immunohistochemistry and quantitative PCR were performed of the ischemic brain and flow cytometrical analysis of peripheral blood. G-CSF led to a reduction of the infarct size and an improved neurological outcome. Immunohistochemistry confirmed a reduced migration of DCs and mature antigen-presenting cells after G-CSF treatment. Compared to the untreated tMCAO group, G-CSF led to an inhibited DC activation and maturation. This was shown by a significantly decreased cerebral transcription of TLR2 and the DC maturation markers, CD83 and CD86, as well as by an inhibition of stroke-induced increase in immunocompetent DCs (OX62⁺OX6⁺) in peripheral blood. Cerebral expression of the proinflammatory cytokine TNF-α was reduced, indicating an attenuation of cerebral inflammation. Our data suggest an induction of DC migration and maturation under ischemic conditions and identify DCs as a potential target to modulate postischemic cerebral inflammation. Suppression of both enhanced DC migration and maturation might contribute to the neuroprotective action of G-CSF in experimental stroke.
Collapse
Affiliation(s)
- Barbara Dietel
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|