1
|
Garbacz M, Gajewski J, Durante M, Kisielewicz K, Krah N, Kopeć R, Olko P, Patera V, Rinaldi I, Rydygier M, Schiavi A, Scifoni E, Skóra T, Skrzypek A, Tommasino F, Rucinski A. Quantification of biological range uncertainties in patients treated at the Krakow proton therapy centre. Radiat Oncol 2022; 17:50. [PMID: 35264184 PMCID: PMC8905899 DOI: 10.1186/s13014-022-02022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation. METHODS AND MATERIALS The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach. RESULTS The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm. DISCUSSION Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area. CONCLUSIONS Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.
Collapse
Affiliation(s)
- Magdalena Garbacz
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland.
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Marco Durante
- GSI Helmholtzzentrum fur Schwerionenforschung, 64291, Darmstadt, Germany
- The Technical University of Darmstadt, 64289, Darmstadt, Germany
| | - Kamil Kisielewicz
- National Oncology Institute, National Research Institute, Krakow Branch, 31115, Kraków, Poland
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, France
- University of Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Vincenzo Patera
- INFN - Section of Rome, 00185, Rome, Italy
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Marzena Rydygier
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | | | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, 38123, Povo, Trento, Italy
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, 31115, Kraków, Poland
| | | | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, 38123, Povo, Trento, Italy
- Department of Physics, University of Trento, 38123, Povo, Trento, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| |
Collapse
|
2
|
Bellinzona EV, Grzanka L, Attili A, Tommasino F, Friedrich T, Krämer M, Scholz M, Battistoni G, Embriaco A, Chiappara D, Cirrone GAP, Petringa G, Durante M, Scifoni E. Biological Impact of Target Fragments on Proton Treatment Plans: An Analysis Based on the Current Cross-Section Data and a Full Mixed Field Approach. Cancers (Basel) 2021; 13:cancers13194768. [PMID: 34638254 PMCID: PMC8507563 DOI: 10.3390/cancers13194768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Proton therapy is now an established external radiotherapy modality for cancer treatment. Clinical routine currently neglects the radiobiological impact of nuclear target fragments even if experimental evidences show a significant enhancement in cell-killing effect due to secondary particles. This paper quantifies the contribution of proton target fragments of different charge in different irradiation scenarios and compares the computationally predicted corrections to the overall biological dose with experimental data. Abstract Clinical routine in proton therapy currently neglects the radiobiological impact of nuclear target fragments generated by proton beams. This is partially due to the difficult characterization of the irradiation field. The detection of low energetic fragments, secondary protons and fragments, is in fact challenging due to their very short range. However, considering their low residual energy and therefore high LET, the possible contribution of such heavy particles to the overall biological effect could be not negligible. In this context, we performed a systematic analysis aimed at an explicit assessment of the RBE (relative biological effectiveness, i.e., the ratio of photon to proton physical dose needed to achieve the same biological effect) contribution of target fragments in the biological dose calculations of proton fields. The TOPAS Monte Carlo code has been used to characterize the radiation field, i.e., for the scoring of primary protons and fragments in an exemplary water target. TRiP98, in combination with LEM IV RBE tables, was then employed to evaluate the RBE with a mixed field approach accounting for fragments’ contributions. The results were compared with that obtained by considering only primary protons for the pristine beam and spread out Bragg peak (SOBP) irradiations, in order to estimate the relative weight of target fragments to the overall RBE. A sensitivity analysis of the secondary particles production cross-sections to the biological dose has been also carried out in this study. Finally, our modeling approach was applied to the analysis of a selection of cell survival and RBE data extracted from published in vitro studies. Our results indicate that, for high energy proton beams, the main contribution to the biological effect due to the secondary particles can be attributed to secondary protons, while the contribution of heavier fragments is mainly due to helium. The impact of target fragments on the biological dose is maximized in the entrance channels and for small α/β values. When applied to the description of survival data, model predictions including all fragments allowed better agreement to experimental data at high energies, while a minor effect was observed in the peak region. An improved description was also obtained when including the fragments’ contribution to describe RBE data. Overall, this analysis indicates that a minor contribution can be expected to the overall RBE resulting from target fragments. However, considering the fragmentation effects can improve the agreement with experimental data for high energy proton beams.
Collapse
Affiliation(s)
- Elettra Valentina Bellinzona
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), 38123 Trento, Italy; (E.V.B.); (F.T.)
- Department of Physics, University of Trento, 38123 Trento, Italy;
| | - Leszek Grzanka
- The Department of Radiation Research and Proton Radiotherapy, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland;
| | - Andrea Attili
- “Roma Tre” Section, INFN—National Institute for Nuclear Physics, 00146 Roma, Italy;
| | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), 38123 Trento, Italy; (E.V.B.); (F.T.)
- Department of Physics, University of Trento, 38123 Trento, Italy;
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
| | - Michael Krämer
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
| | - Michael Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
| | | | - Alessia Embriaco
- “Pavia” Section, INFN—National Institute for Nuclear Physics, 6-27100 Pavia, Italy;
| | - Davide Chiappara
- Laboratori Nazionali del Sud, INFN—National Institute for Nuclear Physics, 95125 Catania, Italy; (D.C.); (G.A.P.C.); (G.P.)
| | - Giuseppe A. P. Cirrone
- Laboratori Nazionali del Sud, INFN—National Institute for Nuclear Physics, 95125 Catania, Italy; (D.C.); (G.A.P.C.); (G.P.)
| | - Giada Petringa
- Laboratori Nazionali del Sud, INFN—National Institute for Nuclear Physics, 95125 Catania, Italy; (D.C.); (G.A.P.C.); (G.P.)
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (T.F.); (M.K.); (M.S.); (M.D.)
- Institut für Physik Kondensierter Materie, Technische Universität, 64289 Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), 38123 Trento, Italy; (E.V.B.); (F.T.)
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Correspondence:
| |
Collapse
|
3
|
Mahajan A. How I Treat Medulloblastoma in Children. Indian J Med Paediatr Oncol 2020. [DOI: 10.4103/ijmpo.ijmpo_136_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractMedulloblastoma (MB) is the most common malignant tumor of the central nervous system in children with up to a third of these tumors presenting in children under 3 years of age. Its exquisite radio and chemosensitivity renders high cure rates in children in whom optimal resection has been achieved. Optimal surgery followed by radiation alone can cure about half of these children. The addition of chemotherapy has improved the outcomes dramatically and over 70% of children over 3 years of age with optimal resection and no metastasis can expect to be cured. Increasingly, the focus is on limiting the long-term sequelae of treatment. Precise molecular characterization can enable us to identify patients who can achieve optimal outcomes even in the absence of radiation. Insights into disease biology and molecular characterization have led to dramatic changes in our understanding, risk stratification, prognostication, and treatment approach in these children. In India, there is limited access to molecular profiling, making it challenging to apply biology driven approach to treatment in each child with MB. The Indian Society of Neuro-Oncology guidelines and the SIOP PODC adapted treatment recommendations for standard-risk MB based on the current evidence and logistic realities of low-middle income countries are a useful adjunct to guide clinical practice on a day-to-day basis in our setting.
Collapse
Affiliation(s)
- Amita Mahajan
- Department of Pediatric Hematology and Oncology, Indraprastha Apollo Hospital, New Delhi, India
| |
Collapse
|
4
|
Greenberger BA, Yock TI. The role of proton therapy in pediatric malignancies: Recent advances and future directions. Semin Oncol 2020; 47:8-22. [PMID: 32139101 DOI: 10.1053/j.seminoncol.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/11/2022]
Abstract
Proton radiotherapy has promised an advantage in safely treating pediatric malignancies with an increased capability to spare normal tissues, reducing the risk of both acute and late toxicity. The past decade has seen the proliferation of more than 30 proton facilities in the United States, with increased capacity to provide access to approximately 3,000 children per year who will require radiotherapy for their disease. We provide a review of the initial efforts to describe outcomes after proton therapy across the common pediatric disease sites. We discuss the main attempts to assess comparative efficacy between proton and photon radiotherapy concerning toxicity. We also discuss recent efforts of multi-institutional registries aimed at accelerating research to better define the optimal treatment paradigm for children requiring radiotherapy for cure.
Collapse
Affiliation(s)
- Benjamin A Greenberger
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Francis H. Burr Proton Therapy Center, Boston, MA.
| |
Collapse
|
5
|
Indelicato DJ, Bradley JA, Sandler ES, Aldana PR, Sapp A, Gains JE, Crellin A, Rotondo RL. Clinical outcomes following proton therapy for children with central nervous system tumors referred overseas. Pediatr Blood Cancer 2017; 64. [PMID: 28544746 DOI: 10.1002/pbc.26654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND International, multidisciplinary care of children with central nervous system (CNS) tumors presents unique challenges. The aim of this study is to report patient outcomes of U.K. children referred for proton therapy to a North American facility. METHODS From 2008 to 2016, 166 U.K. children with approved CNS tumors were treated with proton therapy at a single academic medical center in the United States. Median age was 7 years (range, 1-19). Median follow-up was 2.6 years. RESULTS The 3-year actuarial overall survival (OS) and local control (LC) rates were 96% and 91%, respectively, for the overall group, 92% and 85% for the ependymoma subgroup (n = 57), 95% and 88% for the low-grade glioma subgroup (n = 54), and 100% and 100%, respectively, for the craniopharyngioma subgroup (n = 45). Cyst expansion was observed in 13 patients, including one case resulting in visual impairment. Serious side effects included new-onset seizures in three patients (1.8%), symptomatic vasculopathy in three patients (1.8%), and symptomatic brainstem necrosis in one patient (0.6%). CONCLUSIONS In this cohort of British children referred overseas for proton therapy, disease control does not appear compromised, toxicity is acceptable, and improvement in long-term function is anticipated in survivors owing to the reduced brain exposure afforded by proton therapy.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Eric S Sandler
- Department of Pediatric Hematology/Oncology, Nemours Children's Health System, Jacksonville, Florida
| | - Philipp R Aldana
- Department of Neurosurgery, University of Florida College of Medicine, Jacksonville, Florida
| | - Amy Sapp
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Jennifer E Gains
- NHS England Radiotherapy Clinical Reference Group, London, United Kingdom
| | - Adrian Crellin
- NHS England Radiotherapy Clinical Reference Group, London, United Kingdom
| | - Ronny L Rotondo
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| |
Collapse
|
6
|
Fischer C, Petriccione M, Donzelli M, Pottenger E. Improving Care in Pediatric Neuro-oncology Patients: An Overview of the Unique Needs of Children With Brain Tumors. J Child Neurol 2016; 31:488-505. [PMID: 26245798 PMCID: PMC5032907 DOI: 10.1177/0883073815597756] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
Brain tumors represent the most common solid tumors in childhood, accounting for almost 25% of all childhood cancer, second only to leukemia. Pediatric central nervous system tumors encompass a wide variety of diagnoses, from benign to malignant. Any brain tumor can be associated with significant morbidity, even when low grade, and mortality from pediatric central nervous system tumors is disproportionately high compared to other childhood malignancies. Management of children with central nervous system tumors requires knowledge of the unique aspects of care associated with this particular patient population, beyond general oncology care. Pediatric brain tumor patients have unique needs during treatment, as cancer survivors, and at end of life. A multidisciplinary team approach, including advanced practice nurses with a specialty in neuro-oncology, allows for better supportive care. Knowledge of the unique aspects of care for children with brain tumors, and the appropriate interventions required, allows for improved quality of life.
Collapse
Affiliation(s)
- Cheryl Fischer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary Petriccione
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Donzelli
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elaine Pottenger
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Jackson M. Should children travel overseas for proton therapy? J Med Imaging Radiat Oncol 2016; 60:102-4. [DOI: 10.1111/1754-9485.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Jackson
- Prince of Wales Hospital and University of New South Wales; Sydney New South Wales Australia
| |
Collapse
|
8
|
von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M. Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. Br J Radiol 2015; 88:20150354. [PMID: 26159214 DOI: 10.1259/bjr.20150354] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults. The standard therapy for GBM is maximal surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide (TMZ). In spite of the extensive treatment, the disease is associated with poor clinical outcome. Further intensification of the standard treatment is limited by the infiltrating growth of the GBM in normal brain areas, the expected neurological toxicities with radiation doses >60 Gy and the dose-limiting toxicities induced by systemic therapy. To improve the outcome of patients with GBM, alternative treatment modalities which add low or no additional toxicities to the standard treatment are needed. Many Phase II trials on new chemotherapeutics or targeted drugs have indicated potential efficacy but failed to improve the overall or progression-free survival in Phase III clinical trials. In this review, we will discuss contemporary issues related to recent technical developments and new metabolic strategies for patients with GBM including MR (spectroscopy) imaging, (amino acid) positron emission tomography (PET), amino acid PET, surgery, radiogenomics, particle therapy, radioimmunotherapy and diets.
Collapse
Affiliation(s)
- C von Neubeck
- 1 German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A Seidlitz
- 2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - H H Kitzler
- 4 Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - B Beuthien-Baumann
- 2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,5 Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,6 Helmholtz-Zentrum, Dresden-Rossendorf (HZDR), PET Centre, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - M Krause
- 1 German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,7 Helmholtz-Zentrum, Dresden-Rossendorf (HZDR), Institute of Radiooncology, Dresden, Germany
| |
Collapse
|