1
|
Holland M, Krishnan C, Sotoudeh H, Nabors L, Fiveash J, Riley K, Huang W, Barboriak D, Kim H. Detecting pseudo versus true progression of glioblastoma via accurate quantitative DCE-MRI using point-of-care portable perfusion phantoms: a pilot study. Quant Imaging Med Surg 2025; 15:4321-4332. [PMID: 40384646 PMCID: PMC12084687 DOI: 10.21037/qims-2024-2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 05/20/2025]
Abstract
Background Currently, no definitive method reliably differentiates pseudoprogression from true progression. Misclassification can either halt effective therapy or prolong ineffective treatment. We hypothesized that the diagnostic accuracy could be improved using quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) after error correction via point-of-care portable perfusion phantoms (P4s). This study aimed to develop a P4 for quantitative DCE-MRI of the brain and enhance accuracy in distinguishing between pseudo and true glioblastoma progression. Methods Twelve patients with potential glioblastoma progression after adjuvant chemoradiation therapy were recruited. Each subject underwent two DCE-MRI exams within a week using a single 3T MRI scanner. Quantitative DCE-MRI parameters were retrieved based on the extended Tofts model (ETM), Tofts model (TM), and shutter speed model (SSM) before and after P4-based error correction. The consistency of the pharmacokinetic (PK) parameter measurements was evaluated based on the within-subject coefficient of variation (wCV) before and after P4-based error correction. Glioblastoma progression status was determined using the Response Assessment in Neuro-Oncology (RANO) criteria about five months after DCE-MRI exams. Results Among the participants, five had true progression, and seven had pseudoprogression. The wCVs of the Ktrans measurement based on TM, ETM, and SSM were 22%, 22%, and 24%, respectively, before error correction but improved to 7%, 6%, and 8%, respectively, after correction. Similarly, their accuracies in differentiating between pseudo and true progression were 0.88 regardless of the PK models before error correction. However, those after error correction were improved to 100% in TM (or ETM) and 96% in SSM. Conclusions Following P4-based error correction, a quantitative DCE-MRI parameter, Ktrans , demonstrated 100% accuracy in discriminating between pseudo and true progression when TM or ETM were employed.
Collapse
Affiliation(s)
- Martin Holland
- Department of Interdisciplinary Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chetana Krishnan
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Houman Sotoudeh
- Department of Radiology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Louis Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen Riley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Huang
- Radiation Oncology Research Institute, Corewell Health William Beaumont University Hospital, Royal Oak, MI, USA
| | | | - Harrison Kim
- DDepartment of Radiology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Yadav VK, Mohan S, Agarwal S, de Godoy LL, Rajan A, Nasrallah MP, Bagley SJ, Brem S, Loevner LA, Poptani H, Singh A, Chawla S. Distinction of pseudoprogression from true progression in glioblastomas using machine learning based on multiparametric magnetic resonance imaging and O 6-methylguanine-methyltransferase promoter methylation status. Neurooncol Adv 2024; 6:vdae159. [PMID: 39502470 PMCID: PMC11535496 DOI: 10.1093/noajnl/vdae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Background It is imperative to differentiate true progression (TP) from pseudoprogression (PsP) in glioblastomas (GBMs). We sought to investigate the potential of physiologically sensitive quantitative parameters derived from diffusion and perfusion magnetic resonance imaging (MRI), and molecular signature combined with machine learning in distinguishing TP from PsP in GBMs in the present study. Methods GBM patients (n = 93) exhibiting contrast-enhancing lesions within 6 months after completion of standard treatment underwent 3T MRI. Final data analyses were performed on 75 patients as O6-methylguanine-DNA-methyltransferase (MGMT) status was available only from these patients. Subsequently, patients were classified as TP (n = 55) or PsP (n = 20) based on histological features or mRANO criteria. Quantitative parameters were computed from contrast-enhancing regions of neoplasms. PsP datasets were artificially augmented to achieve balanced class distribution in 2 groups (TP and PsP). A random forest algorithm was applied to select the optimized features. The data were randomly split into training and testing subsets in an 8:2 ratio. To develop a robust prediction model in distinguishing TP from PsP, several machine-learning classifiers were employed. The cross-validation and receiver operating characteristic (ROC) curve analyses were performed to determine the diagnostic performance. Results The quadratic support vector machine was found to be the best classifier in distinguishing TP from PsP with a training accuracy of 91%, cross-validation accuracy of 86%, and testing accuracy of 85%. Additionally, ROC analysis revealed an accuracy of 85%, sensitivity of 70%, and specificity of 100%. Conclusions Machine learning using quantitative multiparametric MRI may be a promising approach to distinguishing TP from PsP in GBMs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumeet Agarwal
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
- Department of Electical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Archith Rajan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Bagley
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Young JS, Al-Adli N, Scotford K, Cha S, Berger MS. Pseudoprogression versus true progression in glioblastoma: what neurosurgeons need to know. J Neurosurg 2023; 139:748-759. [PMID: 36790010 PMCID: PMC10412732 DOI: 10.3171/2022.12.jns222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 02/16/2023]
Abstract
Management of patients with glioblastoma (GBM) is complex and involves implementing standard therapies including resection, radiation therapy, and chemotherapy, as well as novel immunotherapies and targeted small-molecule inhibitors through clinical trials and precision medicine approaches. As treatments have advanced, the radiological and clinical assessment of patients with GBM has become even more challenging and nuanced. Advances in spatial resolution and both anatomical and physiological information that can be derived from MRI have greatly improved the noninvasive assessment of GBM before, during, and after therapy. Identification of pseudoprogression (PsP), defined as changes concerning for tumor progression that are, in fact, transient and related to treatment response, is critical for successful patient management. These temporary changes can produce new clinical symptoms due to mass effect and edema. Differentiating this entity from true tumor progression is a major decision point in the patient's management and prognosis. Providers may choose to start an alternative therapy, transition to a clinical trial, consider repeat resection, or continue with the current therapy in hopes of resolution. In this review, the authors describe the invasive and noninvasive techniques neurosurgeons need to be aware of to identify PsP and facilitate surgical decision-making.
Collapse
Affiliation(s)
- Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Nadeem Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California
- School of Medicine, Texas Christian University, Fort Worth, Texas
| | - Katie Scotford
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Soonmee Cha
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
4
|
Petronek MS, Teferi N, Caster JM, Stolwijk JM, Zaher A, Buatti JM, Hasan D, Wafa EI, Salem AK, Gillan EG, St-Aubin JJ, Buettner GR, Spitz DR, Magnotta VA, Allen BG. Magnetite nanoparticles as a kinetically favorable source of iron to enhance GBM response to chemoradiosensitization with pharmacological ascorbate. Redox Biol 2023; 62:102651. [PMID: 36924683 PMCID: PMC10025281 DOI: 10.1016/j.redox.2023.102651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Ferumoxytol (FMX) is an FDA-approved magnetite (Fe3O4) nanoparticle used to treat iron deficiency anemia that can also be used as an MR imaging agent in patients that can't receive gadolinium. Pharmacological ascorbate (P-AscH-; IV delivery; plasma levels ≈ 20 mM) has shown promise as an adjuvant to standard of care chemo-radiotherapy in glioblastoma (GBM). Since ascorbate toxicity mediated by H2O2 is enhanced by Fe redox cycling, the current study determined if ascorbate catalyzed the release of ferrous iron (Fe2+) from FMX for enhancing GBM responses to chemo-radiotherapy. Ascorbate interacted with Fe3O4 in FMX to produce redox-active Fe2+ while simultaneously generating increased H2O2 fluxes, that selectively enhanced GBM cell killing (relative to normal human astrocytes) as opposed to a more catalytically active Fe complex (EDTA-Fe3+) in an H2O2 - dependent manner. In vivo, FMX was able to improve GBM xenograft tumor control when combined with pharmacological ascorbate and chemoradiation in U251 tumors that were unresponsive to pharmacological ascorbate therapy. These data support the hypothesis that FMX combined with P-AscH- represents a novel combined modality therapeutic approach to enhance cancer cell selective chemoradiosentization in the management of glioblastoma.
Collapse
Affiliation(s)
- M S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| | - N Teferi
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - J M Caster
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Stolwijk
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - A Zaher
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D Hasan
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - E I Wafa
- Department of Pharmaceutical Sciences, University of Iowa, Iowa City, IA, USA
| | - A K Salem
- Department of Pharmaceutical Sciences, University of Iowa, Iowa City, IA, USA
| | - E G Gillan
- Department of Chemistry, University of Iowa, Iowa City, IA, USA
| | - J J St-Aubin
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - G R Buettner
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D R Spitz
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - V A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - B G Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Sidibe I, Tensaouti F, Gilhodes J, Cabarrou B, Filleron T, Desmoulin F, Ken S, Noël G, Truc G, Sunyach MP, Charissoux M, Magné N, Lotterie JA, Roques M, Péran P, Cohen-Jonathan Moyal E, Laprie A. Pseudoprogression in GBM versus true progression in patients with glioblastoma: A multiapproach analysis. Radiother Oncol 2023; 181:109486. [PMID: 36706959 DOI: 10.1016/j.radonc.2023.109486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE To investigate the feasibility of using a multiapproach analysis combining clinical data, diffusion- and perfusion-weighted imaging, and 3D magnetic resonance spectroscopic imaging to distinguish true tumor progression (TP) from pseudoprogression (PSP) in patients with glioblastoma. MATERIALS AND METHODS Progression was suspected within 6 months of radiotherapy in 46 of the 180 patients included in the Phase-III SpectroGlio trial (NCT01507506). Choline/creatine (Cho/Cr), choline/N-acetyl aspartate (Cho/NAA) and lactate/N-acetyl aspartate (Lac/NAA) ratios were extracted. Apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) maps were calculated. ADC, relative CBV values and tumor volume (TV) were collected at relapse. Differences between TP and PSP were evaluated using Mann-Whitney tests, and p values were adjusted with Bonferroni correction. RESULTS Patients with suspected progression underwent a new MRI scan 1 month after the first one. Of these, 28 were classified as PSP, and 18 as TP. After a median follow-up of 41 months, median overall survival was higher in PSP than in TP (25.2 vs 20.3 months; p = 0.0092). Lac/NAA and Cho/Cr ratios were higher in TP than in PSP (1.2 vs 0.5; p = 0.006; and 3 vs 2.2; p = 0.021). After multivariate regression analysis, TV was the most significant predictor of TP vs PSP, and the only one retained in the model (p = 0.028). CONCLUSION Three spectroscopic ratios could be used to differentiate PSP from TP. TV at relapse was the most predictive factor in the multivariate analysis, and overall survival was higher in PSP than in TP.
Collapse
Affiliation(s)
- Ingrid Sidibe
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Fatima Tensaouti
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Julia Gilhodes
- Biostatistics Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France
| | - Bastien Cabarrou
- Biostatistics Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France
| | - Thomas Filleron
- Biostatistics Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Soleakhena Ken
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Radiation Oncology Department, Toulouse Center for Cancer Research & INSERM, Toulouse, France
| | - Georges Noël
- Radiation Oncology Department, ICANS, Strasbourg, France
| | - Gilles Truc
- Radiation Oncology Department, Georges-François Leclerc Center, Dijon, France
| | | | | | - Nicolas Magné
- Radiation Oncology Department, Lucien Neuwirth Loire Cancer Institute, Saint-Priest-en-Jarez, France
| | - Jean-Albert Lotterie
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Margaux Roques
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Radiation Oncology Department, Toulouse Center for Cancer Research & INSERM, Toulouse, France
| | - Anne Laprie
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France.
| |
Collapse
|
6
|
McKenney AS, Weg E, Bale TA, Wild AT, Um H, Fox MJ, Lin A, Yang JT, Yao P, Birger ML, Tixier F, Sellitti M, Moss NS, Young RJ, Veeraraghavan H. Radiomic Analysis to Predict Histopathologically Confirmed Pseudoprogression in Glioblastoma Patients. Adv Radiat Oncol 2023; 8:100916. [PMID: 36711062 PMCID: PMC9873493 DOI: 10.1016/j.adro.2022.100916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose Pseudoprogression mimicking recurrent glioblastoma remains a diagnostic challenge that may adversely confound or delay appropriate treatment or clinical trial enrollment. We sought to build a radiomic classifier to predict pseudoprogression in patients with primary isocitrate dehydrogenase wild type glioblastoma. Methods and Materials We retrospectively examined a training cohort of 74 patients with isocitrate dehydrogenase wild type glioblastomas with brain magnetic resonance imaging including dynamic contrast enhanced T1 perfusion before resection of an enhancing lesion indeterminate for recurrent tumor or pseudoprogression. A recursive feature elimination random forest classifier was built using nested cross-validation without and with O6-methylguanine-DNA methyltransferase status to predict pseudoprogression. Results A classifier constructed with cross-validation on the training cohort achieved an area under the receiver operating curve of 81% for predicting pseudoprogression. This was further improved to 89% with the addition of O6-methylguanine-DNA methyltransferase status into the classifier. Conclusions Our results suggest that radiomic analysis of contrast T1-weighted images and magnetic resonance imaging perfusion images can assist the prompt diagnosis of pseudoprogression. Validation on external and independent data sets is necessary to verify these advanced analyses, which can be performed on routinely acquired clinical images and may help inform clinical treatment decisions.
Collapse
Affiliation(s)
- Anna Sophia McKenney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Emily Weg
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Tejus A. Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron T. Wild
- Department Southeast Radiation Oncology, Levine Cancer Institute, Charlotte, North Carolina
| | - Hyemin Um
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J. Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Lin
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan T. Yang
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Yao
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maxwell L. Birger
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew Sellitti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J. Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
- Corresponding author: Robert J. Young, MD
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
7
|
Maiter A, Butteriss D, English P, Lewis J, Hassani A, Bhatnagar P. Assessing the diagnostic accuracy and interobserver agreement of MRI perfusion in differentiating disease progression and pseudoprogression following treatment for glioblastoma in a tertiary UK centre. Clin Radiol 2022; 77:e568-e575. [DOI: 10.1016/j.crad.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
|
8
|
Barajas RF, Ambady P, Link J, Krohn KA, Raslan A, Mallak N, Woltjer R, Muldoon L, Neuwelt EA. [ 18F]-fluoromisonidazole (FMISO) PET/MRI hypoxic fraction distinguishes neuroinflammatory pseudoprogression from recurrent glioblastoma in patients treated with pembrolizumab. Neurooncol Pract 2022; 9:246-250. [PMID: 35601969 PMCID: PMC9113243 DOI: 10.1093/nop/npac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Response assessment after immunotherapy remains a major challenge in glioblastoma due to an expected increased incidence of pseudoprogression. Gadolinium-enhanced magnetic resonance imaging (MRI) is the standard for monitoring therapeutic response, however, is markedly limited in characterizing pseudoprogression. Given that hypoxia is an important defining feature of glioblastoma regrowth, we hypothesized that [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) could provide an additional physiological measure for the diagnosis of immunotherapeutic failure. Six patients with newly diagnosed glioblastoma who had previously received maximal safe resection followed by Stupp protocol CRT concurrent with pembrolizumab immunotherapy were recruited for FMISO PET and Gd-MRI at the time of presumed progression. The hypoxic fraction was defined as the ratio of hypoxic volume to T1-weighted gadolinium-enhancing volume. Four patients diagnosed with pseudoprogression demonstrated a mean hypoxic fraction of 9.8 ± 10%. Two with recurrent tumor demonstrated a mean hypoxic fraction of 131 ± 66%. Our results, supported by histopathology, suggest that the noninvasive assessment of hypoxic fraction by FMISO PET/MRI is clinically feasible and may serve as a biologically specific metric of therapeutic failure.
Collapse
Affiliation(s)
- Ramon F Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Science University, Portland Oregon, USA
- Knight Cancer Institute Translational Oncology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Prakash Ambady
- Neuro-Oncology and Blood-Brain Barrier Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeanne Link
- Center for Radiochemistry Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kenneth A Krohn
- Center for Radiochemistry Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Nadine Mallak
- Advanced Imaging Research Center, Oregon Health & Science University, Portland Oregon, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Leslie Muldoon
- Neuro-Oncology and Blood-Brain Barrier Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward A Neuwelt
- Neuro-Oncology and Blood-Brain Barrier Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Office of Research and Development, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| |
Collapse
|
9
|
Malik DG, Rath TJ, Urcuyo Acevedo JC, Canoll PD, Swanson KR, Boxerman JL, Quarles CC, Schmainda KM, Burns TC, Hu LS. Advanced MRI Protocols to Discriminate Glioma From Treatment Effects: State of the Art and Future Directions. FRONTIERS IN RADIOLOGY 2022; 2:809373. [PMID: 37492687 PMCID: PMC10365126 DOI: 10.3389/fradi.2022.809373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 07/27/2023]
Abstract
In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.
Collapse
Affiliation(s)
- Dania G. Malik
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Tanya J. Rath
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Javier C. Urcuyo Acevedo
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Peter D. Canoll
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Kristin R. Swanson
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Jerrold L. Boxerman
- Department of Diagnostic Imaging, Brown University, Providence, RI, United States
| | - C. Chad Quarles
- Department of Neuroimaging Research & Barrow Neuroimaging Innovation Center, Barrow Neurologic Institute, Phoenix, AZ, United States
| | - Kathleen M. Schmainda
- Department of Biophysics & Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Terry C. Burns
- Departments of Neurologic Surgery and Neuroscience, Mayo Clinic, Rochester, MN, United States
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
10
|
El-Abtah ME, Talati P, Fu M, Chun B, Clark P, Peters A, Ranasinghe A, He J, Rapalino O, Batchelor TT, Gilberto Gonzalez R, Curry WT, Dietrich J, Gerstner ER, Ratai EM. Magnetic resonance spectroscopy outperforms perfusion in distinguishing between pseudoprogression and disease progression in patients with glioblastoma. Neurooncol Adv 2022; 4:vdac128. [PMID: 36071927 PMCID: PMC9446677 DOI: 10.1093/noajnl/vdac128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
There is a need to establish biomarkers that distinguish between pseudoprogression (PsP) and true tumor progression in patients with glioblastoma (GBM) treated with chemoradiation.
Methods
We analyzed magnetic resonance spectroscopic imaging (MRSI) and dynamic susceptibility contrast (DSC) MR perfusion data in patients with GBM with PsP or disease progression after chemoradiation. MRSI metabolites of interest included intratumoral choline (Cho), myo-inositol (mI), glutamate + glutamine (Glx), lactate (Lac), and creatine on the contralateral hemisphere (c-Cr). Student T-tests and area under the ROC curve analyses were used to detect group differences in metabolic ratios and their ability to predict clinical status, respectively.
Results
28 subjects (63 ± 9 years, 19 men) were evaluated. Subjects with true progression (n = 20) had decreased enhancing region mI/c-Cr (P = .011), a marker for more aggressive tumors, compared to those with PsP, which predicted tumor progression (AUC: 0.84 [0.76, 0.92]). Those with true progression had elevated Lac/Glx (P = .0009), a proxy of the Warburg effect, compared to those with PsP which predicted tumor progression (AUC: 0.84 [0.75, 0.92]). Cho/c-Cr did not distinguish between PsP and true tumor progression. Despite rCBV (AUC: 0.70 [0.60, 0.80]) and rCBF (AUC: 0.75 [0.65, 0.84]) being individually predictive of tumor response, they added no additional predictive value when combined with MRSI metabolic markers.
Conclusions
Incorporating enhancing lesion MRSI measures of mI/c-Cr and Lac/Glx into brain tumor imaging protocols can distinguish between PsP and true progression and inform patient management decisions.
Collapse
Affiliation(s)
- Mohamed E El-Abtah
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
| | - Pratik Talati
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
- Department of Neurosurgery, Massachusetts General Hospital , Boston, Massachusetts , USA
| | - Melanie Fu
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
| | - Benjamin Chun
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
| | - Patrick Clark
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
| | - Anna Peters
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
| | - Anthony Ranasinghe
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
| | - Julian He
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
| | - Otto Rapalino
- Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Tracy T Batchelor
- Harvard Medical School , Boston, Massachusetts , USA
- Brigham and Women’s Hospital, Neurosciences Center , Boston, Massachusetts , USA
| | - R Gilberto Gonzalez
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
- Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital , Boston, Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
- Massachusetts General Hospital Cancer Center , Boston, Massachusetts , USA
| | - Jorg Dietrich
- Harvard Medical School , Boston, Massachusetts , USA
- Massachusetts General Hospital Cancer Center , Boston, Massachusetts , USA
| | - Elizabeth R Gerstner
- Harvard Medical School , Boston, Massachusetts , USA
- Massachusetts General Hospital Cancer Center , Boston, Massachusetts , USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging , Charlestown, Massachusetts , USA
- Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| |
Collapse
|
11
|
MRI and PET of Brain Tumor Neuroinflammation in the Era of Immunotherapy, From the AJR Special Series on Inflammation. AJR Am J Roentgenol 2021; 218:582-596. [PMID: 34259035 DOI: 10.2214/ajr.21.26159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the emergence of immune-modulating therapies, brain tumors present significant diagnostic imaging challenges. These challenges include planning personalized treatment and adjudicating accurate monitoring approaches and therapeutically specific response criteria. This has been due, in part, to the reliance on nonspecific imaging metrics, such as gadolinium-contrast-enhanced MRI or FDG PET, and rapidly evolving biologic understanding of neuroinflammation. The importance of the tumor-immune interaction and ability to therapeutically augment inflammation to improve clinical outcomes necessitates that the radiologist develop a working knowledge of the immune system and its role in clinical neuroimaging. In this article, we review relevant biologic concepts of the tumor microenvironment of primary and metastatic brain tumors, these tumors' interactions with the immune system, and MRI and PET methods for imaging inflammatory elements associated with these malignancies. Recognizing the growing fields of immunotherapeutics and precision oncology, we highlight clinically translatable imaging metrics for the diagnosis and monitoring of brain tumor neuroinflammation. Practical guidance is provided for implementing iron nanoparticle imaging, including imaging indications, protocol, interpretation, and pitfalls. A comprehensive understanding of the inflammatory mechanisms within brain tumors and their imaging features will facilitate the development of innovative non-invasive prognostic and predictive imaging strategies for precision oncology.
Collapse
|
12
|
Freiburg Neuropathology Case Conference : Contrast-enhancing Brain Lesion 6 Months after Resection and Combined Radiotherapy and Chemotherapy of an Unmethylated but IDH R132H-mutated Glioblastoma Multiforme. Clin Neuroradiol 2021; 31:283-288. [PMID: 33625551 PMCID: PMC7943525 DOI: 10.1007/s00062-021-01006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 10/28/2022]
|
13
|
Richard S, Tachon G, Milin S, Wager M, Karayan-Tapon L. Dual MGMT inactivation by promoter hypermethylation and loss of the long arm of chromosome 10 in glioblastoma. Cancer Med 2020; 9:6344-6353. [PMID: 32666673 PMCID: PMC7476845 DOI: 10.1002/cam4.3217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic inactivation of O6‐methylguanine‐methyltransferase (MGMT) gene by methylation of its promoter is predictive of Temozolomid (TMZ) response in glioblastoma (GBM). MGMT is located on chromosome 10q26 and the loss of chromosome 10q is observed in 70% of GBMs. In this study, we assessed the hypothesis that the dual inactivation of MGMT, by hypermethylation of MGMT promoter and by loss the long arm of chromosome 10 (10q), may confer greater sensitivity to TMZ. Methods A total of 149 tumor samples from patients diagnosed with GBM based on the WHO 2016 classification were included in this retrospective study between November 2016 and December 2018. Methylation status of MGMT promoter was evaluated by pyrosequencing and status of chromosome 10q was assessed by array comparative genomic hybridization. Results Glioblastoma patients with chromosome 10q loss associated with hypermethylation of MGMT promoter had significantly longer overall survival (OS) (P = .0024) and progression‐free survival (PFS) (P = .031). Indeed, median OS of patients with dual inactivation of MGMT was 21.5 months compared to 12 months and 8.1 months for groups with single MGMT inactivation by hypermethylation and by 10q loss, respectively. The group with no MGMT inactivation had 9.5 months OS. Moreover, all long‐term survivors with persistent response to TMZ treatment (OS ≥ 30 months) displayed dual inactivation of MGMT. Conclusions Our data suggest that the molecular subgroup characterized by the dual inactivation of MGMT receives greater benefit from TMZ treatment. The results of our study may be of immediate clinical interest since chromosome 10q status and methylation of MGMT promoter are commonly determined in routine practice.
Collapse
Affiliation(s)
- Sophie Richard
- Faculté de Médecine, Université de Poitiers, Poitiers, France.,Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France
| | - Gaëlle Tachon
- Faculté de Médecine, Université de Poitiers, Poitiers, France.,Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France.,Laboratoire des Neurosciences Expérimentales et Cliniques, INSERM 1084, Poitiers, France
| | - Serge Milin
- Laboratoire d'anatomopathologie, CHU de Poitiers, Poitiers, France
| | - Michel Wager
- Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France.,Laboratoire des Neurosciences Expérimentales et Cliniques, INSERM 1084, Poitiers, France.,CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Faculté de Médecine, Université de Poitiers, Poitiers, France.,Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France.,Laboratoire des Neurosciences Expérimentales et Cliniques, INSERM 1084, Poitiers, France
| |
Collapse
|
14
|
Oddone N, Boury F, Garcion E, Grabrucker AM, Martinez MC, Da Ros F, Janaszewska A, Forni F, Vandelli MA, Tosi G, Ruozi B, Duskey JT. Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Front Pharmacol 2020; 11:574. [PMID: 32425795 PMCID: PMC7212708 DOI: 10.3389/fphar.2020.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the brain and averages a life expectancy in diagnosed patients of only 15 months. Hence, more effective therapies against this malignancy are urgently needed. Several diseases, including cancer, are featured by high levels of reactive oxygen species (ROS), which are possible GBM hallmarks to target or benefit from. Therefore, the covalent linkage of drugs to ROS-responsive molecules can be exploited aiming for a selective drug release within relevant pathological environments. In this work, we designed a new ROS-responsive prodrug by using Melphalan (MPH) covalently coupled with methoxy polyethylene glycol (mPEG) through a ROS-cleavable group thioketal (TK), demonstrating the capacity to self-assembly into nanosized micelles. Full chemical-physical characterization was conducted on the polymeric-prodrug and proper controls, along with in vitro cytotoxicity assayed on different GBM cell lines and “healthy” astrocyte cells confirming the absence of any cytotoxicity of the prodrug on healthy cells (i.e. astrocytes). These results were compared with the non-ROS responsive counterpart, underlining the anti-tumoral activity of ROS-responsive compared to the non-ROS-responsive prodrug on GBM cells expressing high levels of ROS. On the other hand, the combination treatment with this ROS-responsive prodrug and X-ray irradiation on human GBM cells resulted in an increase of the antitumoral effect, and this might be connected to radiotherapy. Hence, these results represent a starting point for a rationale design of innovative and tailored ROS-responsive prodrugs to be used in GBM therapy and in combination with radiotherapy.
Collapse
Affiliation(s)
- Natalia Oddone
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | | | - Federica Da Ros
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Flavio Forni
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason T Duskey
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Umberto Veronesi Foundation, Milano, Italy
| |
Collapse
|
15
|
Mohammadi H, Shiue K, Grass GD, Verma V, Engellandt K, Daubner D, Schackert G, Gondim MJ, Gondim D, Vortmeyer AO, Kamer AP, Jin W, Robinson TJ, Watson G, Yu HHM, Lautenschlaeger T. Isocitrate dehydrogenase 1 mutant glioblastomas demonstrate a decreased rate of pseudoprogression: a multi-institutional experience. Neurooncol Pract 2020; 7:185-195. [PMID: 32626587 PMCID: PMC7318854 DOI: 10.1093/nop/npz050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pseudoprogression (psPD) represents false radiologic evidence of tumor progression and is observed in some glioblastoma (GBM) patients after postoperative chemoradiation (CRT) with temozolomide (TMZ). The ambiguity of the psPD diagnosis confounds identification of true progression and may lead to unnecessary interventions. The association between psPD and isocitrate dehydrogenase 1 (IDH1) mutational (mut) status is understudied, and its incidence may alter clinical decision making. METHODS We retrospectively evaluated 120 patients with IDH1-mut (n = 60) and IDH1-wild-type (IDH-WT; [n = 60]) GBMs who received postoperative CRT with TMZ at 4 academic institutions. Response Assessment in Neuro-Oncology criteria were used to identify psPD rates in routine brain MRIs performed up to 90 days after CRT completion. RESULTS Within 90 days of completing CRT, 9 GBM patients (1 [1.7%] IDH1-mut and 8 [13.3%] IDH1-WTs) demonstrated true progression, whereas 17 patients (3 [5%] IDH1-muts and 14 [23.3%] IDH1-WTs) demonstrated psPD (P = .004). IDH1-mut GBMs had a lower probability of psPD (hazard ratio: 0.173, 95% CI, 0.047-0.638, P = .008). Among the patients with radiologic signs suggestive of progression (n = 26), psPD was found to be the cause in 3 of 4 (75.0%) of the IDH1-mut GBMs and 14 of 22 (63.6%) of the IDH1-WT GBMs (P = .496). Median overall survival for IDH1-mut and IDH1-WT GBM patients was 40.3 and 23.0 months, respectively (P < .001). CONCLUSIONS IDH1-mut GBM patients demonstrate lower absolute rates of psPD expression. Irrespective of GBM subtype, psPD expression was more likely than true progression within 90 days of completing CRT. Continuing adjuvant treatment for IDH1-mut GBMs is suggested if radiologic progression is suspected during this time interval.
Collapse
Affiliation(s)
- Homan Mohammadi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kevin Shiue
- Department of Radiation Oncology, Indiana University Simon Cancer Center, Indianapolis, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Kay Engellandt
- Department of Neurochirurgie and Neuroradiologie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Dirk Daubner
- Department of Neurochirurgie and Neuroradiologie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurochirurgie and Neuroradiologie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Mercia J Gondim
- Department of Pathology, Indiana University Simon Cancer Center, Indianapolis, USA
| | - Dibson Gondim
- Department of Pathology, Indiana University Simon Cancer Center, Indianapolis, USA
| | | | - Aaron P Kamer
- Department of Radiation Oncology, Indiana University Simon Cancer Center, Indianapolis, USA
| | - William Jin
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Timothy J Robinson
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gordon Watson
- Department of Radiation Oncology, Indiana University Simon Cancer Center, Indianapolis, USA
| | - Hsiang-Hsuan M Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tim Lautenschlaeger
- Department of Radiation Oncology, Indiana University Simon Cancer Center, Indianapolis, USA
| |
Collapse
|
16
|
Daghighi S, Bahrami N, Tom WJ, Coley N, Seibert TM, Hattangadi-Gluth JA, Piccioni DE, Dale AM, Farid N, McDonald CR. Restriction Spectrum Imaging Differentiates True Tumor Progression From Immune-Mediated Pseudoprogression: Case Report of a Patient With Glioblastoma. Front Oncol 2020; 10:24. [PMID: 32047723 PMCID: PMC6997150 DOI: 10.3389/fonc.2020.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is increasingly used in the treatment of glioblastoma (GBM), with immune checkpoint therapy gaining in popularity given favorable outcomes achieved for other tumors. However, immune-mediated (IM)-pseudoprogression is common, remains poorly characterized, and renders conventional imaging of little utility when evaluating for treatment response. We present the case of a 64-year-old man with GBM who developed pathologically proven IM-pseudoprogression after initiation of a checkpoint inhibitor, and who subsequently developed true tumor progression at a distant location. Based on both qualitative and quantitative analysis, we demonstrate that an advanced diffusion-weighted imaging (DWI) technique called restriction spectrum imaging (RSI) can differentiate IM-pseudoprogression from true progression even when conventional imaging, including standard DWI/apparent diffusion coefficient (ADC), is not informative. These data complement existing literature supporting the ability of RSI to estimate tumor cellularity, which may help to resolve complex diagnostic challenges such as the identification of IM-pseudoprogression.
Collapse
Affiliation(s)
- Shadi Daghighi
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Naeim Bahrami
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States
| | - William J. Tom
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Nicholas Coley
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Tyler M. Seibert
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States
- Department of Radiation Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jona A. Hattangadi-Gluth
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States
- Department of Radiation Medicine, University of California, San Diego, La Jolla, CA, United States
| | - David E. Piccioni
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Nikdokht Farid
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Carrie R. McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States
- Department of Radiation Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Netto JP, Iliff J, Stanimirovic D, Krohn KA, Hamilton B, Varallyay C, Gahramanov S, Daldrup-Link H, d'Esterre C, Zlokovic B, Sair H, Lee Y, Taheri S, Jain R, Panigrahy A, Reich DS, Drewes LR, Castillo M, Neuwelt EA. Neurovascular Unit: Basic and Clinical Imaging with Emphasis on Advantages of Ferumoxytol. Neurosurgery 2019; 82:770-780. [PMID: 28973554 DOI: 10.1093/neuros/nyx357] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Physiological and pathological processes that increase or decrease the central nervous system's need for nutrients and oxygen via changes in local blood supply act primarily at the level of the neurovascular unit (NVU). The NVU consists of endothelial cells, associated blood-brain barrier tight junctions, basal lamina, pericytes, and parenchymal cells, including astrocytes, neurons, and interneurons. Knowledge of the NVU is essential for interpretation of central nervous system physiology and pathology as revealed by conventional and advanced imaging techniques. This article reviews current strategies for interrogating the NVU, focusing on vascular permeability, blood volume, and functional imaging, as assessed by ferumoxytol an iron oxide nanoparticle.
Collapse
Affiliation(s)
- Joao Prola Netto
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,Department of Neuroradiology, Oregon Health & Science University, Portland, Oregon
| | - Jeffrey Iliff
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Danica Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Kenneth A Krohn
- Department of Radiology, University of Washington, Seattle, Washington.,Department of Radiology, Oregon Health & Science University, Portland, Oregon
| | - Bronwyn Hamilton
- Department of Neuroradiology, Oregon Health & Science University, Portland, Oregon
| | - Csanad Varallyay
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,Department of Radiology, Oregon Health & Science University, Portland, Oregon
| | - Seymur Gahramanov
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
| | | | - Christopher d'Esterre
- Department of Radiology, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Berislav Zlokovic
- Zikha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Haris Sair
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Yueh Lee
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Saeid Taheri
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Rajan Jain
- Department of Radiology and Neurosurgery, New York University School of Medicine, New York, New York
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel S Reich
- Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota
| | - Mauricio Castillo
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon.,Portland Veterans Affairs Medical Center, Portland, Oregon
| |
Collapse
|
18
|
Sinigaglia M, Assi T, Besson FL, Ammari S, Edjlali M, Feltus W, Rozenblum-Beddok L, Zhao B, Schwartz LH, Mokrane FZ, Dercle L. Imaging-guided precision medicine in glioblastoma patients treated with immune checkpoint modulators: research trend and future directions in the field of imaging biomarkers and artificial intelligence. EJNMMI Res 2019; 9:78. [PMID: 31432278 PMCID: PMC6702257 DOI: 10.1186/s13550-019-0542-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies that employ immune checkpoint modulators (ICMs) have emerged as an effective treatment for a variety of solid cancers, as well as a paradigm shift in the treatment of cancers. Despite this breakthrough, the median survival time of glioblastoma patients has remained at about 2 years. Therefore, the safety and anti-cancer efficacy of combination therapies that include ICMs are being actively investigated. Because of the distinct mechanisms of ICMs, which restore the immune system’s anti-tumor capacity, unconventional immune-related phenomena are increasingly being reported in terms of tumor response and progression, as well as adverse events. Indeed, immunotherapy response assessments for neuro-oncology (iRANO) play a central role in guiding cancer patient management and define a “wait and see strategy” for patients treated with ICMs in monotherapy with progressive disease on MRI. This article deciphers emerging research trends to ameliorate four challenges unaddressed by the iRANO criteria: (1) patient selection, (2) identification of immune-related phenomena other than pseudoprogression (i.e., hyperprogression, the abscopal effect, immune-related adverse events), (3) response assessment in combination therapies including ICM, and (4) alternatives to MRI. To this end, our article provides a structured approach for standardized selection and reporting of imaging modalities to enable the use of precision medicine by deciphering the characteristics of the tumor and its immune environment. Emerging preclinical or clinical innovations are also discussed as future directions such as immune-specific targeting and implementation of artificial intelligence algorithms.
Collapse
Affiliation(s)
- Mathieu Sinigaglia
- Department of Imaging Nuclear Medicine, Institut Claudius Regaud-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Tarek Assi
- Département de médecine oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Florent L Besson
- Department of Biophysics and Nuclear Medicine, Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, 78 rue du Général Leclerc, 94275, Le Kremlin-Bicêtre, France.,IR4M-UMR 8081, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France
| | - Samy Ammari
- Département d'imagerie médicale, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Myriam Edjlali
- INSERM U894, Service d'imagerie morphologique et fonctionnelle, Hôpital Sainte-Anne, Université Paris Descartes, 1, rue Cabanis, 75014, Paris, France
| | - Whitney Feltus
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Laura Rozenblum-Beddok
- Service de Médecine Nucléaire, AP-HP, Hôpital La Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Lawrence H Schwartz
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Fatima-Zohra Mokrane
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA.,Département d'imagerie médicale, CHU Rangueil, Université Toulouse Paul Sabatier, Toulouse, France
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA. .,UMR1015, Institut Gustave Roussy, Université Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
19
|
Ludmir EB, Mahajan A, Paulino AC, Jones JY, Ketonen LM, Su JM, Grosshans DR, McAleer MF, McGovern SL, Lassen-Ramshad YA, Adesina AM, Dauser RC, Weinberg JS, Chintagumpala MM. Increased risk of pseudoprogression among pediatric low-grade glioma patients treated with proton versus photon radiotherapy. Neuro Oncol 2019; 21:686-695. [PMID: 30753704 PMCID: PMC6502497 DOI: 10.1093/neuonc/noz042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pseudoprogression (PsP) is a recognized phenomenon after radiotherapy (RT) for high-grade glioma but is poorly characterized for low-grade glioma (LGG). We sought to characterize PsP for pediatric LGG patients treated with RT, with particular focus on the role of RT modality using photon-based intensity-modulated RT (IMRT) or proton beam therapy (PBT). METHODS Serial MRI scans from 83 pediatric LGG patients managed at 2 institutions between 1998 and 2017 were evaluated. PsP was scored when a progressive lesion subsequently decreased or stabilized for at least a year without therapy. RESULTS Thirty-two patients (39%) were treated with IMRT, and 51 (61%) were treated with PBT. Median RT dose for the cohort was 50.4 Gy(RBE) (range, 45-59.4 Gy[RBE]). PsP was identified in 31 patients (37%), including 8/32 IMRT patients (25%) and 23/51 PBT patients (45%). PBT patients were significantly more likely to have post-RT enlargement (hazard ratio [HR] 2.15, 95% CI: 1.06-4.38, P = 0.048). RT dose >50.4 Gy(RBE) similarly predicted higher rates of PsP (HR 2.61, 95% CI: 1.20-5.68, P = 0.016). Multivariable analysis confirmed the independent effects of RT modality (P = 0.03) and RT dose (P = 0.01) on PsP incidence. Local progression occurred in 10 patients: 7 IMRT patients (22%) and 3 PBT patients (6%), with a trend toward improved local control for PBT patients (HR 0.34, 95% CI: 0.10-1.18, P = 0.099). CONCLUSIONS These data highlight substantial rates of PsP among pediatric LGG patients, particularly those treated with PBT. PsP should be considered when assessing response to RT in LGG patients within the first year after RT.
Collapse
Affiliation(s)
- Ethan B Ludmir
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Mahajan
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | - Arnold C Paulino
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jeremy Y Jones
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Leena M Ketonen
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack M Su
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - David R Grosshans
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Susan L McGovern
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Adekunle M Adesina
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Robert C Dauser
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | |
Collapse
|
20
|
Voss M, Franz K, Steinbach JP, Fokas E, Forster MT, Filipski K, Hattingen E, Wagner M, Breuer S. Contrast enhancing spots as a new pattern of late onset pseudoprogression in glioma patients. J Neurooncol 2019; 142:161-169. [PMID: 30604393 DOI: 10.1007/s11060-018-03076-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/08/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Magnet resonance imaging (MRI) of gliomas is assessed by Response Assessment in Neuro-Oncology Criteria (RANO), which define new contrast-enhancing lesions as a sign for tumor recurrence. Pseudoprogression after radiotherapy may mimic tumor progression in MRI but is usually limited to the first months after irradiation. We noted a late onset pattern of new contrast-enhancing spots (NCES) appearing years after radiotherapy. METHODS We prospectively collected 23 glioma patients with 26 NCES (three patients had two separate NCES events) between 2014 and 2016 in our weekly tumor board without further selection by diagnosis, molecular markers or pretreatment. RESULTS Retrospective analysis revealed a homogeneous collective of young patients (median age of 49 years at NCES) with mainly IDH-mutated glioma (61%). Initial histology showed 26% glioblastoma, 52% grade III and 22% grade II glioma. NCES occurred at late follow-up with a median of 52 months after tumor diagnosis and 30 months after the last radiotherapy. The majority of NCES regressed spontaneously within a median of 10 months (n = 11) or remained stable without further therapy with a median follow-up of 26 months (n = 7). Only 4 NCES developed MRI morphologically into tumor recurrence. Two NCES were resected without any histopathological proof of tumor recurrence, and in 2 other cases NCES were defined as ischemic stroke or radionecrosis. CONCLUSION We hypothesize that the late onset phenomenon of NCES predominantly represents a form of radiation-induced vasculopathy that is different from early pseudoprogression and should be considered especially in younger patients with IDH-mutated glioma before initiation of new therapy.
Collapse
Affiliation(s)
- Martin Voss
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Kea Franz
- Departement of Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Marie-Thérèse Forster
- Departement of Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Katharina Filipski
- Institut of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Departement of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Marlies Wagner
- Departement of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stella Breuer
- Departement of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Sharma AM, Willcock M, Bucher O, Amaratunga T, Khan MN, Loewen SK, Quon H, Essig M, Pitz M. Institutional review of glial tumors treated with chemotherapy: the first description of PCV-related pseudoprogression. Neurooncol Pract 2019; 6:22-29. [PMID: 31385994 PMCID: PMC6656297 DOI: 10.1093/nop/npy012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pseudoprogression refers to areas of enhancement on MRI postadjuvant chemoradiation that arise as a result of treatment-related effects. Pseudoprogression has been well described with temozolomide-based chemoradiation but has not been studied in the setting of procarbazine, lomustine, and vincristine (PCV) chemotherapy. We reviewed patients treated with PCV to investigate the occurrence of pseudoprogression. METHODS Adults diagnosed with World Health Organization grade II or III gliomas between 2010 and 2015 and treated with PCV or temozolomide were identified. Patient, tumor, treatment, and MRI data were retrospectively collected and analyzed. Pseudoprogression was defined as new enhancement seen on MRI within 6 months of completion of adjuvant radiotherapy or concurrent chemoradiation, which improved or remained stable on subsequent scans without therapeutic intervention. If MRI showed areas of new enhancement outside the 6-month post-treatment window, which resolved or remained stable without treatment, or in patients who did not receive adjuvant treatment, it was referred to as "atypical pseudoprogression." RESULTS Fifty-seven patients were identified. Nine (16%) patients were identified as having pseudoprogression on MRI. Two (4%) of these patients were treated with PCV and 7 (12%) were treated with temozolomide. Seventeen (30%) patients had atypical pseudoprogression: 8 (14%) treated with temozolomide, 8 (14%) treated with PCV, and 1 (2%) treated with both types of chemotherapy. CONCLUSIONS We describe the first 2 cases of PCV-related pseudoprogression and 17 cases of atypical pseudoprogression. As the re-emergence of adjuvant PCV occurs in clinical practice, the occurrence of classical and atypical pseudoprogression could have a significant impact on clinical decision making.
Collapse
Affiliation(s)
- Ankur M Sharma
- Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Michael Willcock
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Oliver Bucher
- Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, MB, Canada
| | | | - M Nazir Khan
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Shaun K Loewen
- Department of Radiation Oncology, Tom Baker Cancer Center, Calgary, AB, Canada
| | - Harvey Quon
- Department of Radiation Oncology, Tom Baker Cancer Center, Calgary, AB, Canada
| | - Marco Essig
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Marshall Pitz
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Rowe LS, Butman JA, Mackey M, Shih JH, Cooley-Zgela T, Ning H, Gilbert MR, Smart DK, Camphausen K, Krauze AV. Differentiating pseudoprogression from true progression: analysis of radiographic, biologic, and clinical clues in GBM. J Neurooncol 2018; 139:145-152. [PMID: 29767308 PMCID: PMC7983158 DOI: 10.1007/s11060-018-2855-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/31/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Pseudoprogression (PsP) is a diagnostic dilemma in glioblastoma (GBM) after chemoradiotherapy (CRT). Magnetic resonance imaging (MRI) features may fail to distinguish PsP from early true progression (eTP), however clinical findings may aid in their distinction. METHODS Sixty-seven patients received CRT for GBM between 2003 and 2016, and had pre- and post-treatment imaging suitable for retrospective evaluation using RANO criteria. Patients with signs of progression within the first 12-weeks post-radiation (P-12) were selected. Lesions that improved or stabilized were defined as PsP, and lesions that progressed were defined as eTP. RESULTS The median follow up for all patients was 17.6 months. Signs of progression developed in 35/67 (52.2%) patients within P-12. Of these, 20/35 (57.1%) were subsequently defined as eTP and 15/35 (42.9%) as PsP. MRI demonstrated increased contrast enhancement in 84.2% of eTP and 100% of PsP, and elevated CBV in 73.7% for eTP and 93.3% for PsP. A decrease in FLAIR was not seen in eTP patients, but was seen in 26.7% PsP patients. Patients with eTP were significantly more likely to require increased steroid doses or suffer clinical decline than PsP patients (OR 4.89, 95% CI 1.003-19.27; p = 0.046). KPS declined in 25% with eTP and none of the PsP patients. CONCLUSIONS MRI imaging did not differentiate eTP from PsP, however, KPS decline or need for increased steroids was significantly more common in eTP versus PsP. Investigation and standardization of clinical assessments in response criteria may help address the diagnostic dilemma of pseudoprogression after frontline treatment for GBM.
Collapse
Affiliation(s)
- Lindsay S Rowe
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA.
| | - John A Butman
- Radiology and Imaging Sciences, National Institutes of Health, 10 Center Drive Magnuson Clinical Center, MSC 1182, Bethesda, MD, 20892, USA
| | - Megan Mackey
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Joanna H Shih
- Clinical Research Center, National Institutes of Health, 10 Center Drive Magnuson Clinical Center, Bethesda, MD, 20892, USA
| | - Theresa Cooley-Zgela
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Holly Ning
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Building 82, Room 235A, Bethesda, MD, 20892, USA
| | - DeeDee K Smart
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| | - Andra V Krauze
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive Magnuson Clinical Center, Room B2-3500, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Bronk JK, Guha-Thakurta N, Allen PK, Mahajan A, Grosshans DR, McGovern SL. Analysis of pseudoprogression after proton or photon therapy of 99 patients with low grade and anaplastic glioma. Clin Transl Radiat Oncol 2018; 9:30-34. [PMID: 29594248 PMCID: PMC5862685 DOI: 10.1016/j.ctro.2018.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023] Open
Abstract
No difference in pseudoprogression rate six months after proton or photon therapy. Oligodendrogliomas develop pseudoprogression sooner after protons vs. photons. Astrocytomas develop pseudoprogression at similar time after protons vs. photons.
Background and purpose Proton therapy is increasingly used to treat primary brain tumors. There is concern for higher rates of pseudoprogression (PsP) after protons compared to photons. The purposes of this study are to compare the rate of PsP after proton vs. photon therapy for grade II and III gliomas and to identify factors associated with the development of PsP. Materials and methods Ninety-nine patients age >18 years with grade II or III glioma treated with photons or protons were retrospectively reviewed. Demographic data, IDH and 1p19q status, and treatment factors were analyzed for association with PsP, progression free survival (PFS), and overall survival (OS). Results Sixty-five patients were treated with photons and 34 with protons. Among those with oligodendroglioma, PsP developed in 6/42 photon-treated patients (14.3%) and 4/25 proton-treated patients (16%, p = 1.00). Among those with astrocytoma, PsP developed in 3/23 photon-treated patients (13%) and 1/9 proton-treated patients (11.1%, p = 1.00). There was no difference in PsP rate based on radiation type, radiation dose, tumor grade, 1p19q codeletion, or IDH status. PsP occurred earlier in oligodendroglioma patients treated with protons compared to photons, 48 days vs. 131 days, p < .01. On multivariate analyses, gross total resection (p = .03, HR = 0.48, 95%CI = 0.25–0.93) and PsP (p = .04, HR = 0.22, 95% CI = 0.05–0.91) were associated with better PFS; IDH mutation was associated with better OS (p < .01, HR = 0.22, 95%CI = 0.08–0.65). Conclusions Patients with oligodendroglioma but not astrocytoma develop PsP earlier after protons compared to photons. PsP was associated with better PFS.
Collapse
Affiliation(s)
- Julianna K Bronk
- Baylor College of Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nandita Guha-Thakurta
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pamela K Allen
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Mahajan
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
24
|
Mazur J, Roy K, Kanwar JR. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine (Lond) 2017; 13:105-137. [PMID: 29161215 DOI: 10.2217/nnm-2017-0286] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain cancer is a highly lethal disease, especially devastating toward both the elderly and children. This cancer has no therapeutics available to combat it, predominately due to the blood-brain barrier (BBB) preventing treatments from maintaining therapeutic levels within the brain. Recently, nanoparticle technology has entered the forefront of cancer therapy due to its ability to deliver therapeutic effects while potentially passing physiological barriers. Key nanoparticles for brain cancer treatment include glutathione targeted PEGylated liposomes, gold nanoparticles, superparamagnetic iron oxide nanoparticles and nanoparticle-albumin bound drugs, with these being discussed throughout this review. Recently, the survivin protein has gained attention as it is over-expressed in a majority of tumors. This review will briefly discuss the properties of survivin, while focusing on how both nanoparticles and survivin-targeting treatments hold potential as brain cancer therapies. This review may provide useful insight into new brain cancer treatment options, particularly survivin inhibition and nanomedicine.
Collapse
Affiliation(s)
- Jake Mazur
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| |
Collapse
|
25
|
Ellingson BM, Chung C, Pope WB, Boxerman JL, Kaufmann TJ. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol 2017; 134:495-504. [PMID: 28382534 PMCID: PMC7893814 DOI: 10.1007/s11060-017-2375-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 01/24/2023]
Abstract
The wide variety of treatment options that exist for glioblastoma, including surgery, ionizing radiation, anti-neoplastic chemotherapies, anti-angiogenic therapies, and active or passive immunotherapies, all may alter aspects of vascular permeability within the tumor and/or normal parenchyma. These alterations manifest as changes in the degree of contrast enhancement or T2-weighted signal hyperintensity on standard anatomic MRI scans, posing a potential challenge for accurate radiographic response assessment for identifying anti-tumor effects. The current review highlights the challenges that remain in differentiating true disease progression from changes due to radiation therapy, including pseudoprogression and radionecrosis, as well as immune or inflammatory changes that may occur as either an undesired result of cytotoxic therapy or as a desired consequence of immunotherapies.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, Center for Computer Vision and Imaging, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Caroline Chung
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jerrold L Boxerman
- Department of Diagnostic Imaging, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | | |
Collapse
|
26
|
Boult JKR, Box G, Vinci M, Perryman L, Eccles SA, Jones C, Robinson SP. Evaluation of the Response of Intracranial Xenografts to VEGF Signaling Inhibition Using Multiparametric MRI. Neoplasia 2017; 19:684-694. [PMID: 28780387 PMCID: PMC5547238 DOI: 10.1016/j.neo.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/29/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is considered one of the most important factors in tumor angiogenesis, and consequently, a number of therapeutics have been developed to inhibit VEGF signaling. Therapeutic strategies to target brain malignancies, both primary brain tumors, particularly in pediatric patients, and metastases, are lacking, but targeting angiogenesis may be a promising approach. Multiparametric MRI was used to investigate the response of orthotopic SF188luc pediatric glioblastoma xenografts to small molecule pan-VEGFR inhibitor cediranib and the effects of both cediranib and cross-reactive human/mouse anti-VEGF-A antibody B20-4.1.1 in intracranial MDA-MB-231 LM2–4 breast cancer xenografts over 48 hours. All therapeutic regimens resulted in significant tumor growth delay. In cediranib-treated SF188luc tumors, this was associated with lower Ktrans (compound biomarker of perfusion and vascular permeability) than in vehicle-treated controls. Cediranib also induced significant reductions in both Ktrans and apparent diffusion coefficient (ADC) in MDA-MB-231 LM2–4 tumors associated with decreased histologically assessed perfusion. B20-4.1.1 treatment resulted in decreased Ktrans, but in the absence of a change in perfusion; a non-significant reduction in vascular permeability, assessed by Evans blue extravasation, was observed in treated tumors. The imaging responses of intracranial MDA-MB-231 LM2–4 tumors to VEGF/VEGFR pathway inhibitors with differing mechanisms of action are subtly different. We show that VEGF pathway blockade resulted in tumor growth retardation and inhibition of tumor vasculature in preclinical models of pediatric glioblastoma and breast cancer brain metastases, suggesting that multiparametric MRI can provide a powerful adjunct to accelerate the development of antiangiogenic therapies for use in these patient populations.
Collapse
Affiliation(s)
- Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Gary Box
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Maria Vinci
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Lara Perryman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Suzanne A Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Chris Jones
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
27
|
Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, Dosa E, Finn JP, Gahramanov S, Harisinghani M, Macdougall I, Neuwelt A, Vasanawala SS, Ambady P, Barajas R, Cetas JS, Ciporen J, DeLoughery TJ, Doolittle ND, Fu R, Grinstead J, Guimaraes AR, Hamilton BE, Li X, McConnell HL, Muldoon LL, Nesbit G, Netto JP, Petterson D, Rooney WD, Schwartz D, Szidonya L, Neuwelt EA. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 2017; 92:47-66. [PMID: 28434822 PMCID: PMC5505659 DOI: 10.1016/j.kint.2016.12.037] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 01/18/2023]
Abstract
Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material.
Collapse
Affiliation(s)
- Gerda B Toth
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Csanad G Varallyay
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea Horvath
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, 3808, Durham, North Carolina, USA; Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Section of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Stanford, California, USA
| | - Edit Dosa
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Seymur Gahramanov
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Mukesh Harisinghani
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Iain Macdougall
- Department of Renal Medicine, King's College Hospital, London, UK
| | - Alexander Neuwelt
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Prakash Ambady
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ramon Barajas
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin S Cetas
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeremy Ciporen
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas J DeLoughery
- Department of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Nancy D Doolittle
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rongwei Fu
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Bronwyn E Hamilton
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Heather L McConnell
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gary Nesbit
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joao P Netto
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - David Petterson
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Schwartz
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Laszlo Szidonya
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA; Portland Veterans Affairs Medical Center, Portland, Oregon, USA.
| |
Collapse
|
28
|
Ochocinska MJ, Zlokovic BV, Searson PC, Crowder AT, Kraig RP, Ljubimova JY, Mainprize TG, Banks WA, Warren RQ, Kindzelski A, Timmer W, Liu CH. NIH workshop report on the trans-agency blood-brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids Barriers CNS 2017; 14:12. [PMID: 28457227 PMCID: PMC5410699 DOI: 10.1186/s12987-017-0061-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/08/2017] [Indexed: 01/01/2023] Open
Abstract
A trans-agency workshop on the blood–brain interface (BBI), sponsored by the National Heart, Lung and Blood Institute, the National Cancer Institute and the Combat Casualty Care Research Program at the Department of Defense, was conducted in Bethesda MD on June 7–8, 2016. The workshop was structured into four sessions: (1) blood sciences; (2) exosome therapeutics; (3) next generation in vitro blood–brain barrier (BBB) models; and (4) BBB delivery and targeting. The first day of the workshop focused on the physiology of the blood and neuro-vascular unit, blood or biofluid-based molecular markers, extracellular vesicles associated with brain injury, and how these entities can be employed to better evaluate injury states and/or deliver therapeutics. The second day of the workshop focused on technical advances in in vitro models, BBB manipulations and nanoparticle-based drug carrier designs, with the goal of improving drug delivery to the central nervous system. The presentations and discussions underscored the role of the BBI in brain injury, as well as the role of the BBB as both a limiting factor and a potential conduit for drug delivery to the brain. At the conclusion of the meeting, the participants discussed challenges and opportunities confronting BBI translational researchers. In particular, the participants recommended using BBI translational research to stimulate advances in diagnostics, as well as targeted delivery approaches for detection and therapy of both brain injury and disease.
Collapse
Affiliation(s)
- Margaret J Ochocinska
- National Heart, Lung, and Blood Institute, National Institutes of Health, 6701 Rockledge Dr., Room 9149, Bethesda, MD, 20892-7950, USA.
| | | | | | | | | | | | | | | | - Ronald Q Warren
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrei Kindzelski
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Timmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christina H Liu
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Zhang J, Liu H, Tong H, Wang S, Yang Y, Liu G, Zhang W. Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7064120. [PMID: 29097933 PMCID: PMC5612612 DOI: 10.1155/2017/7064120] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Abstract
Gliomas possess complex and heterogeneous vasculatures with abnormal hemodynamics. Despite considerable advances in diagnostic and therapeutic techniques for improving tumor management and patient care in recent years, the prognosis of malignant gliomas remains dismal. Perfusion-weighted magnetic resonance imaging techniques that could noninvasively provide superior information on vascular functionality have attracted much attention for evaluating brain tumors. However, nonconsensus imaging protocols and postprocessing analysis among different institutions impede their integration into standard-of-care imaging in clinic. And there have been very few studies providing a comprehensive evidence-based and systematic summary. This review first outlines the status of glioma theranostics and tumor-associated vascular pathology and then presents an overview of the principles of dynamic contrast-enhanced MRI (DCE-MRI) and dynamic susceptibility contrast-MRI (DSC-MRI), with emphasis on their recent clinical applications in gliomas including tumor grading, identification of molecular characteristics, differentiation of glioma from other brain tumors, treatment response assessment, and predicting prognosis. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Heng Liu
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Haipeng Tong
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Sumei Wang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yizeng Yang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weiguo Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing 400042, China
| |
Collapse
|
30
|
Netto JP, Schwartz D, Varallyay C, Fu R, Hamilton B, Neuwelt EA. Misleading early blood volume changes obtained using ferumoxytol-based magnetic resonance imaging perfusion in high grade glial neoplasms treated with bevacizumab. Fluids Barriers CNS 2016; 13:23. [PMID: 27998280 PMCID: PMC5175388 DOI: 10.1186/s12987-016-0047-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neovascularization, a distinguishing trait of high-grade glioma, is a target for anti-angiogenic treatment with bevacizumab (BEV). This study sought to use ferumoxytol-based dynamic susceptibility contrast magnetic resonance imaging (MRI) to clarify perfusion and relative blood volume (rCBV) changes in glioma treated with BEV and to determine potential impact on clinical management. METHODS 16 high grade glioma patients who received BEV following post-chemoradiation radiographic or clinical progression were included. Ferumoxytol-based MRI perfusion measurements were taken before and after BEV. Lesions were defined at each timepoint by gadolinium-based contrast agent (GBCA)-enhancing area. Lesion volume and rCBV were compared pre and post-BEV in the lesion and rCBV "hot spot" (mean of the highest rCBV in a 1.08 cm2 area in the enhancing volume), as well as hypoperfused and hyperperfused subvolumes within the GBCA-enhancing lesion. RESULTS GBCA-enhancing lesion volumes decreased 39% (P = 0.01) after BEV. Mean rCBV in post-BEV GBCA-enhancing area did not decrease significantly (P = 0.227) but significantly decreased in the hot spot (P = 0.046). Mean and hot spot rCBV decreased (P = 0.039 and 0.007) when post-BEV rCBV was calculated over the pre-BEV GBCA-enhancing area. Hypoperfused pixel count increased from 24% to 38 (P = 0.007) and hyperperfused decreased from 39 to 28% (P = 0.017). Mean rCBV decreased in 7/16 (44%) patients from >1.75 to <1.75, the cutoff for pseudoprogression diagnosis. CONCLUSIONS Decreased perfusion after BEV significantly alters rCBV measurements when using ferumoxytol. BEV treatment response hinders efforts to differentiate true progression from pseudoprogression using blood volume measurements in malignant glioma, potentially impacting patient diagnosis and management.
Collapse
Affiliation(s)
- Joao Prola Netto
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
- Department of Neuroradiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Daniel Schwartz
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Csanad Varallyay
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Rongwei Fu
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
- Emergency Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Bronwyn Hamilton
- Department of Neuroradiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | - Edward A. Neuwelt
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
- Department of Veterans Affairs Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239 USA
- Department of Neurosurgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L603, Portland, OR 97239 USA
| |
Collapse
|
31
|
Khan MN, Sharma AM, Pitz M, Loewen SK, Quon H, Poulin A, Essig M. High-grade glioma management and response assessment-recent advances and current challenges. ACTA ACUST UNITED AC 2016; 23:e383-91. [PMID: 27536188 DOI: 10.3747/co.23.3082] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The management of high-grade gliomas (hggs) is complex and ever-evolving. The standard of care for the treatment of hggs consists of surgery, chemotherapy, and radiotherapy. However, treatment options are influenced by multiple factors such as patient age and performance status, extent of tumour resection, biomarker profile, and tumour histology and grade. Follow-up cranial magnetic resonance imaging (mri) to differentiate treatment response from treatment effect can be challenging and affects clinical decision-making. An assortment of advanced radiologic techniques-including perfusion imaging with dynamic susceptibility contrast mri, dynamic contrast-enhanced mri, diffusion-weighted imaging, proton spectroscopy, mri subtraction imaging, and amino acid radiotracer imaging-can now incorporate novel physiologic data, providing new methods to help characterize tumour progression, pseudoprogression, and pseudoresponse. In the present review, we provide an overview of current treatment options for hgg and summarize recent advances and challenges in imaging technology.
Collapse
Affiliation(s)
- M N Khan
- Department of Radiology, University of Manitoba, Winnipeg, MB
| | - A M Sharma
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB
| | - M Pitz
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB;; Department of Haematology and Medical Oncology, University of Manitoba, Winnipeg, MB
| | - S K Loewen
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB
| | - H Quon
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB
| | - A Poulin
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiology, Laval University, Quebec City, QC
| | - M Essig
- Department of Radiology, University of Manitoba, Winnipeg, MB
| |
Collapse
|
32
|
Leu K, Boxerman JL, Cloughesy TF, Lai A, Nghiemphu PL, Liau LM, Pope WB, Ellingson BM. Improved Leakage Correction for Single-Echo Dynamic Susceptibility Contrast Perfusion MRI Estimates of Relative Cerebral Blood Volume in High-Grade Gliomas by Accounting for Bidirectional Contrast Agent Exchange. AJNR Am J Neuroradiol 2016; 37:1440-6. [PMID: 27079371 DOI: 10.3174/ajnr.a4759] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/28/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Contrast agent extravasation through a disrupted blood-brain barrier potentiates inaccurate DSC MR imaging estimation of relative CBV. We explored whether incorporation of an interstitial washout rate in a leakage-correction model for single-echo, gradient-echo DSC MR imaging improves relative CBV estimates in high-grade gliomas. MATERIALS AND METHODS We modified the traditional model-based postprocessing leakage-correction algorithm, assuming unidirectional contrast agent extravasation (Boxerman-Weisskoff model) to account for bidirectional contrast agent exchange between intra- and extravascular spaces (bidirectional model). For both models, we compared the goodness of fit with the parent leakage-contaminated relaxation rate curves by using the Akaike Information Criterion and the difference between modeled interstitial relaxation rate curves and dynamic contrast-enhanced MR imaging by using Euclidean distance in 21 patients with glioblastoma multiforme. RESULTS The bidirectional model had improved Akaike Information Criterion versus the bidirectional model in >50% of enhancing tumor voxels in all 21 glioblastoma multiformes (77% ± 9%; P < .0001) and had reduced the Euclidean distance in >50% of enhancing tumor voxels for 17/21 glioblastoma multiformes (62% ± 17%; P = .0041). The bidirectional model and dynamic contrast-enhanced-derived kep demonstrated a strong correlation (r = 0.74 ± 0.13). On average, enhancing tumor relative CBV for the Boxerman-Weisskoff model exceeded that for the bidirectional model by 16.6% ± 14.0%. CONCLUSIONS Inclusion of the bidirectional exchange in leakage-correction models for single-echo DSC MR imaging improves the model fit to leakage-contaminated DSC MR imaging data and significantly improves the estimation of relative CBV in high-grade gliomas.
Collapse
Affiliation(s)
- K Leu
- From the UCLA Brain Tumor Imaging Laboratory (K.L., B.M.E.), Center for Computer Vision and Imaging Biomarkers Department of Bioengineering (K.L., B.M.E.), Henry Samueli School of Engineering and Applied Science Departments of Radiological Sciences (K.L., W.B.P., B.M.E.)
| | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island
| | - T F Cloughesy
- UCLA Neuro-Oncology Program (T.F.C., A.L., P.L.N., B.M.E.), University of California, Los Angeles, Los Angeles, California
| | - A Lai
- UCLA Neuro-Oncology Program (T.F.C., A.L., P.L.N., B.M.E.), University of California, Los Angeles, Los Angeles, California Neurology (A.L., P.L.N.)
| | - P L Nghiemphu
- UCLA Neuro-Oncology Program (T.F.C., A.L., P.L.N., B.M.E.), University of California, Los Angeles, Los Angeles, California Neurology (A.L., P.L.N.)
| | - L M Liau
- Neurosurgery (L.M.L.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - W B Pope
- Departments of Radiological Sciences (K.L., W.B.P., B.M.E.)
| | - B M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (K.L., B.M.E.), Center for Computer Vision and Imaging Biomarkers Department of Bioengineering (K.L., B.M.E.), Henry Samueli School of Engineering and Applied Science UCLA Neuro-Oncology Program (T.F.C., A.L., P.L.N., B.M.E.), University of California, Los Angeles, Los Angeles, California Departments of Radiological Sciences (K.L., W.B.P., B.M.E.) Biomedical Physics (B.M.E.)
| |
Collapse
|
33
|
Wu A, Lim M. Issues to Consider in Designing Immunotherapy Clinical Trials for Glioblastoma Management. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jct.2016.78060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond) 2015; 10:993-1018. [PMID: 25867862 DOI: 10.2217/nnm.14.203] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Current neuroimaging provides detailed anatomic and functional evaluation of brain tumors, allowing for improved diagnostic and prognostic capabilities. Some challenges persist even with today's advanced imaging techniques, including accurate delineation of tumor margins and distinguishing treatment effects from residual or recurrent tumor. Ultrasmall superparamagnetic iron oxide nanoparticles are an emerging tool that can add clinically useful information due to their distinct physiochemical features and biodistribution, while having a good safety profile. Nanoparticles can be used as a platform for theranostic drugs, which have shown great promise for the treatment of CNS malignancies. This review will provide an overview of clinical ultrasmall superparamagnetic iron oxides and how they can be applied to the diagnostic and therapeutic neuro-oncologic setting.
Collapse
Affiliation(s)
- Michael Iv
- Department of Radiology, Stanford University & Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|