1
|
Wei W, Fan P, Zhang Z, Wu D, Liu J, Wang L, Duan X, Zhang X, Ding D. A urine-based liquid biopsy for detection of upper tract urothelial carcinoma: a self-matched study. BMC Cancer 2024; 24:1180. [PMID: 39333973 PMCID: PMC11438001 DOI: 10.1186/s12885-024-12913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND To establish the pathological diagnosis of UTUC before treatment is profitable. At present, the conventional pathological diagnostic methods have certain problems. Besides, the urine-based DNA methylation test have been already utilized to detect bladder cancer. OBJECTIVE To evaluate the sensitivity and specificity of DNA methylation plus 17 genes mutation test and compare the combined test with cytology. MATERIALS AND METHODS We included 45 patients from April 2019 to May 2022, all of whom underwent radical nephroureterectomy (RNU), nephrectomy, diagnostic ureteroscopy or tissue biopsy. Before surgery, the urine samples were collected for DNA methylation plus 17 genes mutation test and cytology. The test performance was calculated, and comparative ROC curves were drawn. RESULTS The median age of the patients was 67 years. The Kappa value of the DNA methylation plus 17 genes mutation test and tissue pathology was 0.59 (p<0.001). The sensitivity/specificity/PPV/NPV of DNA methylation plus 17 genes mutation test was 86/80/94/62% compared with 29/100/100/29% for cytology. The AUC of DNA methylation plus 17 genes mutation test was 0.829 (p<0.001).The mutated gene proportion of UTUC patients was 51.43% for TERT and 25.71% for TP53. CONCLUSION The test performance of DNA methylation plus 17 genes mutation test was satisfactory, which may replace cytology in the future. Further multicenter studies with larger samples are needed to confirm the clinical value of this promising method. NOVELTY & IMPACT STATEMENTS We evaluated the diagnostic efficacy of a urine-based liquid biopsy for the detection of UTUC and compared the combined test with cytology. We found satisfactory results and concluded that the test could partly replace cytology. Further studies are needed.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Panhong Fan
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhishu Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Danting Wu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Junfeng Liu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Lingdian Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiaoyu Duan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Ma X, Zhang L, Liu L, Ruan D, Wang C. Hypermethylated ITGA8 Facilitate Bladder Cancer Cell Proliferation and Metastasis. Appl Biochem Biotechnol 2024; 196:245-260. [PMID: 37119505 DOI: 10.1007/s12010-023-04512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
DNA methylation plays a vital role during the development of tumorigenesis. The purpose of this study is to identify candidate DNA methylation drivers during progression of bladder cancer (BLCA). The methylation spectrum in bladder cancer tissues was detected by CHARM analysis, and methylated ITGA8 was selected for further study due to its low expression. Methylation levels in BLCA tissues and cells were detected with methylated-specific PCR (MSP), while mRNA expression and methylation of ITGA8 were detected by qRT-PCR and MSP. After treatment with 5-Aza-dC (DNA methylation inhibitor), the proliferation, migration, and invasion abilities of BLCA cells were determined by MTT, wound healing, and transwell assays, respectively. Flow cytometric analysis was performed to evaluate any variance in the cell cycle. In addition, the effect of demethylated ITGA8 on BLCA tumor growth was verified with an in vivo xenograft tumor model. Based on the methylation profiling of BLCA, ITGA8 was identified to be hypermethylated. ITGA8 methylation levels in BLCA tissues and cells were upregulated, and 5-Aza-dC significantly suppressed ITGA8 methylation levels and increased ITGA8 mRNA expression. Furthermore, after treatment with 5-Aza-dC, the propagation, migration, and invasiveness of the cancer cells were inhibited, and more cancer cells were arrested at the G0/G1 phase. In vivo assays further demonstrated that 5-Aza-dC could impede BLCA tumor growth by repressing methylation levels of ITGA8 and increasing ITGA8 mRNA expression. Hypermethylated ITGA8 facilitated BLCA progression, and 5-Aza-dC treatment inhibited BLCA cell propagation and metastasis by decreasing methylation levels of ITGA8 and inducing cell cycle arrest.
Collapse
Affiliation(s)
- Xiulong Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, 710004, Shaanxi, China
| | - Liang Zhang
- Urology Surgery, Jiujiang University Clinic College/Hospital, Jiujiang, 332200, Jiangxi, China
| | - Ling Liu
- Urology Surgery, Jiujiang University Clinic College/Hospital, Deyang, 618000, Sichuan, China
| | - Dongli Ruan
- Urology Surgery, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, China
| | - Chunyang Wang
- Urology Surgery, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
He J, Dong C, Zhang H, Jiang Y, Liu T, Man X. The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell Signal 2023; 102:110527. [PMID: 36410635 DOI: 10.1016/j.cellsig.2022.110527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Overexpression of TFAP2A has been linked to increased lymph node metastasis in basal-squamous bladder cancer. However, its downstream targets in bladder urothelial carcinoma (BLCA), the most malignant cancer of the urinary tract, remain unclear. In the current study, we aim to explore the function and mechanism of TFAP2A in BLCA. METHODS TFAP2A expression and the prognostic significance in BLCA was analyzed using TCGA and GTEX projects. TFAP2A was knocked-down in BLCA cells to study its impact on glucose uptake, lactate and ATP production, expression of HK2, and the number of vascular meshes formed by HUVEC. The target long noncoding RNAs (lncRNAs) of TFAP2A were predicted by bioinformatics tools, followed by ChIP-qPCR and luciferase assays. The downstream targets of TPRG1-AS1 were analyzed by microarray analysis. Rescue experiments were conducted for validation. RESULTS TFAP2A upregulation in BLCA predicted dismal survival of patients. Loss of TFAP2A inhibited glycolysis (as evidenced by reduced glucose uptake, lactate, ATP production, and the expression of HK2) and angiogenesis (decreased number of vascular meshes formed by HUVEC). TFAP2A promoted the transcription of TPRG1-AS1. TPRG1-AS1 reversed the inhibitory effect of TFAP2A knockdown on glycolysis and angiogenesis in BLCA cells. TPRG1-AS1 inhibited the transcription of CRTAC1 by recruiting a DNA methyltransferase to the promoter of CRTAC1 and increasing the DNA methylation of its promoter. CRTAC1 inhibited glycolysis and angiogenesis in BLCA cells. TFAP2A silencing curbed tumor growth in vivo via the TPRG1-AS1/CRTAC1 axis. CONCLUSION TFAP2A reduces CRTAC1 expression by promoting TPRG1-AS1 transcription, thereby expediting BLCA glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Jiani He
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Changming Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
4
|
DNA methylation-mediated low expression of ZNF582 promotes the proliferation, migration, and invasion of clear cell renal cell carcinoma. Clin Exp Nephrol 2023; 27:24-31. [PMID: 36129555 DOI: 10.1007/s10157-022-02275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The methylation of DNA promoter region mediates the low expression of many tumor suppressor genes and plays an essential part in cancer progression. We investigated methylation and expression of ZNF582 in clear cell renal cell carcinoma (ccRCC), and to study the function of ZNF582 in ccRCC cells. METHODS Methylation data and mRNA expression data of TCGA-KIRC were obtained from TCGA database to screen methylation-driven genes. Survival analysis and gene set enrichment analysis (GSEA) were done for the target gene. The methylation degree and mRNA level of ZNF582 in ccRCC cell line were detected by methylation-specific PCR (MSP) and qRT-PCR, respectively. Effects of overexpression of ZNF582 on ccRCC cells were assessed via CCK-8, flow cytometry, wound healing, Transwell, and cell adhesion assays. RESULTS Eighteen methylation-driven genes were identified via bioinformatics methods. Among them, ZNF582 was noticeably hypermethylated and lowly expressed in tumor tissue, and ZNF582 methylation and expression levels were pronouncedly associated with prognosis and clinical stage. MSP also displayed that the ZNF582 DNA promoter region was hypermethylated in ccRCC cells, and the mRNA expression of ZNF582 was dramatically elevated after demethylation. In vitro cell experiments disclosed that overexpression of ZNF582 markedly hindered cell proliferation, invasion, migration, and fostered cell apoptosis and adhesion of ccRCC. CONCLUSION ZNF582 was hypermethylated in ccRCC, which mediated its low level. Overexpression of ZNF582 inhibited tumor cell proliferation, migration and invasion. This study generates novel ideas for ccRCC diagnosis and treatment.
Collapse
|
5
|
Gao W, Zhang J, Tian T, Fu Z, Bai L, Yang Y, Wu Q, Wang W, Guo Y. Uncovering the potential functions of lymph node metastasis-associated aberrant methylation differentially expressed genes and their association with the immune infiltration and prognosis in bladder urothelial carcinoma. PeerJ 2023; 11:e15284. [PMID: 37123010 PMCID: PMC10135411 DOI: 10.7717/peerj.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is a malignant tumor of the urinary system. This study aimed to explore the potential role of lymph node metastasis-associated aberrant methylation differentially expressed genes (DEGs) in BLCA. Methods CHAMP and limma packages were used to identify lymph node metastasis-associated aberrant methylation DEGs. Univariate Cox analysis and Lasso analysis were performed to identify the signature genes, and multivariate Cox analysis was used to construct the risk score. Subsequently, the molecular characteristics of the signature genes and the relationship between risk score and prognosis, clinical characteristics and immune cell infiltration were analyzed. The signature gene AKAP7 was selected for functional verification. Results A novel risk score model was constructed based on 12 signature genes. The risk score had a good ability to predict overall survival (OS). The nomogram constructed based on age, N stage and risk score had a higher value in predicting the prognosis of patients. It was also found that stromal activation in TIME may inhibit the antitumor effects of immune cells. Functional enrichment analysis revealed that ECM receptor interaction and focal adhesion were two important pathways involved in the regulation of BLCA. Immunohistochemistry showed that AKAP7 may be associated with the occurrence, clinical stages and grades, and lymph node metastasis of BLCA. In vitro cell experiments showed that the migration and invasion ability of EJ cells was significantly inhibited after AKAP7 overexpression, while the migration and invasion ability of T24 cells was significantly promoted after AKAP7 knockdown. Conclusion The risk score model based on lymph node metastasis-associated aberrant methylation DEGs has a good ability to predict OS and is an independent prognostic factor for BLCA. It was also found that stromal activation in TIME may inhibit the antitumor effects of immune cells. This implicates aberrant methylation modifications as an important factor contributing to the heterogeneity and complexity of individual tumor microenvironments. Functional enrichment analysis revealed that ECM receptor interaction and focal adhesion were two important pathways involved in the regulation of BLCA, which contributed to the exploration of the pathological mechanism of BLCA. In addition, immunohistochemistry showed that AKAP7 may be associated with the occurrence, progression and lymph node metastasis of BLCA. In vitro cell experiments showed that AKAP7 could also inhibit the migration and invasion of cancer cells.
Collapse
|
6
|
DNA Hypomethylation Is Associated with the Overexpression of INHBA in Upper Tract Urothelial Carcinoma. Int J Mol Sci 2022; 23:ijms23042072. [PMID: 35216189 PMCID: PMC8877459 DOI: 10.3390/ijms23042072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Urothelial carcinoma includes upper urinary tract cancer (UTUC) and bladder cancer. Although nephroureterectomy is the standard treatment for UTUC, the recurrence rate is approximately half and the tumor is associated with poor prognoses. Metastases are the most devastating and lethal clinical situation in urothelial carcinoma. Despite its clinical importance, few potential diagnostic biomarkers are suitable for early UC detection. We compared high-stage/high-grade urothelial carcinoma tissues to adjacent normal urothelial tissues using methyl-CpG binding domain protein capture for genome-wide DNA methylation analysis. Based on our findings, inhibin βA (INHBA) might be associated with carcinogenesis and metastasis. Further, clinical UC specimens had significant INHBA hypomethylation based on pyrosequencing. INHBA was detected by real-time PCR and immunohistochemistry staining, and was found to be highly expressed in clinical tissues and cell lines of urothelial carcinoma. Further, INHBA depletion was found to significantly reduce BFTC-909 cell growth and migration by INHBA-specific small interfering RNA. Interestingly, a positive correlation was found between SMAD binding and extracellular structure organization with INHBA using gene set enrichment analysis and gene ontology analysis. Together, these results are the first evidence of INHBA promoter hypomethylation and INHBA overexpression in UTUC. INHBA may affect urothelial carcinoma migration by reorganizing the extracellular matrix through the SMAD pathway.
Collapse
|
7
|
Liang F, Xu Y, Chen Y, Zhong H, Wang Z, Nong T, Zhong J. Immune Signature-Based Risk Stratification and Prediction of Immunotherapy Efficacy for Bladder Urothelial Carcinoma. Front Mol Biosci 2022; 8:673918. [PMID: 35004839 PMCID: PMC8739239 DOI: 10.3389/fmolb.2021.673918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Immune-related genes (IRGs) are closely related to tumor progression and the immune microenvironment. Few studies have investigated the effect of tumor immune microenvironment on the survival and response to immune checkpoint inhibitors of patients with bladder urothelial carcinoma (BLCA). We constructed two IRG-related prognostic signatures based on gene–immune interaction for predicting risk stratification and immunotherapeutic responses. We also verified their predictive ability on internal and overall data sets. Patients with BLCA were divided into high- and low-risk groups. The high-risk group had poor survival, enriched innate immune-related cell subtypes, low tumor mutation burden, and poor response to anti-PD-L1 therapy. Our prognostic signatures can be used as reliable prognostic biomarkers, which may be helpful to screen the people who will benefit from immunotherapy and guide the clinical decision-making of patients with BLCA.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yansong Xu
- Emergency Department, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yi Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Huage Zhong
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Zhen Wang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Tianwen Nong
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jincai Zhong
- Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| |
Collapse
|
8
|
Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers (Basel) 2021; 13:cancers13236040. [PMID: 34885146 PMCID: PMC8656749 DOI: 10.3390/cancers13236040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Urinary bladder cancer is one of the ten major cancers worldwide, with higher incidences in males, in smokers, and in highly industrialized countries. New therapies beyond cytotoxic chemotherapy are urgently needed to improve treatment of these tumors. A better understanding of the mechanisms underlying their development may help in this regard. Recently, it was discovered that a group of proteins regulating the state of chromatin and thus gene expression is exceptionally and frequently affected by gene mutations in bladder cancers. Altered function of these mutated chromatin regulators must therefore be fundamental in their development, but how and why is poorly understood. Here we review the current knowledge on changes in chromatin regulators and discuss their possible consequences for bladder cancer development and options for new therapies. Abstract Urothelial carcinoma (UC) is the most frequent histological type of cancer in the urinary bladder. Genomic changes in UC activate MAPK and PI3K/AKT signal transduction pathways, which increase cell proliferation and survival, interfere with cell cycle and checkpoint control, and prevent senescence. A more recently discovered additional category of genetic changes in UC affects chromatin regulators, including histone-modifying enzymes (KMT2C, KMT2D, KDM6A, EZH2), transcription cofactors (CREBBP, EP300), and components of the chromatin remodeling complex SWI/SNF (ARID1A, SMARCA4). It is not yet well understood how these changes contribute to the development and progression of UC. Therefore, we review here the emerging knowledge on genomic and gene expression alterations of chromatin regulators and their consequences for cell differentiation, cellular plasticity, and clonal expansion during UC pathogenesis. Our analysis identifies additional relevant chromatin regulators and suggests a model for urothelial carcinogenesis as a basis for further mechanistic studies and targeted therapy development.
Collapse
|
9
|
|
10
|
Köhler CU, Walter M, Lang K, Plöttner S, Roghmann F, Noldus J, Tannapfel A, Tam YC, Käfferlein HU, Brüning T. In-Vitro Identification and In-Vivo Confirmation of DNA Methylation Biomarkers for Urothelial Cancer. Biomedicines 2020; 8:biomedicines8080233. [PMID: 32707764 PMCID: PMC7459535 DOI: 10.3390/biomedicines8080233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
We identified DNA methylation targets specific for urothelial cancer (UC) by genome-wide methylation difference analysis of human urothelial (RT4, J82, 5637), prostate (LNCAP, DU-145, PC3) and renal (RCC-KP, CAKI-2, CAL-54) cancer cell lines with their respective primary epithelial cells. A large overlap of differentially methylated targets between all organs was observed and 40 Cytosine-phosphate-Guanine motifs (CpGs) were only specific for UC cells. Of those sites, two also showed high methylation differences (≥47%) in vivo when we further compared our data to those previously obtained in our array-based analyses of urine samples in 12 UC patients and 12 controls. Using mass spectrometry, we finally assessed seven CpG sites in this “bladder-specific” region of interest in urine samples of patients with urothelial (n = 293), prostate (n = 75) and renal (n = 23) cancer, and 143 controls. DNA methylation was significantly increased in UC compared to non-UC individuals. The differences were more pronounced for males rather than females. Male UC cases could be distinguished from non-UC individuals with >30% sensitivity at 95% specificity (Area under the curve (AUC) 0.85). In summary, methylation sites highly specific in UC cell lines were also specific in urine samples of UC patients showing that in-vitro data can be successfully used to identify biomarker candidates of in-vivo relevance.
Collapse
Affiliation(s)
- Christina U. Köhler
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Michael Walter
- C.ATG Core Facility for NGS and Microarrays, University of Tübingen, Calwerstr. 7, 72076 Tübingen, Germany;
| | - Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; (F.R.); (J.N.)
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; (F.R.); (J.N.)
| | - Andrea Tannapfel
- Institute of Pathology, Georgius Agricola Foundation Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (A.T.); (Y.C.T.)
| | - Yu Chun Tam
- Institute of Pathology, Georgius Agricola Foundation Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (A.T.); (Y.C.T.)
| | - Heiko U. Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
- Correspondence: ; Tel.: +49-30-13001-4401
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany; (C.U.K.); (K.L.); (S.P.); (T.B.)
| |
Collapse
|
11
|
Fujimoto M, Arai E, Tsumura K, Yotani T, Yamada Y, Takahashi Y, Maeshima AM, Fujimoto H, Yoshida T, Kanai Y. Establishment of diagnostic criteria for upper urinary tract urothelial carcinoma based on genome-wide DNA methylation analysis. Epigenetics 2020; 15:1289-1301. [PMID: 32498593 PMCID: PMC7678936 DOI: 10.1080/15592294.2020.1767374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to develop a less invasive and accurate diagnostic system for upper urinary tract urothelial carcinoma (UTUC) based on genome-wide DNA methylation profiling. Genome-wide DNA methylation screening was performed using the Infinium HumanMethylation450 BeadChip, and DNA methylation quantification was verified using pyrosequencing. We analysed 26 samples of normal control urothelial tissue (C), an initial cohort of 62 samples (31 samples of non-cancerous urothelium [N] from UTUC patients and 31 samples of the corresponding UTUCs), a validation cohort of 82 samples (41 N and 41 UTUC samples), and 14 samples of urinary bladder urothelial carcinoma (BUC). In the initial cohort, we identified 2,448 CpG sites showing significant differences in DNA methylation levels between both C and UTUC and N and UTUC, but not showing differences between C and N. Among these CpG sites, 10 were located within CpG islands or their shores and shelves included in genomic domains where DNA methylation levels are stably controlled, allowing discrimination of UTUC even from BUC. Receiver operating characteristic curve analysis for discrimination of UTUC from N in these 10 CpG and neighbouring sites (37 diagnostic panels in total) yielded area under the curve values of 0.959-1.000, with a sensitivity and specificity of 86.6-100% and 93.5-100%, respectively. The diagnostic impact was successfully confirmed in the validation cohort. Our criteria were useful for diagnosis of UTUC, regardless of its clinicopathological features. Application of our criteria to voided urine samples will ultimately allow non-invasive DNA methylation diagnosis of UTUC.
Collapse
Affiliation(s)
- Mao Fujimoto
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| | - Koji Tsumura
- Department of Urology, Graduate School of Medicine, the University of Tokyo , Tokyo, Japan
| | - Takuya Yotani
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd ., Ryugasaki, Japan
| | - Yuriko Yamada
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd ., Ryugasaki, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd ., Tokyo, Japan
| | - Akiko Miyagi Maeshima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital , Tokyo, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital , Tokyo, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute , Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
12
|
Tsumura K, Arai E, Tian Y, Shibuya A, Nishihara H, Yotani T, Yamada Y, Takahashi Y, Maeshima AM, Fujimoto H, Nakagawa T, Kume H, Homma Y, Yoshida T, Kanai Y. Establishment of permutation for cancer risk estimation in the urothelium based on genome-wide DNA methylation analysis. Carcinogenesis 2020; 40:1308-1319. [PMID: 31241739 DOI: 10.1093/carcin/bgz112] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/25/2019] [Accepted: 06/22/2019] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to establish permutation for cancer risk estimation in the urothelium. Twenty-six samples of normal control urothelium obtained from patients without urothelial carcinomas (C), 47 samples of non-cancerous urothelium without noticeable morphological changes obtained from patients with urothelial carcinomas (N), and 46 samples of the corresponding cancerous tissue (T) in the learning cohort and 64 N samples in the validation cohort, i.e. 183 tissue samples in total, were analyzed. Genome-wide DNA methylation analysis was performed using the Infinium HumanMethylation 450K BeadChip, and DNA methylation levels were verified using pyrosequencing and MassARRAY. Amplicon sequencing was performed using the GeneRead DNAseq Targeted Panels V2. Although N samples rarely showed genetic mutations or copy number alterations, they showed DNA methylation alterations at 2502 CpG sites compared to C samples, and such alterations were inherited by or strengthened in T samples, indicating that DNA methylation alterations may participate in field cancerization in the urothelium. Receiver operating characteristic curve analysis confirmed the feasibility of cancer risk estimation to identify urothelium at the precancerous stage by DNA methylation quantification. Cancer risk estimation permutation was established using a combination of two marker CpG loci on the HOXC4, TENM3 and TLR1 genes (sensitivity and specificity 96-100%). Among them, the diagnostic impact of 10 patterns of permutation was successfully validated in the validation cohort (sensitivity and specificity 94-98%). These data suggest that cancer risk estimation using procedures such as urine tests during health checkups might become applicable for clinical use.
Collapse
Affiliation(s)
- Koji Tsumura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Ayako Shibuya
- Department of Pathology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Takuya Yotani
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd, Ryugasaki, Japan
| | - Yuriko Yamada
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd, Ryugasaki, Japan
| | - Yoriko Takahashi
- Biomedical Department, Cloud Service Division, IT Infrastructure Services Unit, Mitsui Knowledge Industry Co., Ltd., Tokyo, Japan
| | - Akiko Miyagi Maeshima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
13
|
Yang PJ, Hsieh MJ, Hung TW, Wang SS, Chen SC, Lee MC, Yang SF, Chou YE. Effects of Long Noncoding RNA H19 Polymorphisms on Urothelial Cell Carcinoma Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1322. [PMID: 31013794 PMCID: PMC6518101 DOI: 10.3390/ijerph16081322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Urothelial cell carcinoma (UCC) is one of the major malignancies of the genitourinary tract, and it is induced by carcinogenic epidemiological risk factors. H19 is one of the most crucial long noncoding RNAs (lncRNAs) and is involved in various types of bladder cancer. In this study, we examined H19 single-nucleotide polymorphisms (SNPs) to investigate UCC susceptibility and clinicopathological characteristics. Using real-time polymerase chain reaction, we analyzed five SNPs of H19 in 431 UCC patients and 431 controls without cancer. The results showed that patients with UCC carrying the H19 rs217727 CT + TT and rs2107425 CT + TT genetic variants had a high risk of developing muscle invasive tumors (pT2-T4) (p = 0.030; p = 0.025, respectively). With a median follow up of 39 months, CT+TT polymorphisms of rs2107425 were associated with worse disease-specific survival (adjusted hard ratio (AHR) = 2.043, 95% confidence interval (CI) = 1.029-4.059) in UCC patients aged older than 65 years. In conclusion, our results indicate that patients with UCC carrying the H19 rs217727 CT + TT and rs2107425 CT + TT genetic variants have a high risk of developing muscle invasive tumors. Thus, H19 polymorphisms may be applied as a marker or therapeutic target in UCC treatment.
Collapse
Affiliation(s)
- Po-Jen Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| | - Tung-Wei Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Shiuan-Chih Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Meng-Chih Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
14
|
Methylation of SPARCL1 Is Associated with Oncologic Outcome of Advanced Upper Urinary Tract Urothelial Carcinoma. Int J Mol Sci 2019; 20:ijms20071653. [PMID: 30987093 PMCID: PMC6480388 DOI: 10.3390/ijms20071653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Advanced upper urinary tract urothelial carcinoma (UTUC) is often associated with poor oncologic outcomes. The secreted protein acidic and rich in cysteine-like 1 (SPARCL1) protein, belongs to the SPARC-related family of matricellular proteins. Much literature has been published describing the role of SPARCL1 in the prognosis many cancers. In this study, methylated promoter regions in high-grade and high-stage upper urinary urothelial tumours compared with normal urothelium were analyzed and revealed that SPARCL1 was the most significantly hypermethylated gene in UTUC tissues. Then we prospectively collected UTUC samples and adjacent normal urothelium for pyrosequencing validation, identifying significant CpG site methylation in UTUC tissues. In addition, SPARCL1 RNA levels were significantly lower in UTUC samples. Multivariate Cox regression analysis from 78 patients with solitary renal pelvic or ureteral pT3N0M0 urothelial carcinomas revealed that only negative SPARCL1 expression and nonpapillary tumour architecture were independently associated with systemic recurrence (p = 0.011 and 0.008, respectively). In vitro studies revealed that the behaviour of BFTC-909 cells was less aggressive and more sensitive to radiation or chemotherapy after SPARCL1 overexpression. Thus, SPARCL1 could be considered as a prognostic marker and help decision-making in clinical practice.
Collapse
|
15
|
Whongsiri P, Pimratana C, Wijitsettakul U, Sanpavat A, Jindatip D, Hoffmann MJ, Goering W, Schulz WA, Boonla C. Oxidative stress and LINE-1 reactivation in bladder cancer are epigenetically linked through active chromatin formation. Free Radic Biol Med 2019; 134:419-428. [PMID: 30703483 DOI: 10.1016/j.freeradbiomed.2019.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Oxidative stress and reactivation of long interspersed element-1 (LINE-1) are coincidently observed in bladder cancer (BlCa), but the mechanistic connection between these two oncogenic phenomena is unknown. Previously, we reported increases in oxidative stress and LINE-1 protein (ORF1p) expression in human BlCa tissues. In this study, we measured 5-methylcytosine (5mC), 8-hydroxydeoxyguanosine (8-OHdG), 8-oxoguanosine DNA glycosylase-1 (OGG1), H3K9me3 and HP1α in bladder tissues obtained from BlCa patients. Reactivation of LINE-1 by reactive oxygen species (ROS) through chromatin remodeling was investigated in seven BlCa cell lines. We found that 5mC was decreased, but 8-OHdG, H3K9me3 and HP1α levels were increased in BlCa tissues relative to the adjacent non-cancerous tissues. OGG1, H3K9me3 and HP1α expression in BlCa tissues were positively correlated with 8-OHdG levels. Following H2O2 treatment, LINE-1 transcript expression was increased in VM-CUB-1 and TCCSUP, whereas AluYa5 and AluYb8 transcripts were increased in BFTC905 cells. Basal expression of LINE-1 ORF1p varied among BlCa cell lines from none to very high. H2O2 treatment clearly increased expression of ORF1p in VM-CUB-1, TCCSUP and BFTC905. Chromatin immunoprecipitation experiments revealed that 5'-LINE-1 promoters became further enriched in H3K4me3 and H3K18ac in VM-CUB-1 and BFTC905 cells treated with H2O2. In contrast, 5'-LINE-1 promoters became more enriched in H3K9me3 and H3K27me3 in UM-UC-3 treated with H2O2. In summary, decreased 5mC, but increased 8-OHdG, H3K9me3 and HP1α expression were demonstrated in human BlCa tissues, indicating global DNA hypomethylation, increased oxidative stress and altered histone methylation in BlCa. Chromatin structures were profoundly changed in BlCa cells exposed to ROS, but expression of LINE-1 transcript and protein were at most modestly increased. ROS enhanced expression of full-length LINE-1 elements only in cell lines with pre-existing activation, which was paralleled by increased formation of active chromatin at LINE-1 promoter loci.
Collapse
Affiliation(s)
- Patcharawalai Whongsiri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaowat Pimratana
- Division of Urology, Buriram Hospital, Buriram Province 31000, Thailand
| | | | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Pathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Wu M, Sheng L, Cheng M, Zhang H, Jiang Y, Lin S, Liang Y, Zhu F, Liu Z, Zhang Y, Zhang X, Gao Q, Chen D, Li J, Li Y. Low doses of decitabine improve the chemotherapy efficacy against basal-like bladder cancer by targeting cancer stem cells. Oncogene 2019; 38:5425-5439. [PMID: 30918330 DOI: 10.1038/s41388-019-0799-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/24/2022]
Abstract
Low dose treatment with the DNA methylation inhibitor decitabine has been shown to be applicable for the management of certain types of cancer. However, its antitumor effect and mechanisms are context dependent and its activity has never been systematically studied in bladder cancer treatment. We used mouse models, cultured cell lines and patient-derived xenografts to demonstrate that low dose decitabine treatment remarkably enhanced the effects of cisplatin and gemcitabine on basal-like bladder cancer both in vivo and in vitro. Genetic lineage tracing revealed that the stemness of a bladder cancer stem cell population was inhibited by decitabine treatment in mice. These effects were accompanied by decreases in genome-wide DNA methylation, gene re-expression, and changes in key cellular regulatory pathways such as STAT3 signaling. These results indicate that this DNA-demethylating reagent is a promising therapeutic approach for basal-like bladder cancer treatment.
Collapse
Affiliation(s)
- Mingqing Wu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China
| | - Lu Sheng
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Maosheng Cheng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China
| | - Haojie Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu Liang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China
| | - Fengyu Zhu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China
| | - Zhenqing Liu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA
| | - Yingyin Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China
| | - Xiuhong Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China
| | - Qian Gao
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Jiong Li
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA. .,Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA, USA.
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230031, China.
| |
Collapse
|
17
|
Bayramov B, Gunes S, Buyukalpelli R, Aydın O, Henkel R. Promoter methylation analysis of CDH1 and p14ARF genes in patients with urothelial bladder cancer. Onco Targets Ther 2018; 11:4189-4196. [PMID: 30050310 PMCID: PMC6056157 DOI: 10.2147/ott.s158259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/AIM Urothelial bladder cancer arises from the accumulation of multiple epigenetic and genetic changes. We aimed to investigate the specificity and sensitivity of gene-specific promoter methylation of CDH1 and p14ARF genes in the early diagnosis of bladder cancer and compare those with other diagnostic tests in our population. PATIENTS AND METHODS In the current study, 65 patients with urothelial bladder cancer and 35 controls without any history of cancer were recruited. Methylation profiles of CDH1 and p14ARF genes from tumor and urine samples were determined by methylation-specific polymerase chain reaction method. RESULTS Methylation of CDH1 and p14ARF genes in tumor samples was 95.4% and 78.5%, respectively. The methylation frequencies were found to be 68.8% for CDH1 gene and 72.9% for p14ARF gene in urine samples. Sensitivities of CDH1, p14ARF and urine cytology were found to be 67.4%, 72.1% and 34.9%, respectively, while their specificities were 93.9%, 63.6% and 93.9%, respectively. CONCLUSION Aberrant promoter methylation of CDH1 and p14ARF genes can be used to detect urothelial bladder cancer. In low-grade tumors, when compared with urine cytology, combined methylation analysis of CDH1 and p14ARF genes may not increase the sensitivity to identify malignant cells in urine samples.
Collapse
Affiliation(s)
- Bayram Bayramov
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
| | - Sezgin Gunes
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
| | - Recep Buyukalpelli
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
- Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun
| | - Oğuz Aydın
- Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
18
|
MicroRNAs in Smoking-Related Carcinogenesis: Biomarkers, Functions, and Therapy. J Clin Med 2018; 7:jcm7050098. [PMID: 29723992 PMCID: PMC5977137 DOI: 10.3390/jcm7050098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Long-term heavy cigarette smoking is a well-known high-risk factor for carcinogenesis in various organs such as the head and neck, lungs, and urinary bladder. Furthermore, cigarette smoking can systemically accelerate aging, and as the result, promoting carcinogenesis via changing the host microenvironment. Various inflammatory factors, hormones, and chemical mediators induced by smoking mediate carcinoma-related molecules and induce carcinogenesis. MicroRNAs (miRNAs) are a family of short noncoding RNA molecules that bind to mRNAs and inhibit their expression. Cigarette smoke induces the expression of various miRNAs, many of which are known to function in the post-transcriptional silencing of anticancer molecules, thereby leading to smoking-induced carcinogenesis. Analysis of expression profiles of smoking-induced miRNAs can help identify biomarkers for the diagnosis and prognosis of smoking-related cancers and prediction of therapeutic responses, as well as revealing promising therapeutic targets. Here, we introduce the most recent and useful findings of miRNA analyses focused on lung cancer and urinary bladder cancer, which are strongly associated with cigarette smoking, and discuss the utility of miRNAs as clinical biomarkers.
Collapse
|
19
|
Erichsen L, Ghanjati F, Beermann A, Poyet C, Hermanns T, Schulz WA, Seifert HH, Wild PJ, Buser L, Kröning A, Braunstein S, Anlauf M, Jankowiak S, Hassan M, Bendhack ML, Araúzo-Bravo MJ, Santourlidis S. Aberrant methylated key genes of methyl group metabolism within the molecular etiology of urothelial carcinogenesis. Sci Rep 2018; 8:3477. [PMID: 29472622 PMCID: PMC5823913 DOI: 10.1038/s41598-018-21932-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Urothelial carcinoma (UC), the most common cancer of the urinary bladder causes severe morbidity and mortality, e.g. about 40.000 deaths in the EU annually, and incurs considerable costs for the health system due to the need for prolonged treatments and long-term monitoring. Extensive aberrant DNA methylation is described to prevail in urothelial carcinoma and is thought to contribute to genetic instability, altered gene expression and tumor progression. However, it is unknown how this epigenetic alteration arises during carcinogenesis. Intact methyl group metabolism is required to ensure maintenance of cell-type specific methylomes and thereby genetic integrity and proper cellular function. Here, using two independent techniques for detecting DNA methylation, we observed DNA hypermethylation of the 5'-regulatory regions of the key methyl group metabolism genes ODC1, AHCY and MTHFR in early urothelial carcinoma. These hypermethylation events are associated with genome-wide DNA hypomethylation which is commonly associated with genetic instability. We therefore infer that hypermethylation of methyl group metabolism genes acts in a feed-forward cycle to promote additional DNA methylation changes and suggest a new hypothesis on the molecular etiology of urothelial carcinoma.
Collapse
Affiliation(s)
- Lars Erichsen
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Foued Ghanjati
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Agnes Beermann
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Cedric Poyet
- Department of Urology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Peter J Wild
- Institute of Surgical Pathology, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Lorenz Buser
- Institute of Surgical Pathology, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Alexander Kröning
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Stefan Braunstein
- Department of Pathology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Martin Anlauf
- Department of Pathology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Silvia Jankowiak
- Department of Pathology, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Mohamed Hassan
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Institut National de la Santé et de la Recherché Médicale, University of Strasbourg, 67000, Strasbourg, France
| | - Marcelo L Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba, Brazil
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
20
|
Abstract
Urothelial carcinoma of the bladder is one of the most common malignancies in the industrialized world, mainly caused by smoking and occupational exposure to chemicals. The favorable prognosis of early stage bladder cancer underscores the importance of early detection for the treatment of this disease. The high recurrence rate of this malignancy also highlights the need for close post-diagnosis monitoring of bladder cancer patients. As for other malignancies, aberrant DNA methylation has been shown to play a crucial role in the initiation and progression of bladder cancer, and thus holds great promise as a diagnostic and prognostic biological marker. Here, we describe a protocol for a versatile DNA methylation enrichment method, the Methylated CpG Island Recovery Assay (MIRA), which enables analysis of the DNA methylation status in individual genes or across the entire genome. MIRA is based on the ability of the methyl-binding domain (MBD) proteins, the MBD2B/MBD3L1 complex, to specifically bind methylated CpG dinucleotides. This easy-to-perform method can be used to analyze the methylome of bladder cancer or urothelial cells shed in the urine to elucidate the evolution of bladder carcinogenesis and/or identify epigenetic signatures of chemicals known to cause this malignancy.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA.
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| |
Collapse
|
21
|
Olkhov-Mitsel E, Savio AJ, Kron KJ, Pethe VV, Hermanns T, Fleshner NE, van Rhijn BW, van der Kwast TH, Zlotta AR, Bapat B. Epigenome-Wide DNA Methylation Profiling Identifies Differential Methylation Biomarkers in High-Grade Bladder Cancer. Transl Oncol 2017; 10:168-177. [PMID: 28167242 PMCID: PMC5293735 DOI: 10.1016/j.tranon.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023] Open
Abstract
Epigenetic changes, including CpG island hypermethylation, occur frequently in bladder cancer (BC) and may be exploited for BC detection and distinction between high-grade (HG) and low-grade (LG) disease. Genome-wide methylation analysis was performed using Agilent Human CpG Island Microarrays to determine epigenetic differences between LG and HG cases. Pathway enrichment analysis and functional annotation determined that the most frequently methylated pathways in HG BC were enriched for anterior/posterior pattern specification, embryonic skeletal system development, neuron fate commitment, DNA binding, and transcription factor activity. We identified 990 probes comprising a 32-gene panel that completely distinguished LG from HG based on methylation. Selected genes from this panel, EOMES, GP5, PAX6, TCF4, and ZSCAN12, were selected for quantitative polymerase chain reaction–based validation by MethyLight in an independent series (n = 84) of normal bladder samples and LG and HG cases. GP5 and ZSCAN12, two novel methylated genes in BC, were significantly hypermethylated in HG versus LG BC (P ≤ .03). We validated our data in a second independent cohort of LG and HG BC cases (n = 42) from The Cancer Genome Atlas (TCGA). Probes representing our 32-gene panel were significantly differentially methylated in LG versus HG tumors (P ≤ .04). These results indicate the ability to distinguish normal tissue from cancer, as well as LG from HG, based on methylation and reveal important pathways dysregulated in HG BC. Our findings were corroborated using publicly available data sets from TCGA. Ultimately, the creation of a methylation panel, including GP5 and ZSCAN12, able to distinguish between disease phenotypes will improve disease management and patient outcomes.
Collapse
Affiliation(s)
- Ekaterina Olkhov-Mitsel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Andrea J Savio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Ken J Kron
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Vaijayanti V Pethe
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9.
| | - Thomas Hermanns
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Neil E Fleshner
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Bas W van Rhijn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Theodorus H van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| | - Alexandre R Zlotta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery, Division of Urology, Sinai Health System, 600 University Ave., Toronto, Ontario, Canada, M5G 1X5.
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| |
Collapse
|