1
|
Ding N, Ma S, Chang Q, Xie L, Li G, Hao Y, Xiong J, Yang A, Yang X, Jiang Y, Zhang H. Novel long noncoding lncARF mediated hyperhomocysteinemia-induced atherosclerosis via autophagy inhibition in foam cells. J Adv Res 2024:S2090-1232(24)00373-4. [PMID: 39214417 DOI: 10.1016/j.jare.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Homocysteine (Hcy) is well recognized to be an independent risk factor for atherosclerosis. Long non-coding RNAs (lncRNAs) are emerging regulators of pathophysiological processes including atherosclerosis, while the underlying mechanisms of its involvement in Hcy induced-atherosclerosis remain largely unknown. OBJECTIVES The primary aim of this study is to assess the role of lncARF (autophagy-related factor induced by Hcy) in Hcy induced-atherosclerosis and related mechanism. METHODS RNA sequencing of foam cells treated with Hcy revealed a novel specific long noncoding RNA called lncARF. Locked nucleic acid gapmeRs-mediated lncARF knockdown was used to explore the role of lncARF both in vivo and in vitro. Mass spectrometry, RNA pull-down and RNA immunoprecipitation (RIP) assays were employed to uncover a mechanistic role of lncARF. Mass array assay and chromatin immunoprecipitation (ChIP) were used to detect the transcriptional activation of lncARF mediated by transcription factor. Clinically, receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value of lncARF in atherosclerotic patients with hyperhomocysteinemia (HHcy). RESULTS We observed that the expression of lncARF was substantially upregulated in atherosclerotic plaques, and knockdown of lncARF decreased the formation of atherosclerotic lesions by promoting autophagy in foam cells. Mechanistically, lncARF physically binds to RRAGD and inhibits its ubiquitination, further activating the PI3K/Akt and MAPK signaling pathways. Moreover, in vitro experiments showed that transcription factor FosB inhibited the binding of DNMT1 at the lncARF promoter, leading to transcriptional activation through DNA hypomethylation. Clinically, lncARF expression was positively correlated with serum Hcy levels, and it could distinguish atherosclerotic patients with HHcy with a high area under the ROC curve, sensitivity and specificity. CONCLUSIONS Our study highlights the mechanisms of lncARF in protecting against the development of atherosclerosis involving the epigenetic modifications and RRAGD/PI3K/Akt and RRAGD/MAPK signaling pathways, which may provide novel diagnostic biomarkers to improve atherosclerosis treatment.
Collapse
Affiliation(s)
- Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Qingning Chang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jiantuan Xiong
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Huiping Zhang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Hospital, Changsha 410008, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Monasso GS, Hoang TT, Mancano G, Fernández-Barrés S, Dou J, Jaddoe VW, Page CM, Johnson L, Bustamante M, Bakulski KM, Håberg SE, Ueland PM, Battram T, Merid SK, Melén E, Caramaschi D, Küpers LK, Sunyer J, Nystad W, Heil SG, Schmidt RJ, Vrijheid M, Sharp GC, London SJ, Felix JF. A meta-analysis of epigenome-wide association studies on pregnancy vitamin B12 concentrations and offspring DNA methylation. Epigenetics 2023; 18:2202835. [PMID: 37093107 PMCID: PMC10128528 DOI: 10.1080/15592294.2023.2202835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023] Open
Abstract
Circulating vitamin B12 concentrations during pregnancy are associated with offspring health. Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating vitamin B12 concentrations in mothers during pregnancy (n = 2,420) or cord blood (n = 1,029), with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value <0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children aged 4-10 y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses, 4.6% were associated with either birth weight or gestational age in a previous work. For the newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with childhood cognitive skills and nonverbal IQ. Of the 109 CpGs associated with maternal vitamin B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs in offspring blood (PFDR<0.05). Whether this differential DNA methylation underlies associations of vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and childhood cognition, should be further examined in future studies.
Collapse
Affiliation(s)
- Giulietta S. Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Giulia Mancano
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
| | - Sílvia Fernández-Barrés
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Laura Johnson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Mariona Bustamante
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Siri E. Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Thomas Battram
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Simon K. Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children’s Hospital, South General Hospital, Stockholm, Sweden
| | - Doretta Caramaschi
- College of Life and Environmental Sciences, Department of Psychology, University of Exeter, Exeter, UK
| | - Leanne K. Küpers
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jordi Sunyer
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra G. Heil
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, USA
- The UC Davis MIND Institute, School of Medicine, University of California Davis, Sacramento, USA
| | - Martine Vrijheid
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), madrid,Barcelona, Spain
| | - Gemma C. Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Zhu M, An D, Zhang J, Tang X, Wang Y, Zhu D. Genome-wide analysis of DNA methylation and its relationship with serum homocysteine levels in patients with hypertension. J Hypertens 2023; 41:1626-1633. [PMID: 37466420 DOI: 10.1097/hjh.0000000000003515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND Homocysteine (Hcy) is an independent risk factor for cardiovascular diseases, and elevated plasma Hcy levels could aggravate vascular injury in hypertension. Hyperhomocysteinemia can change the methylation status of global DNA and specific genes. In the present study, we aim to examine the comprehensive influence of Hcy levels on DNA methylation status in patients with hypertension. METHODS Epigenome-wide methylation profiles of the peripheral leukocyte DNA of 218 patients with hypertension were analyzed using the Illumina Infinium Methylation EPIC BeadChip. Differentially methylated positions (DMPs) associated with serum Hcy levels were identified by mixed linear regression with the adjustment of potential confounders. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to determine the potential functions of the identified DMPs. The association between the methylation level of DMPs and carotid-femoral pulse wave velocity (Cf-PWV) was also analyzed. RESULTS Five DMPs at cg13169662, cg03179312, cg21976560, cg25262698, and cg09433843 showed significant association with serum Hcy levels (false discovery rate-corrected P < 0.05). An additional six CpG sites met the threshold for suggestive significance ( P < 1 × 10 -6 ), among which three DMPs (cg25781123, cg26463106, and cg06679221) were annotated to THUMPD3 . Furthermore, the methylation levels of cg13169662 and cg25262698 (RPRD1A) were significantly associated with Cf-PWV. CONCLUSION Our results suggest that Hcy could induce DNA methylation alteration in patients with hypertension. Further functional research is warranted to elucidate the concrete role of DMPs in hypertension.
Collapse
Affiliation(s)
- Min Zhu
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
4
|
An F, Liu C, Wang X, Li T, Fu H, Bao B, Cong H, Zhao J. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc Disord 2021; 21:78. [PMID: 33557767 PMCID: PMC7869242 DOI: 10.1186/s12872-021-01894-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND ATP-binding cassette transporter A1 (ABCA1) plays a major role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) and exerts anti-inflammatory effects. Increased ABCA1 promoter methylation level may result in the progression of coronary artery disease. Thus, the present study investigated the association between promoter methylation status of ABCA1 and inflammation in the development of premature coronary artery disease (pCAD). METHODS PCAD patients and healthy individuals (n = 90 each) were recruited from the Characteristic Medical Center of the Chinese People's Armed Police Force from June to December 2019. Using pyrosequencing, the levels of ABCA1 promoter methylation in their blood samples were evaluated. Serum concentrations of lipids, interleukin 1β (IL-1β), C-reactive protein (CRP), and circulating free DNA/Neutrophil extracellular traps (cfDNA/NETs) were also routinely measured and compared between the two groups. P values < 0.05 were considered statistically significant. RESULTS The mean ABCA1 promoter methylation levels were significantly higher in the pCAD group than in the control group (44.24% ± 3.66 vs. 36.05% ± 2.99, P < 0.001). Based on binary logistic regression analysis, ABCA1 promoter methylation level was identified as an independent risk factor for pCAD development (odds ratio = 2.878, 95% confidence interval: 1.802-4.594, P < 0.001). Furthermore, ABCA1 promoter methylation levels were negatively correlated with HDL levels (r = - 0.488, P < 0.001) and positively correlated with the levels of CRP, cfDNA/NETs, and IL-1β (r = 0.389, 0.404, 0.385, respectively; P < 0.001). Multiple regression analysis showed that the serum levels of CRP, IL-1β, and cfDNA/NETs independently affect ABCA1 promoter methylation. CONCLUSIONS Our findings indicate that high methylation levels at the ABCA1 promoter are associated with low HDL cholesterol levels and an increased risk of pCAD. Inflammatory factors and NETs may be involved in the progression of pCAD by affecting ABCA1 promoter methylation levels.
Collapse
Affiliation(s)
- Fang An
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.,Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Chao Liu
- Institute of Cardiovascular disease, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Xiujuan Wang
- Institute of Cardiovascular Disease, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Tan Li
- Department of Pathogen Biology, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Hao Fu
- Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Buhe Bao
- Department of Clinical Laboratory, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Hongliang Cong
- Institute of Cardiovascular disease, Tianjin Chest Hospital, Tianjin, 300222, China. .,Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, China.
| | - Jihong Zhao
- Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| |
Collapse
|
5
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
6
|
Sun HY, Qu QM. Hypermethylation of ERа-A gene and high serum homocysteine level are correlated with cognitive impairment in white matter hyperintensity patients. QJM 2019; 112:351-354. [PMID: 30690641 DOI: 10.1093/qjmed/hcz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate the methylation status in promoter region of estrogen receptor alpha (ERа)-A gene and its relation with plasma homocysteine (Hcy) level and cognitive impairment in white matter hyperintensity (WMH) patients. PATIENTS AND METHODS 210 patients aged 65 and older were selected. The methylation status of CpG islands in ERа-A gene promoter was analyzed by nested methylation-specific PCR. Serum Hcy and estradiol levels were measured by enzyme-linked immunosorbent assay. Cognitive function were evaluated using minimum mental state examination, the montreal cognitive assessment, Stroop color-word test, symbol digit modalities, trail making test B and instrumental activities of daily living (IADL). The severity of WMH was evaluated with the Fazekas scale by brain magnetic resonance imaging. RESULTS We found a significant association between the severity of WMH and CpG island methylation of ERа-A gene (P < 0.05). Multiple regression analysis showed that serum Hcy level, methylation of ERа-A gene and WMH severity were significant determining factors for cognitive impairment (P < 0.05). The spearman rank correlation analysis showed a significant correlation of methylation of ERа-A gene with serum Hcy level, WMH severity, cognitive function and IADL status (P < 0.05). CONCLUSION Methylation of ERа-A gene promoter has a high frequency in WMH patients with cognitive impairment and is correlated with high plasma Hcy level.
Collapse
Affiliation(s)
- H-Y Sun
- Department of Neurology, the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Q-M Qu
- Department of Neurology, the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Nash AJ, Mandaviya PR, Dib MJ, Uitterlinden AG, van Meurs J, Heil SG, Andrew T, Ahmadi KR. Interaction between plasma homocysteine and the MTHFR c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. FASEB J 2018; 33:833-843. [PMID: 30080444 DOI: 10.1096/fj.201800400r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One-carbon metabolism provides a direct link among dietary folate/vitamin B12 exposure, the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), and epigenetic regulation of the genome via DNA methylation. Previously, it has been shown that the common c.677C > T polymorphism in MTHFR influences global DNA methylation status through a direct interaction with folate status and (indirectly) with total homocysteine (tHcy) levels. To build on that and other more recent observations that have further highlighted associations among MTHFR c.677C > T, tHcy, and aberrations in DNA methylation, we investigated whether the interaction between mildly elevated plasma tHcy and the c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. We used data on plasma tHcy levels, c.677C > T polymorphism, and site-specific DNA methylation levels for a total of 915 white women and 335 men from the TwinsUK registry ( n = 610) and the Rotterdam study ( n = 670). We performed methylome-wide association analyses in each cohort to model the interaction between levels of tHcy and c.677C > T genotypes on DNA methylation β values. Our meta-analysis identified 13 probes significantly associated with rs1801133 × tHcy levels [false-discovery rate (FDR) < 0.05]. The most significant associations were with a cluster of probes at the AGTRAP-MTHFR-NPPA/B gene locus on chromosome 1 (FDR = 1.3E-04), with additional probes on chromosomes 2, 3, 4, 7, 12, 16, and 19. Our top 2 hits on chromosome 1 were functionally associated with variability in expression of the TNF receptor superfamily member 8 ( TNFRSF8) gene/locus on that chromosome. This is the first study, to our knowledge, to provide a direct link between perturbations in 1-carbon metabolism, through an interaction of tHcy and the activity of MTHFR enzyme on epigenetic regulation of the genome via DNA methylation.-Nash, A. J., Mandaviya, P. R., Dib, M.-J., Uitterlinden, A. G., van Meurs, J., Heil, S. G., Andrew, T., Ahmadi, K. R. Interaction between plasma homocysteine and the MTHFR c.677C>T polymorphism is associated with site-specific changes in DNA methylation in humans.
Collapse
Affiliation(s)
- Alexander J Nash
- Institute of Clinical Sciences and Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College, London, United Kingdom
| | - Pooja R Mandaviya
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marie-Joe Dib
- Department of Genomics of Common Disease, Imperial College, London, United Kingdom; and
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Toby Andrew
- Department of Genomics of Common Disease, Imperial College, London, United Kingdom; and
| | - Kourosh R Ahmadi
- Department of Nutritional Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|