1
|
Bundschu K, Aleksandrova-Yankulovska S, Denzer C, Dornbrach T, Eberhart S, Glisic L, Barata AG, Gündel H, Hönig K, Janni W, Khinda K, Rafensteiner L, Siebert R, Steger F, Stilgenbauer S, Wabitsch M, Wiesmüller L, Wilhelm M, Wojak B, Hancke K. Future perspectives of fertility protection. J Reprod Immunol 2025; 168:104455. [PMID: 39970616 DOI: 10.1016/j.jri.2025.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Reproductive health is of major importance for individuals, for the society and for the health of future generations. This includes physical and medical dimensions as well as psychosocial and ethical ones. Whenever the possibility of starting a family is compromised, either due to an oncological cytotoxic treatment or due to transgender hormone medication with the aim to align their secondary sexual characteristics or other medical or social conditions, one key aspect of reproductive health is fertility protection. However, as a very young field in medicine, there are still many research questions that need to be clarified to provide the best possible treatment for affected people. These include the optimization and safety of cryopreservation processes of germ cells in women, men, transgender people, adolescents and children. Another focus is on psychological care as well as ethical, economic and legal issues. The establishment and development of the center for fertility protection Ulm (FePro-Ulm) will focus on a detailed molecular biological and (epi)genetic understanding of the underlying processes in ovarian tissue, oocytes and sperm to improve and develop new diagnostic and therapeutic approaches. The individual needs of affected people, their partners and families will be evaluated by an interdisciplinary approach. The collaborations within FePro-Ulm will develop preventative and helpful interventions for affected people. In addition, a better awareness of this important topic of reproductive health and fertility protection will be addressed by including participation representatives and strengthen public relation works.
Collapse
Affiliation(s)
- Karin Bundschu
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany.
| | - Silviya Aleksandrova-Yankulovska
- Institute of the History, Philosophy and Ethics of Medicine, Ulm University, Barbara Mez-Starck-Haus Oberberghof 7, Ulm 89081, Germany
| | - Christian Denzer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, Ulm 89075, Germany
| | - Tana Dornbrach
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Sabine Eberhart
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Lazar Glisic
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Ana Gomes Barata
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Harald Gündel
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Klaus Hönig
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Karamdeep Khinda
- University Hospital Ulm, Department of Psychosomatic Medicine and Psychotherapy, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Laura Rafensteiner
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Ulm
| | - Florian Steger
- Institute of the History, Philosophy and Ethics of Medicine, Ulm University, Barbara Mez-Starck-Haus Oberberghof 7, Ulm 89081, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Ulm
| | - Stephan Stilgenbauer
- University Hospital Ulm, Department of Internal Medicine III, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, Ulm 89075, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Ulm
| | - Lisa Wiesmüller
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Miriam Wilhelm
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, Ulm 89075, Germany
| | - Birgit Wojak
- University Hospital Ulm, Department of Internal Medicine III, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Katharina Hancke
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| |
Collapse
|
2
|
Tavares I, Morais M, Dias F, Medeiros R, Teixeira AL. Deregulated miRNAs in enzalutamide resistant prostate cancer: A comprehensive review of key molecular alterations and clinical outcomes. Biochim Biophys Acta Rev Cancer 2024; 1879:189067. [PMID: 38160898 DOI: 10.1016/j.bbcan.2023.189067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related deaths in male population worldwide. Since the growth and progression of PC highly depend on the androgen pathway, androgen deprivation therapy (ADT) is the mainstay of systemic treatment. Enzalutamide is a second-generation antiandrogen, which is widely used for the treatment of advanced and metastatic PC. However, treatment failure and disease progression, caused by the emergence of enzalutamide resistant phenotypes, remains an important clinical challenge. MicroRNAs (miRNAs) are key regulators of gene expression and have recently emerged as potential biomarkers for being stable and easily analysed in several biological fluids. Several miRNAs that exhibit dysregulated expression patterns in enzalutamide-resistant PC have recently been identified, including miRNAs that modulate critical signalling pathways and genes involved in PC growth, survival and in the acquisition of enzalutamide phenotype. The understanding of molecular mechanisms by which miRNAs promote the development of enzalutamide resistance can provide valuable insights into the complex interplay between miRNAs, gene regulation, and treatment response in PC. Moreover, these miRNAs could serve as valuable tools for monitoring treatment response and disease progression during enzalutamide administration. This review summarises the miRNAs associated with enzalutamide resistance in PC already described in the literature, focusing on their biological roles and on their potential as biomarkers.
Collapse
Affiliation(s)
- Inês Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal; ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Porto, Portugal; Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; Biomedical Reasearch Center, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, Portugal; Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal.
| |
Collapse
|
3
|
An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X, Zhang S, Hong X, Jin X, Sun K. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun 2023; 14:287. [PMID: 36653380 PMCID: PMC9849216 DOI: 10.1038/s41467-023-35959-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) are small molecules generated through a non-random fragmentation procedure. Despite commendable translational values in cancer liquid biopsy, however, the biology of cfDNA, especially the principles of cfDNA fragmentation, remains largely elusive. Through orientation-aware analyses of cfDNA fragmentation patterns against the nucleosome structure and integration with multidimensional functional genomics data, here we report a DNA methylation - nuclease preference - cutting end - size distribution axis, demonstrating the role of DNA methylation as a functional molecular regulator of cfDNA fragmentation. Hence, low-level DNA methylation could increase nucleosome accessibility and alter the cutting activities of nucleases during DNA fragmentation, which further leads to variation in cutting sites and size distribution of cfDNA. We further develop a cfDNA ending preference-based metric for cancer diagnosis, whose performance has been validated by multiple pan-cancer datasets. Our work sheds light on the molecular basis of cfDNA fragmentation towards broader applications in cancer liquid biopsy.
Collapse
Affiliation(s)
- Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Li Ma
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 518107, Shenzhen, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Shuowen Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China.
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
4
|
Janke F, Angeles AK, Riediger AL, Bauer S, Reck M, Stenzinger A, Schneider MA, Muley T, Thomas M, Christopoulos P, Sültmann H. Longitudinal monitoring of cell-free DNA methylation in ALK-positive non-small cell lung cancer patients. Clin Epigenetics 2022; 14:163. [PMID: 36461127 PMCID: PMC9719130 DOI: 10.1186/s13148-022-01387-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND DNA methylation (5-mC) signals in cell-free DNA (cfDNA) of cancer patients represent promising biomarkers for minimally invasive tumor detection. The high abundance of cancer-associated 5-mC alterations permits parallel and highly sensitive assessment of multiple 5-mC biomarkers. Here, we performed genome-wide 5-mC profiling in the plasma of metastatic ALK-rearranged non-small cell lung cancer (NSCLC) patients receiving tyrosine kinase inhibitor therapy. We established a strategy to identify ALK-specific 5-mC changes from cfDNA and demonstrated the suitability of the identified markers for cancer detection, prognosis, and therapy monitoring. METHODS Longitudinal plasma samples (n = 79) of 21 ALK-positive NSCLC patients and 13 healthy donors were collected alongside 15 ALK-positive tumor tissue and 10 healthy lung tissue specimens. All plasma and tissue samples were analyzed by cell-free DNA methylation immunoprecipitation sequencing to generate genome-wide 5-mC profiles. Information on genomic alterations (i.e., somatic mutations/fusions and copy number alterations) determined in matched plasma samples was available from previous studies. RESULTS We devised a strategy that identified tumor-specific 5-mC biomarkers by reducing 5-mC background signals derived from hematopoietic cells. This was followed by differential methylation analysis (cases vs. controls) and biomarker validation using 5-mC profiles of ALK-positive tumor tissues. The resulting 245 differentially methylated regions were enriched for lung adenocarcinoma-specific 5-mC patterns in TCGA data and indicated transcriptional repression of several genes described to be silenced in NSCLC (e.g., PCDH10, TBX2, CDO1, and HOXA9). Additionally, 5-mC-based tumor DNA (5-mC score) was highly correlated with other genomic alterations in cell-free DNA (Spearman, ρ > 0.6), while samples with high 5-mC scores showed significantly shorter overall survival (log-rank p = 0.025). Longitudinal 5-mC scores reflected radiologic disease assessments and were significantly elevated at disease progression compared to the therapy start (p = 0.0023). In 7 out of 8 instances, rising 5-mC scores preceded imaging-based evaluation of disease progression. CONCLUSION We demonstrated a strategy to identify 5-mC biomarkers from the plasma of cancer patients and integrated them into a quantitative measure of cancer-associated 5-mC alterations. Using longitudinal plasma samples of ALK-positive NSCLC patients, we highlighted the suitability of cfDNA methylation for prognosis and therapy monitoring.
Collapse
Affiliation(s)
- Florian Janke
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
| | - Arlou Kristina Angeles
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
| | - Anja Lisa Riediger
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Helmholtz Young Investigator Group, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Urology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Simone Bauer
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany
| | - Martin Reck
- grid.452624.3Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Albrecht Stenzinger
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc A. Schneider
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Muley
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Thomas
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Petros Christopoulos
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Sültmann
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
5
|
Jang A, Rauterkus GP, Vaishampayan UN, Barata PC. Overcoming Obstacles in Liquid Biopsy Developments for Prostate Cancer. Onco Targets Ther 2022; 15:897-912. [PMID: 36051571 PMCID: PMC9427206 DOI: 10.2147/ott.s285758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is one of the most common malignancies in men. Over time, it can metastasize and become lethal once it exhausts hormonal therapies and transitions into castration-resistant prostate cancer (CRPC). Several therapies have been recently approved for advanced prostate cancer, but identifying biomarkers for current treatments and searching for more effective treatments are urgently needed. Liquid biopsy is a powerful tool for isolating genetic material, proteins, and whole tumor cells from the blood. In recent decades, this technology has rapidly advanced, allowing for better insights into the pathogenesis and treatment response in different stages of prostate cancer. In this review, we summarize important clinical studies involving liquid biopsies in prostate cancer with a focus on advanced disease, notably regarding circulating tumor DNA, circulating tumor cells, and exosomes. We highlight the progress and the challenges that still exist for these technologies. Finally, we discuss promising avenues that will further expand the importance of liquid biopsy in the care for prostate cancer patients.
Collapse
Affiliation(s)
- Albert Jang
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Pedro C Barata
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Cancer Center, New Orleans, LA, USA.,Department of Medicine, Case Comprehensive Cancer Center, Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
6
|
R Peter M, Bilenky M, Shi Y, Pu J, Kamdar S, R Hansen A, E Fleshner N, S Sridhar S, M Joshua A, Hirst M, Xu W, Bapat B. A novel methylated cell-free DNA marker panel to monitor treatment response in metastatic prostate cancer. Epigenomics 2022; 14:811-822. [PMID: 35818933 DOI: 10.2217/epi-2022-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study examined circulating cell-free DNA (cfDNA) biomarkers associated with androgen treatment resistance in metastatic castration resistance prostate cancer (mCRPC). Materials & methods: We designed a panel of nine candidate cfDNA methylation markers using droplet digital PCR (Methyl-ddPCR) and assessed methylation levels in sequentially collected cfDNA samples from patients with mCRPC. Results: Increased cfDNA methylation in eight out of nine markers during androgen-targeted treatment correlated with a faster time to clinical progression. Cox proportional hazards modeling and logistic regression analysis further confirmed that higher cfDNA methylation during treatment was significantly associated with clinical progression. Conclusion: Overall, our findings have revealed a novel methylated cfDNA marker panel that could aid in the clinical management of metastatic prostate cancer.
Collapse
Affiliation(s)
- Madonna R Peter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Science Center, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Yuliang Shi
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Jiajie Pu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Shivani Kamdar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Aaron R Hansen
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Neil E Fleshner
- Division of Urology, Department of Surgical Oncology, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Srikala S Sridhar
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Anthony M Joshua
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada.,Department of Medical Oncology, Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Martin Hirst
- Canada's Michael Smith Genome Science Center, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada.,Department of Microbiology & Immunology & Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
7
|
Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 2022; 127:1394-1402. [PMID: 35715640 PMCID: PMC9553885 DOI: 10.1038/s41416-022-01881-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy has been established as a powerful, minimally invasive, tool to detect clinically actionable aberrations across numerous cancer types in real-time. With the development of new therapeutic agents in prostate cancer (PC) including DNA repair targeted therapies, this is especially attractive. However, there is unclarity on how best to screen for PC, improve risk stratification and ultimately how to treat advanced disease. Therefore, there is an urgent need to develop better biomarkers to help guide oncologists' decisions in these settings. Circulating tumour cells (CTCs), exosomes and cell-free DNA/RNA (cfDNA/cfRNA) analysis, including epigenetic features such as methylation, have all shown potential in prognostication, treatment response assessment and detection of emerging mechanisms of resistance. However, there are still challenges to overcome prior to implementing liquid biopsies in routine clinical practice such as preanalytical considerations including blood collection and storage, the cost of CTC isolation and enrichment, low-circulating tumour content as a limitation for genomic analysis and how to better interpret the sequencing data generated. In this review, we describe an overview of the up-to-date clinical opportunities in the management of PC through blood-based liquid biopsies and the next steps for its implementation in personalised treatment guidance.
Collapse
|
8
|
Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol 2021; 10:3104-3116. [PMID: 34430414 PMCID: PMC8350251 DOI: 10.21037/tau-20-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic alterations, including changes in DNA methylation, histone modifications and nucleosome remodeling, result in abnormal gene expression patterns that contribute to prostate tumor initiation and continue to evolve during the course of disease progression. Epigenetic modifications are responsible for silencing tumor-suppressor genes, activating oncogenic drivers, and driving therapy resistance and thus have emerged as promising targets for antineoplastic therapy in prostate cancer. In this review, we discuss the role of epigenetics in prostate cancer with a particular emphasis on clinical implications. We review how epigenetic regulators crosstalk with critical biological pathways, including androgen receptor signaling, and how these interactions dynamically control prostate cancer transcriptional profiles. Because of their potentially reversible nature, restoration of a "normal" epigenome could provide a basis for innovative therapeutic strategies in prostate cancer. We highlight how particular epigenetic alterations are emerging as potential diagnostic and prognostic biomarkers and/or targets for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Judy Hess
- Weill Cornell Medicine, New York, NY, USA
| | - Yasutaka Yamada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Barefoot ME, Loyfer N, Kiliti AJ, McDeed AP, Kaplan T, Wellstein A. Detection of Cell Types Contributing to Cancer From Circulating, Cell-Free Methylated DNA. Front Genet 2021; 12:671057. [PMID: 34386036 PMCID: PMC8353442 DOI: 10.3389/fgene.2021.671057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of cellular changes in tissue biopsies has been the basis for cancer diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and poor representation of tissue heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional tissue biopsies to detect dynamic changes in specific cell populations. Cell-free DNA (cfDNA) fragments released into the circulation from dying cells can be traced back to the tissues and cell types they originated from using DNA methylation, an epigenetic regulatory mechanism that is highly cell-type specific. Decoding changes in the cellular origins of cfDNA over time can reveal altered host tissue homeostasis due to local cancer invasion and metastatic spread to distant organs as well as treatment responses. In addition to host-derived cfDNA, changes in cancer cells can be detected from cell-free, circulating tumor DNA (ctDNA) by monitoring DNA mutations carried by cancer cells. Here, we will discuss computational approaches to identify and validate robust biomarkers of changed tissue homeostasis using cell-free, methylated DNA in the circulation. We highlight studies performing genome-wide profiling of cfDNA methylation and those that combine genetic and epigenetic markers to further identify cell-type specific signatures. Finally, we discuss opportunities and current limitations of these approaches for implementation in clinical oncology.
Collapse
Affiliation(s)
- Megan E. Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - A. Patrick McDeed
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, United States
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
10
|
Conteduca V, Brighi N, Conteduca D, Bleve S, Gianni C, Schepisi G, Iaia ML, Gurioli G, Lolli C, De Giorgi U. An update on our ability to monitor castration-resistant prostate cancer dynamics with cell-free DNA. Expert Rev Mol Diagn 2021; 21:631-640. [PMID: 34043486 DOI: 10.1080/14737159.2021.1935881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Prostate cancer is one of the most frequent tumors worldwide. Due to the lack of reliable markers, patients are usually diagnosed at a late stage when it becomes castration-resistant prostate cancer (CRPC) with a worse outcome. Thus, it is essential to ameliorate the clinical management of these patients. Nowadays, the use of liquid biopsy represents a minimally invasive way to provide a complete molecular landscape of prostate cancer. Thus, this review aims to outline the clinical value of cell-free DNA in real-time monitoring of metastatic CRPC (mCRPC).Areas covered: This comprehensive review explores in detail the characteristics as well as clinical applications of plasma DNA analysis in mCRPC.Expert opinion: The assessment of circulating tumor DNA fraction is a valid and robust biomarker in mCRPC able to predict clinical outcome and monitor disease evolution during treatment. Recently, several methods (i.e. next generation sequencing and digital droplet PCR) are used to investigate genomics in cell-free DNA and novel nanotechnology-based approaches are currently under evaluation in order to improve clinical management of mCRPC patients.
Collapse
Affiliation(s)
- Vincenza Conteduca
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicole Brighi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Donato Conteduca
- Photonics Group, Department of Physics, University of York, Heslington, UK
| | - Sara Bleve
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Caterina Gianni
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Maria Laura Iaia
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Cristian Lolli
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
11
|
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15:1683-1700. [PMID: 33942482 PMCID: PMC8169441 DOI: 10.1002/1878-0261.12978] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real-time follow-up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood-based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor CellsLaboratory of Analytical ChemistryDepartment of ChemistryUniversity of AthensGreece
| |
Collapse
|
12
|
Distinct DNA methylation patterns associated with treatment resistance in metastatic castration resistant prostate cancer. Sci Rep 2021; 11:6630. [PMID: 33758253 PMCID: PMC7988053 DOI: 10.1038/s41598-021-85812-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
Androgens are a major driver of prostate cancer (PCa) and continue to be a critical treatment target for advanced disease, which includes castration therapy and antiandrogens. However, resistance to these therapies leading to metastatic castration-resistant prostate cancer (mCRPC), and the emergence of treatment-induced neuroendocrine disease (tNEPC) remains an ongoing challenge. Instability of the DNA methylome is well established as a major hallmark of PCa development and progression. Therefore, investigating the dynamics of the methylation changes going from the castration sensitive to the tNEPC state would provide insights into novel mechanisms of resistance. Using an established xenograft model of CRPC, genome-wide methylation analysis was performed on cell lines representing various stages of PCa progression. We confirmed extensive methylation changes with the development of CRPC and tNEPC using this model. This included key genes and pathways associated with cellular differentiation and neurodevelopment. Combined analysis of methylation and gene expression changes further highlighted genes that could potentially serve as therapeutic targets. Furthermore, tNEPC-related methylation signals from this model were detectable in circulating cell free DNA (cfDNA) from mCRPC patients undergoing androgen-targeting therapies and were associated with a faster time to clinical progression. These potential biomarkers could help with identifying patients with aggressive disease.
Collapse
|