1
|
Zhao H, Liu Y, Zhu L, Cheng J, Li Y. MAD2L1-mediated NANOG nuclear translocation: A critical factor in lung cancer chemoresistance. Cell Signal 2025; 132:111811. [PMID: 40233918 DOI: 10.1016/j.cellsig.2025.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
This study investigates the function of Mitotic Arrest Deficient 2 Like 1 (MAD2L1) and its role in facilitating NANOG nuclear localization, contributing to chemoresistance in lung cancer. Using both in vivo and in vitro models, we examined MAD2L1 expression in Carboplatin-resistant lung cancer cell lines. The study utilized gene knockdown and overexpression techniques to assess MAD2L1's role in chemoresistance and cell stemness, alongside co-expression analysis and fluorescence staining and CO-IP to explore MAD2L1 and NANOG interactions. Results showed a marked increase in MAD2L1 expression in resistant lung cancer cells, correlating with enhanced cell stemness. MAD2L1 knockdown heightened sensitivity to Carboplatin and reduced NANOG expression, while MAD2L1 overexpression led to increased resistance and stemness. Mechanistically, MAD2L1 facilitated NANOG's nuclear localization, with their co-expression linked to increased cell resistance and metastasis in vivo. These findings suggest that MAD2L1 enhances chemoresistance by promoting NANOG localization, offering insights into potential therapeutic targets for overcoming lung cancer chemoresistance.
Collapse
Affiliation(s)
- Hongye Zhao
- The Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yongcun Liu
- The Department of Surgery, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang 050011, China
| | - Longyu Zhu
- The Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Jingge Cheng
- The Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Yishuai Li
- The Department of Thoracic Surgery, Hebei Provincial Key Laboratory of Pulmonary Disease, Hebei Chest Hospital, Shijiazhuang 050047, China.
| |
Collapse
|
2
|
Ranjbar-Niavol F, Rezaei N, Zhao Y, Mirzaei H, Hassan M, Vosough M. P53/NANOG balance; the leading switch between poorly to well differentiated status in liver cancer cells. Front Oncol 2024; 14:1377761. [PMID: 38846985 PMCID: PMC11153735 DOI: 10.3389/fonc.2024.1377761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Abstract
Enforcing a well-differentiated state on cells requires tumor suppressor p53 activation as a key player in apoptosis induction and well differentiation. In addition, recent investigations showed a significant correlation between poorly differentiated status and higher expression of NANOG. Inducing the expression of NANOG and decreasing p53 level switch the status of liver cancer cells from well differentiated to poorly status. In this review, we highlighted p53 and NANOG cross-talk in hepatocellular carcinoma (HCC) which is regulated through mitophagy and makes it a novel molecular target to attenuate cancerous phenotype in the management of this tumor.
Collapse
Affiliation(s)
- Fazeleh Ranjbar-Niavol
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ying Zhao
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| |
Collapse
|
3
|
Fatma H, Siddique HR. Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked? Cancer Metastasis Rev 2024; 43:423-440. [PMID: 37796391 DOI: 10.1007/s10555-023-10144-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
4
|
Mahgoub EO, Cho WC, Sharifi M, Falahati M, Zeinabad HA, Mare HE, Hasan A. Role of functional genomics in identifying cancer drug resistance and overcoming cancer relapse. Heliyon 2024; 10:e22095. [PMID: 38249111 PMCID: PMC10797146 DOI: 10.1016/j.heliyon.2023.e22095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024] Open
Abstract
Functional genomics is an emerging field focused on elucidating the functions of genes or proteins, which can help solve challenges related to reliable cancer therapy. One of the main challenges currently faced by cancer therapy is the variations in the number of mutations in patients, leading to drug resistance and cancer relapses. Drug intrinsic or acquired resistance, is generally associated with most cancer relapses. There are advanced tools that can help identify the mutant genes in cancer tissues causing cancer drug resistance (CDR). Such tools include but are not limited to DNA and RNA sequencing as well assynthetic lethality gene screen (CRISPR)-based diagnosis. This review discusses the role of functional genomics in understanding CDR and finding tools for discovering drug target genes for cancer therapy.
Collapse
Affiliation(s)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Majid Sharifi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773947, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hany E. Mare
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
5
|
Choudhari J, Nimma R, Nimal SK, Totakura Venkata SK, Kundu GC, Gacche RN. Prosopis juliflora (Sw.) DC phytochemicals induce apoptosis and inhibit cell proliferation signaling pathways, EMT, migration, invasion, angiogenesis and stem cell markers in melanoma cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116472. [PMID: 37062530 DOI: 10.1016/j.jep.2023.116472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prosopis juliflora (Sw.), DC is a xerophytic plant species that extensively grow in Asia, Africa, Australia, and Brazil. From ancient time P. juliflora is being utilized in various folk remedies for example in wound healing, fever, inflammation, measles, excrescences, diarrhea and dysentery. Traditionally, gum, paste, and smoke obtained from the leaves and pods are applied for anticancer, antidiabetic, anti-inflammatory, and antimicrobial purposes. AIM OF THE STUDY Our previous studies have demonstrated the promising potential of Prosopis Juliflora leaves methanol extract (PJLME) against breast cancer, and suggested its possible integration as a complementary medicine for the effective management of breast cancer. However, evidence against how PJLME mechanistically target the cancer proliferative pathways and other targets is poorly understood. The basic aim of the present study was to understand the anti-melanoma potential of PJLME against B16f10 cells with possible mechanisms of action. MATERIALS AND METHODS MTT assay was used to determine cell viability. Wound and transwell migration assay was performed to check migration potential of cells after PJLME treatment, while clonogenic assay was carried out to understand its colony inhibition actvity. Flow cytometry was used to perform annexin V/PI assay (apoptosis assay), ROS assay, cell cycle analysis. In-vitro angiogenesis assay was performed to check formation of capillary like vascular structure after PJLME treatment. Apoptotic genes, signaling pathways markers, EMT markers and stem cell markers were determined by western blotting. In-vivo BALB/C mice xenograft model study was performed to check the effect of PJLME on in-vivo melanoma tumor growth. RESULTS The experimental outcome of the present study has clearly demonstrated the inhibition of growth, migration, invasion, colony formation and apoptosis inducing potential of PJLME against mouse melanoma cancer cells. Treatment of B16F10 melanoma cells with PJLME resulted in arrest of cell cycle at G0/G1 phase. Annexin V-FITC/PI assay confirmed the apoptosis inducing potential of PJLME in B16F10 and A375 melanoma cells. Furthermore, Western blot experiments confirmed that the treatment of PJLME downregulates the expression of anti-apoptotic gene like Bcl2 and increase the expression profile of pro-apoptotic genes like Bax, Bad, and Bak in B16F10 melanoma cells. HUVEC (Human umbilical vein endothelial cells) tube formation assay clearly demonstrated the anti-angiogenic potential of PJLME. The study also revealed that PJLME has potential to inhibit the Akt and Erk signaling pathways which are participating in cancer cell proliferation, migration, invasion etc. The outcome of qRT-PCR and immunoblotting analysis clearly unveiled that PJLME treatment leads to downregulation of epithelial-mesenchymal transition (EMT) as well as stem cell markers. Finally, the in-vivo animal xenograft model study also revealed the anti-melanoma potential of PJLME by significantly inhibiting the B16F10 melanoma tumor growth in BALB/c mice model. The LC-ESI-MS/MS analysis of PJLME showed the presence of variety of bioactive molecules associated with anticancer effects. CONCLUSION The outcome of the present investigation clearly demonstrated the anti-melanoma potential of PJLME against B16f10 melanoma cells. PJLME can be explored as an adjuvant or complementary therapy against melanoma cancer, however further studies are required to understand the clinical efficacy of PJLME. Nevertheless, it can be further explored as a promising resource for identification of novel anticancer candidate drug.
Collapse
Affiliation(s)
- Jasoda Choudhari
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India
| | | | - Snehal K Nimal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India
| | | | - Gopal C Kundu
- National Centre for Cell Science, Pune, 411007, India; School of Biotechnology, KIIT Deemed University, Bhubaneswar, 751 024, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India.
| |
Collapse
|
6
|
Forlani L, De Cecco L, Simeon V, Paolini B, Bagnoli M, Cecere SC, Spina A, Citeroni E, Bignotti E, Lorusso D, Arenare L, Russo D, De Angelis C, Ardighieri L, Scognamiglio G, Del Sesto M, Tognon G, Califano D, Schettino C, Chiodini P, Perrone F, Mezzanzanica D, Pignata S, Tomassetti A. Biological and clinical impact of membrane EGFR expression in a subgroup of OC patients from the phase IV ovarian cancer MITO-16A/MANGO-OV2A trial. J Exp Clin Cancer Res 2023; 42:83. [PMID: 37041632 PMCID: PMC10088260 DOI: 10.1186/s13046-023-02651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Validated prognostic biomarkers for anti-angiogenic therapy using the anti-VEGF antibody Bevacizumab in ovarian cancer (OC) patients are still an unmet clinical need. The EGFR can contribute to cancer-associated biological mechanisms in OC cells including angiogenesis, but its targeting gave disappointing results with less than 10% of OC patients treated with anti-EGFR compounds showing a positive response, likely due to a non adequate selection and stratification of EGFR-expressing OC patients. METHODS EGFR membrane expression was evaluated by immunohistochemistry in a cohort of 310 OC patients from the MITO-16A/MANGO-OV2A trial, designed to identify prognostic biomarkers of survival in patients treated with first line standard chemotherapy plus bevacizumab. Statistical analyses assessed the association between EGFR and clinical prognostic factors and survival outcomes. A single sample Gene Set Enrichment-like and Ingenuity Pathway Analyses were applied to the gene expression profile of 195 OC samples from the same cohort. In an OC in vitro model, biological experiments were performed to assess specific EGFR activation. RESULTS Based on EGFR-membrane expression, three OC subgroups of patients were identified being the subgroup with strong and homogeneous EGFR membrane localization, indicative of possible EGFR out/in signalling activation, an independent negative prognostic factor for overall survival of patients treated with an anti-angiogenic agent. This OC subgroup resulted statistically enriched of tumors of histotypes different than high grade serous lacking angiogenic molecular characteristics. At molecular level, among the EGFR-related molecular traits identified to be activated only in this patients' subgroup the crosstalk between EGFR with other RTKs also emerged. In vitro, we also showed a functional cross-talk between EGFR and AXL RTK; upon AXL silencing, the cells resulted more sensitive to EGFR targeting with erlotinib. CONCLUSIONS Strong and homogeneous cell membrane localization of EGFR, associated with specific transcriptional traits, can be considered a prognostic biomarker in OC patients and could be useful for a better OC patients' stratification and the identification of alternative therapeutic target/s in a personalized therapeutic approach.
Collapse
Affiliation(s)
- Luca Forlani
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Vittorio Simeon
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Biagio Paolini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marina Bagnoli
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Sabrina Chiara Cecere
- Urogynaecological Medical Oncology, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Eleonora Citeroni
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili Di Brescia, Brescia, Italy
- Angelo Nocivelli Institute of Molecular Medicine, ASST Spedali Civili of Brescia- University of Brescia, Brescia, Italy
| | - Domenica Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli, and Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Daniela Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Laura Ardighieri
- Department of Pathology, Azienda Socio Sanitaria Territoriale Spedali Civili Di Brescia, Brescia, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Michele Del Sesto
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Daniela Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Delia Mezzanzanica
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| | - Sandro Pignata
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonella Tomassetti
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|
7
|
An Update on Phytochemicals in Redox Homeostasis: “Virtuous or Evil” in Cancer Chemoprevention? CHEMISTRY 2023. [DOI: 10.3390/chemistry5010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Redox homeostasis, a dynamic process ensuring a balance between cellular oxidizing and reducing reactions, is crucial for maintaining healthy cellular physiology and regulating many biological processes, requiring continuous monitoring and fine-tuning. Reactive species play a critical role in intra/intercellular signaling, and each cell has a specific system guarding cellular redox homeostasis. ROS signaling and oxidative stress are involved in cancer initiation and progression. However, the generation of reactive species beyond the threshold level inside the tumor microenvironment is considered one of the therapeutic approaches. Various studies have shown that some phytochemicals can target the redox homeostasis of the tumor microenvironment. Recent advances have focused on developing and introducing phytochemical interventions as favorable therapeutic options against cancer. However, studies have also suggested the “virtuous” and “evil” impacts of phytochemicals. Some phytochemicals enhance therapeutic efficacy by promoting intracellular oxidant accumulation. However, under certain conditions, some phytochemicals may harm the cellular microenvironment to promote cancer and tend to target different pathways for cancer initiation and development instead of targeting redox homeostasis. In this context, this review is focused on providing an overall understanding of redox homeostasis and intends to highlight the potential positive and negative impacts of phytochemicals in redox homeostasis and disease development. We also discuss the recent nanotechnology-based advancements in combating cancer development.
Collapse
|
8
|
Liu X, Ye Y, Zhu L, Xiao X, Zhou B, Gu Y, Si H, Liang H, Liu M, Li J, Jiang Q, Li J, Yu S, Ma R, Su S, Liao JY, Zhao Q. Niche stiffness sustains cancer stemness via TAZ and NANOG phase separation. Nat Commun 2023; 14:238. [PMID: 36646707 PMCID: PMC9842735 DOI: 10.1038/s41467-023-35856-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Emerging evidence shows that the biomechanical environment is required to support cancer stem cells (CSCs), which play a crucial role in drug resistance. However, how mechanotransduction signals regulate CSCs and its clinical significance has remained unclear. Using clinical-practice ultrasound elastography for patients' lesions and atomic force microscopy for surgical samples, we reveal that increased matrix stiffness is associated with poor responses to neoadjuvant chemotherapy, worse prognosis, and CSC enrichment in patients with breast cancer. Mechanically, TAZ activated by biomechanics enhances CSC properties via phase separation with NANOG. TAZ-NANOG phase separation, which is dependent on acidic residues in the N-terminal activation domain of NANOG, promotes the transcription of SOX2 and OCT4. Therapeutically, targeting NANOG or TAZ reduces CSCs and enhances the chemosensitivity in vivo. Collectively, this study demonstrated that the phase separation of a pluripotency transcription factor links mechanical cues in the niche to the fate of CSCs.
Collapse
Affiliation(s)
- Xinwei Liu
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Department of Breast Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yingying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hang Si
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huixin Liang
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingzhu Liu
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiongchao Jiang
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shubin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruiying Ma
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shicheng Su
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China. .,Department of Breast Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China. .,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Thomas P, Srivastava S, Udayashankara AH, Damodaran S, Yadav L, Mathew B, Suresh SB, Mandal AK, Srikantia N. RhoC in association with TET2/WDR5 regulates cancer stem cells by epigenetically modifying the expression of pluripotency genes. Cell Mol Life Sci 2022; 80:1. [PMID: 36469134 PMCID: PMC11073244 DOI: 10.1007/s00018-022-04645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
- School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India.
| | - Avinash H Udayashankara
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| | - Samyuktha Damodaran
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Lokendra Yadav
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Srinag Bangalore Suresh
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Nirmala Srikantia
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| |
Collapse
|
10
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
11
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
12
|
Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Downregulation. Biomedicines 2022; 10:biomedicines10061350. [PMID: 35740372 PMCID: PMC9220208 DOI: 10.3390/biomedicines10061350] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer; however, the currently available therapeutic drugs for treatment have limited efficacy. Cancer stemness and the tumor microenvironment may play crucial roles in tumor growth and chemoresistance. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum chaperone facilitating protein folding and cell homeostasis during stress and may participate in chemoresistance. Isoliquiritigenin (ISL) is a bioactive flavonoid found in licorice. In this study, we demonstrated the role of GRP78 in gastric cancer stemness and evaluated GRP78-mediated stemness inhibition, tumor microenvironment regulation, and chemosensitivity promotion by ISL. ISL not only suppressed GRP78-mediated gastric cancer stem cell–like characteristics, stemness-related protein expression, and cancer-associated fibroblast activation but also gastric tumor growth in xenograft animal studies. The findings indicated that ISL is a promising candidate for clinical use in combination chemotherapy.
Collapse
|
13
|
Alemohammad H, Motafakkerazad R, Asadzadeh Z, Farsad N, Hemmat N, Najafzadeh B, Vasefifar P, Baradaran B. siRNA-mediated silencing of Nanog reduces stemness properties and increases the sensitivity of HepG2 cells to cisplatin. Gene 2022; 821:146333. [PMID: 35182674 DOI: 10.1016/j.gene.2022.146333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Liver cancer is one of the most lethal cancers having worldwide prevalence. Despite significant progress in cancer therapy, liver cancer-induced mortality is very high. Nanog, as an essential transcription factor modulating cellular multipotency, causes tumor progression, drug resistance, and preserves stemness properties in various tumors such as liver cancer. Thus, this research was conducted to evaluate the impact of combination therapy of Nanog siRNA/cisplatin on the sensitivity of liver cancer cells to this drug. HepG2 cells were transfected with Nanog siRNA and treated with cisplatin, individually and in combination. Then, it was observed that in transfected HepG2 cells, Nanog expression was significantly reduced at mRNA level and also these cells were sensitized to cisplatin. In addition, to assess the impact of Nanog siRNA and cisplatin individually and in combination on cells' viability, migration capacity, apoptosis, and cell cycle progression, the MTT, wound healing, colony formation assay, Annexin V/PI staining, and flow cytometry assays were applied on HepG2 cells, respectively. Also, the quantitive Real-Time PCR was used to check the expression of stemness-associated genes (CD44, CD133, and Sox2), and apoptosis-related genes (caspase-3, 8, 9, BAX and Bcl2) after combination therapy. It is indicated that the combination of Nanog siRNA and cisplatin significantly reduced proliferation, migration, and colony formation ability, as well as increased apoptosis rate, and cell cycle arrest. Also, it is found that the combination of Nanog siRNA and cisplatin down-regulated the expression of stemness-associated genes and up-regulated apoptosis-related genes in HepG2 cells. Hence, it can be suggested that Nanog inhibition in combination with cisplatin is a potential therapeutic strategy for developing new therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Resveratrol Analog 4-Bromo-Resveratrol Inhibits Gastric Cancer Stemness through the SIRT3-c-Jun N-Terminal Kinase Signaling Pathway. Curr Issues Mol Biol 2021; 44:63-72. [PMID: 35723384 PMCID: PMC8929134 DOI: 10.3390/cimb44010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer, but the currently available therapeutic drugs have limited efficacy. Studies have suggested that gastric cancer stem cells may play a key role in drug resistance in chemotherapy. Therefore, new agents that selectively target gastric cancer stem cells in gastric tumors are urgently required. Sirtuin-3 (SIRT3) is a deacetylase that regulates mitochondrial metabolic homeostasis to maintain stemness in glioma stem cells. Targeting the mitochondrial protein SIRT3 may provide a novel therapeutic option for gastric cancer treatment. However, the mechanism by which stemness is regulated through SIRT3 inhibition in gastric cancer remains unknown. We evaluated the stemness inhibition ability of the SIRT3 inhibitor 4′-bromo-resveratrol (4-BR), an analog of resveratrol in human gastric cancer cells. Our results suggested that 4-BR inhibited gastric cancer cell stemness through the SIRT3-c-Jun N-terminal kinase pathway and may aid in gastric cancer stem-cell–targeted therapy.
Collapse
|