1
|
Yan S, Lu T, Yang H, Ma L, Zhang Y, Li D. Decreased histone H3K9 dimethylation in synergy with DNA demethylation of Spi-1 binding site contributes to ADAMTS-5 expression in articular cartilage of osteoarthritis mice. J Cell Physiol 2024; 239:e31444. [PMID: 39318150 DOI: 10.1002/jcp.31444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Osteoarthritis (OA) is defined by articular cartilage degeneration, synovial membrane inflammation, and abnormal bone remodeling. Recent study has discovered that OA development is linked to an aberrant epigenetic modification of OA-related genes. Our previous research showed that DNA demethylation in ADAMTS-5 promoter region had a substantial impact on ADAMTS-5 expression in the mouse OA model. This process facilitated the binding of Spi-1 to ADAMTS-5 promoter. While alterations in histone methylation have been documented during embryonic development and cancer development, there is a paucity of data on the change in OA pathogenesis. Even no data have been reported on the role of histone modifications in ADAMTS-5 activation in OA. Following our previous study on the role of DNA methylation, we aimed to examine the contribution of histone H3K9 dimethylation in ADAMTS-5 activation in OA. Additionally, we aimed to elucidate the molecular mechanisms underlying the cooperative interaction between DNA methylation and histone H3K9 dimethylation. The potential for anti-OA intervention therapy which is based on modulating histone H3K9 dimethylation is also explored. We demonstrated that a reduction in histone H3K9 dimethylation, along with DNA demethylation of the Spi-1 binding site, had a role in ADAMTS-5 activation in the articular cartilage of OA mice. Significantly, the conditional deletion of histone demethylase to be identified as lysine-specific demethylase 1 (LSD1) in articular cartilage could alleviate the degenerative features of OA mice. Our study demonstrates the direct impact of histone H3K9 dimethylation on gene expression, which in turn contributes to OA development. This research enhances our understanding of the underlying causes of OA.
Collapse
Affiliation(s)
- Shuaichen Yan
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Tongxin Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Huapu Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Liang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | - Deqiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
2
|
Liang F, Jin J, Li Q, Duan J, Jiang A, Chen X, Geng H, Wu K, Yu F, Zhao X, Zhou Y, Hu D, Chen L. DOT1L/H3K79me2 represses HIV-1 reactivation via recruiting DCAF1. Cell Rep 2024; 43:114368. [PMID: 38905100 DOI: 10.1016/j.celrep.2024.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
DOT1L mediates the methylation of histone H3 at lysine 79 and, in turn, the transcriptional activation or repression in a context-dependent manner, yet the regulatory mechanisms and functions of DOT1L/H3K79me remain to be fully explored. Following peptide affinity purification and proteomic analysis, we identified that DCAF1-a component of the E3 ligase complex involved in HIV regulation-is associated with H3K79me2 and DOT1L. Interestingly, blocking the expression or catalytic activity of DOT1L or repressing the expression of DCAF1 significantly enhances the tumor necrosis factor alpha (TNF-α)/nuclear factor κB (NF-κB)-induced reactivation of the latent HIV-1 genome. Mechanistically, upon TNF-α/NF-κB activation, DCAF1 is recruited to the HIV-1 long terminal repeat (LTR) by DOT1L and H3K79me2. Recruited DCAF1 subsequently induces the ubiquitination of NF-κB and restricts its accumulation at the HIV-1 LTR. Altogether, our findings reveal a feedback modulation of HIV reactivation by DOT1L-mediated histone modification regulation and highlight the potential of targeting the DOT1L/DCAF1 axis as a therapeutic strategy for HIV treatment.
Collapse
Affiliation(s)
- Fenfei Liang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaxing Jin
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiming Li
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiangkai Duan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ao Jiang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoqing Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kai Wu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Yu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaolu Zhao
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Zhou
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Deqing Hu
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Cancer Institute and Hospital of Tianjin Medical University, Tianjin 300060, China.
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
4
|
The histone demethylase LSD1 promotes renal inflammation by mediating TLR4 signaling in hepatitis B virus-associated glomerulonephritis. Cell Death Dis 2019; 10:278. [PMID: 30894511 PMCID: PMC6427019 DOI: 10.1038/s41419-019-1514-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Renal inflammation significantly contributes to the progression of hepatitis B virus (HBV)-associated glomerulonephritis (HBV-GN), but the mechanisms that control its precise regulation remain largely unknown. In this study, we showed that the lysine-specific demethylase 1 (LSD1) was significantly upregulated in renal tissue of HBV-GN patients, and its expression was positively correlated with inflammation. Functionally, LSD1 could promote HBV-induced release of proinflammatory mediators in HK-2 cells, a human renal tubular epithelial (RTE) cell line. Mechanistic investigations suggested that LSD1 directly promoted the transcription of the inflammatory-related gene Tlr4 by eliminating the mono- or di-methylation of H3K9 near its promoter. Knockdown of Lsd1 further inhibited TLR4-NF-κB/JNK signaling cascades, and subsequently decreased HBV-induced production of proinflammatory mediators in HK-2 cells. Co-transfection with Tlr4-expressing plasmids counteracted these effects. Meanwhile, downregulation of abovementioned TLR4-related pathways using small-molecule inhibitors attenuated inflammation. Importantly, LSD1 inhibitor tranylcypromine (TCP) could inhibit TLR4-NF-κB/JNK signaling axis and alleviate renal inflammation in HBV transgenic mice. Taken together, our data identify LSD1 as a novel regulator of renal inflammation and as a potential therapeutic target in HBV-GN.
Collapse
|
5
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Khan S, Iqbal M, Tariq M, Baig SM, Abbas W. Epigenetic regulation of HIV-1 latency: focus on polycomb group (PcG) proteins. Clin Epigenetics 2018; 10:14. [PMID: 29441145 PMCID: PMC5800276 DOI: 10.1186/s13148-018-0441-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Abstract
HIV-1 latency allows the virus to persist until reactivation, in a transcriptionally silent form in its cellular reservoirs despite the presence of effective cART. Such viral persistence represents a major barrier to HIV eradication since treatment interruption leads to rebound plasma viremia. Polycomb group (PcG) proteins have recently got a considerable attention in regulating HIV-1 post-integration latency as they are involved in the repression of proviral gene expression through the methylation of histones. This epigenetic regulation plays an important role in the establishment and maintenance of HIV-1 latency. In fact, PcG proteins act in complexes and modulate the epigenetic signatures of integrated HIV-1 promoter. Key role played by PcG proteins in the molecular control of HIV-1 latency has led to hypothesize that PcG proteins may represent a valuable target for future HIV-1 therapy in purging HIV-1 reservoirs. In this regard, various small molecules have been synthesized or explored to specifically block the epigenetic activity of PcG. In this review, we will highlight the possible therapeutic approaches to achieve either a functional or sterilizing cure of HIV-1 infection with special focus on histone methylation by PcG proteins together with current and novel pharmacological approaches to reactivate HIV-1 from latency that could ultimately lead towards a better clearance of viral latent reservoirs.
Collapse
Affiliation(s)
- Sheraz Khan
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Tariq
- Department of Biology (Epigenetics group), SBA School of Science and Engineering, LUMS, Lahore, 54792 Pakistan
| | - Shahid M. Baig
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| |
Collapse
|
7
|
Jin Y, Huo B, Fu X, Cheng Z, Zhu J, Zhang Y, Hao T, Hu X. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells. Biomed Pharmacother 2017; 92:896-904. [DOI: 10.1016/j.biopha.2017.05.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/03/2023] Open
|
8
|
Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, Luo X, Chen Z, Chen Y, Xiong J, Xu X, Ding L, Ye Q. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget 2016; 7:9859-75. [PMID: 26848522 PMCID: PMC4891089 DOI: 10.18632/oncotarget.7126] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is essential for tumor growth. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis. However, how transcription factors interact with histone-modifying enzymes to regulate VEGF transcription and tumor angiogenesis remains unclear. Here, we show that transcription factor GATA1 associates with the histone methyltransferase SET7 to promote VEGF transcription and breast tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that GATA1 was required for recruitment of SET7, RNA polymerase II and transcription factor II B to VEGF core promoter. GATA1 enhanced breast cancer cell (MCF7, ZR75-1 and MDA-MB-231)-secreted VEGF via SET7, which promoted vascular endothelial cell (HUVEC) proliferation, migration and tube formation. SET7 was required for GATA1-induced breast tumor angiogenesis and growth in nude mice. Immunohistochemical staining showed that expression of GATA1 and SET7 was upregulated and positively correlated with VEGF expression and microvessel number in 80 breast cancer patients. GATA1 and SET7 are independent poor prognostic factors in breast cancer. Our data provide novel insights into VEGF transcriptional regulation and suggest GATA1/SET7 as cancer therapeutic targets.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Zhou
- Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuhua Song
- The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Zhida Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yingjie Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Jiaxiu Xiong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
9
|
Abstract
Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.
Collapse
Affiliation(s)
- Wolfgang Fischle
- King Abdullah University of Science and Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Str.
4, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Yu Y, Chen J, Gao Y, Gao J, Liao R, Wang Y, Oyang C, Li E, Zeng C, Zhou S, Yang P, Jin H, Yi W. Quantitative Profiling of Combinational K27/K36 Modifications on Histone H3 Variants in Mouse Organs. J Proteome Res 2016; 15:1070-9. [PMID: 26799478 DOI: 10.1021/acs.jproteome.5b01164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coexisting post-translational modifications (PTMs) on histone H3 N-terminal tails were known to crosstalk between each other, indicating their interdependency in the epigenetic regulation pathways. H3K36 methylation, an important activating mark, was recently reported to antagonize with PRC2-mediated H3K27 methylation with possible crosstalk mechanism during transcription regulation process. On the basis of our previous studies, we further integrated RP/HILIC liquid chromatography with MRM mass spectrometry to quantify histone PTMs from various mouse organs, especially the combinatorial K27/K36 marks for all three major histone H3 variants. Despite their subtle difference in physicochemical properties, we successfully obtained decent separation and high detection sensitivity for both histone H3.3 specific peptides and histone H3.1/3.2 specific peptides. In addition, the overall abundance of H3.3 can be quantified simultaneously. We applied this method to investigate the pattern of the combinatorial K27/K36 marks for all three major histone H3 variants across five mouse organs. Intriguing distribution differences were observed not only between different H3 variants but also between different organs. Our data shed the new insights into histone codes functions in epigenetic regulation during cell differentiation and developmental process.
Collapse
Affiliation(s)
- Yanyan Yu
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - Jiajia Chen
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Yuan Gao
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - Jun Gao
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - Rijing Liao
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - Yi Wang
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Counde Oyang
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - En Li
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - Chenhui Zeng
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - Shaolian Zhou
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| | - Pengyuan Yang
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Hong Jin
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Wei Yi
- China Novartis Institutes for BioMedical Research Co. Ltd. , Building 8, Lane 898 Halei Road, Shanghai 201203, China
| |
Collapse
|
11
|
El Mansouri FE, Nebbaki SS, Kapoor M, Afif H, Martel-Pelletier J, Pelletier JP, Benderdour M, Fahmi H. Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes. Arthritis Res Ther 2014; 16:R113. [PMID: 24886859 PMCID: PMC4060543 DOI: 10.1186/ar4564] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/30/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE2, a critical mediator in the pathophysiology of osteoarthritis (OA). Histone methylation plays an important role in epigenetic gene regulation. In this study, we investigated the roles of histone H3 lysine 9 (H3K9) methylation in interleukin 1β (IL-1β)-induced mPGES-1 expression in human chondrocytes. Methods Chondrocytes were stimulated with IL-1β, and the expression of mPGES-1 mRNA was evaluated using real-time RT-PCR. H3K9 methylation and the recruitment of the histone demethylase lysine-specific demethylase 1 (LSD1) to the mPGES-1 promoter were evaluated using chromatin immunoprecipitation assays. The role of LSD1 was further evaluated using the pharmacological inhibitors tranylcypromine and pargyline and small interfering RNA (siRNA)-mediated gene silencing. The LSD1 level in cartilage was determined by RT-PCR and immunohistochemistry. Results The induction of mPGES-1 expression by IL-1β correlated with decreased levels of mono- and dimethylated H3K9 at the mPGES-1 promoter. These changes were concomitant with the recruitment of the histone demethylase LSD1. Treatment with tranylcypromine and pargyline, which are potent inhibitors of LSD1, prevented IL-1β-induced H3K9 demethylation at the mPGES-1 promoter and expression of mPGES-1. Consistently, LSD1 gene silencing with siRNA prevented IL-1β-induced H3K9 demethylation and mPGES-1 expression, suggesting that LSD1 mediates IL-1β-induced mPGES-1 expression via H3K9 demethylation. We show that the level of LSD1 was elevated in OA compared to normal cartilage. Conclusion These results indicate that H3K9 demethylation by LSD1 contributes to IL-1β-induced mPGES-1 expression and suggest that this pathway could be a potential target for pharmacological intervention in the treatment of OA and possibly other arthritic conditions.
Collapse
|
12
|
Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J, Lemak A, Bultsma Y, Houliston S, Schwarzer D, Divecha N, Arrowsmith CH, Fischle W. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 2014; 54:905-919. [PMID: 24813945 DOI: 10.1016/j.molcel.2014.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stefan Winter
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Alexander Lemak
- Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Yvette Bultsma
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Nullin Divecha
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
13
|
Rezaei-Ghaleh N, Klama F, Munari F, Zweckstetter M. Vorhersage der Rotationskorrelationszeit in dynamischen Mehrdomänenproteinen und supramolekularen Komplexen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Rezaei-Ghaleh N, Klama F, Munari F, Zweckstetter M. Predicting the Rotational Tumbling of Dynamic Multidomain Proteins and Supramolecular Complexes. Angew Chem Int Ed Engl 2013; 52:11410-4. [DOI: 10.1002/anie.201305094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 01/10/2023]
|