1
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
2
|
Lainetti PDF, Leis-Filho AF, Laufer-Amorim R, Battazza A, Fonseca-Alves CE. Mechanisms of Resistance to Chemotherapy in Breast Cancer and Possible Targets in Drug Delivery Systems. Pharmaceutics 2020; 12:1193. [PMID: 33316872 PMCID: PMC7763855 DOI: 10.3390/pharmaceutics12121193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most important cancers worldwide, and usually, chemotherapy can be used in an integrative approach. Usually, chemotherapy treatment is performed in association with surgery, radiation or hormone therapy, providing an increased outcome to patients. However, tumors can develop resistance to different drugs, progressing for a more aggressive phenotype. In this scenario, the use of nanocarriers could help to defeat tumor cell resistance, providing a new therapeutic perspective for patients. Thus, this systematic review aims to bring the molecular mechanisms involved in BC chemoresistance and extract from the previous literature information regarding the use of nanoparticles as potential treatment for chemoresistant breast cancer.
Collapse
Affiliation(s)
- Patrícia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
| | - Renee Laufer-Amorim
- Department of Veterinary Clinic, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil;
| | - Alexandre Battazza
- Department of Pathology, Botucatu Medical School, São Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
- Institute of Health Sciences, Paulista University–UNIP, Bauru-SP 17048-290, Brazil
| |
Collapse
|
3
|
Silva-Oliveira R, Pereira FF, Petronilho S, Martins AT, Lameirinhas A, Constâncio V, Caldas-Ribeiro I, Salta S, Lopes P, Antunes L, Castro F, de Sousa SP, Henrique R, Jerónimo C. Clinical Significance of ARID1A and ANXA1 in HER-2 Positive Breast Cancer. J Clin Med 2020; 9:E3911. [PMID: 33276477 PMCID: PMC7761245 DOI: 10.3390/jcm9123911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND trastuzumab is considered the standard of care for human epidermal growth factor receptor-2 (HER-2+) breast cancer patients. Regardless of the benefits of its use, many early-stage patients eventually recur, and usually, the disease progresses within a year. Since about half of the HER-2+ patients do not respond to trastuzumab, new biomarkers of prognosis and prediction are warranted to allow a better patient stratification. Annexin A1 (ANXA1) was previously reported to contribute to trastuzumab resistance through AKT activation. An association between adenine thymine-rich interactive domain 1A (ARID1A) loss and ANXA1 upregulation was also previously suggested by others. METHODS in this study, we examined tissue samples from 215 HER-2+ breast cancer patients to investigate the value of ARID1A and ANXA1 protein levels in trastuzumab response prediction and patient outcome. Expression of ARID1A and ANXA1 were assessed by immunohistochemistry. RESULTS contrary to what was expected, no inverse association was found between ARID1A and ANXA1 expression. HER-2+ (non-luminal) tumours displayed higher ANXA1 expression than luminal B-like (HER-2+) tumours. Concerning trastuzumab resistance, ARID1A and ANXA1 proteins did not demonstrate predictive value as biomarkers. Nevertheless, an association was depicted between ANXA1 expression and breast cancer mortality and relapse. CONCLUSIONS overall, our results suggest that ANXA1 may be a useful prognostic marker in HER-2+ patients. Additionally, its ability to discriminate between HER-2+ (non-luminal) and luminal B-like (HER-2+) patients might assist in patient stratification regarding treatment strategy.
Collapse
Affiliation(s)
- Rita Silva-Oliveira
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Filipa Ferreira Pereira
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Sara Petronilho
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Teresa Martins
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Inês Caldas-Ribeiro
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Sofia Salta
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
| | - Paula Lopes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Luís Antunes
- Cancer Epidemiology Group—Research Center & Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Fernando Castro
- Breast Cancer Clinic and Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Susana Palma de Sousa
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.F.P.); (S.P.d.S.)
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (R.S.-O.); (S.P.); (A.T.M.); (A.L.); (V.C.); (I.C.-R.); (S.S.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
5
|
Miloshev G, Staneva D, Uzunova K, Vasileva B, Draganova-Filipova M, Zagorchev P, Georgieva M. Linker histones and chromatin remodelling complexes maintain genome stability and control cellular ageing. Mech Ageing Dev 2018; 177:55-65. [PMID: 30025887 DOI: 10.1016/j.mad.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Linker histones are major players in chromatin organization and per se are essential players in genome homeostasis. As the fifth class of histone proteins the linker histones not only interact with DNA and core histones but also with other chromatin proteins. These interactions prove to be essential for the higher levels of chromatin organization like chromatin loops, transcription factories and chromosome territories. Our recent results have proved that Saccharomyces cerevisiae linker histone - Hho1p, physically interacts with the actin-related protein 4 (Arp4) and that the abrogation of this interaction through the deletion of the gene for the linker histone in arp4 mutant cells leads to global changes in chromatin compaction. Here, we show that the healthy interaction between the yeast linker histone and Arp4p is critical for maintaining genome stability and for controlling cellular sensitivity to different types of stress. The abolished interaction between the linker histone and Arp4p leads the mutant yeast cells to premature ageing phenotypes. Cells die young and are more sensitive to stress. These results unambiguously prove the role of linker histones and chromatin remodelling in ageing by their cooperation in pertaining higher-order chromatin compaction and thus maintaining genome stability.
Collapse
Affiliation(s)
- George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Katya Uzunova
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University, Plovdiv, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
6
|
DMXL2 drives epithelial to mesenchymal transition in hormonal therapy resistant breast cancer through Notch hyper-activation. Oncotarget 2016; 6:22467-79. [PMID: 26093085 PMCID: PMC4673176 DOI: 10.18632/oncotarget.4164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022] Open
Abstract
The acquisition of endocrine therapy resistance in estrogen receptor α (ERα) breast cancer patients represents a major clinical problem. Notch signalling has been extensively linked to breast cancer especially in patients who fail to respond to endocrine therapy. Following activation, Notch intracellular domain is released and enters the nucleus where activates transcription of target genes. The numerous steps that cascade after activation of the receptor complicate using Notch as biomarker. Hence, this warrants the development of reliable indicators of Notch activity. DMXL2 is a novel regulator of Notch signalling not yet investigated in breast cancer. Here, we demonstrate that DMXL2 is overexpressed in a subset of endocrine therapy resistant breast cancer cell lines where it promotes epithelial to mesenchymal transition through hyper-activation of Notch signalling via V-ATPase dependent acidification. Following DMXL2 depletion or treatment with Bafilomycin A1, both EMT targets and Notch signalling pathway significantly decrease. We show for the first time that DMXL2 protein levels are significantly increased in ERα positive breast cancer patients that progress after endocrine therapy. Finally, we demonstrate that DMXL2 is a transmembrane protein with a potential extra-cellular domain. These findings identify DMXL2 as a novel, functional biomarker for ERα positive breast cancer.
Collapse
|
7
|
Dysregulation of histone methyltransferases in breast cancer - Opportunities for new targeted therapies? Mol Oncol 2016; 10:1497-1515. [PMID: 27717710 DOI: 10.1016/j.molonc.2016.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/24/2023] Open
Abstract
Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues on histone tails and non-histone targets. These important post-translational modifications are exquisitely regulated and affect chromatin compaction and transcriptional programs leading to diverse biological outcomes. There is accumulating evidence that genetic alterations of several HMTs impinge on oncogenic or tumor-suppressor functions and influence both cancer initiation and progression. HMTs therefore represent an opportunity for therapeutic targeting in those patients with tumors in which HMTs are dysregulated, to reverse the histone marks and transcriptional programs associated with aggressive tumor behavior. In this review, we describe the known histone methyltransferases and their emerging roles in breast cancer tumorigenesis.
Collapse
|
8
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Mechanisms that Increase Stability of Estrogen Receptor Alpha in Breast Cancer. Clin Breast Cancer 2016; 17:1-10. [PMID: 27561704 DOI: 10.1016/j.clbc.2016.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor alpha (ER) is a transcriptional regulator that controls the expression of genes related to cellular proliferation and differentiation in normal mammary tissue. However, the expression, abundance, and activity of this receptor are increased in 70% of breast cancers. The ER upregulation is facilitated by several molecular mechanisms, including protein stability, which represents an important strategy to maintain an active and functional repertoire of ER. Several proteins interact and protect ER from degradation by the ubiquitin-proteasome system. Through diverse mechanisms, these proteins prevent polyubiquitination and degradation of ER, leading to an increase in ER protein levels; consequently, estrogen signaling and its physiologic effects are enhanced in breast cancer cells. Thus, increased protein stability seems to be one of the main reasons that ER is upregulated in breast cancer. Here, we highlight findings on the proteins and mechanisms that participate directly or indirectly in ER stability and their relevance to breast cancer.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico.
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|
9
|
Matta J, Morales L, Ortiz C, Adams D, Vargas W, Casbas P, Dutil J, Echenique M, Suárez E. Estrogen Receptor Expression Is Associated with DNA Repair Capacity in Breast Cancer. PLoS One 2016; 11:e0152422. [PMID: 27032101 PMCID: PMC4816515 DOI: 10.1371/journal.pone.0152422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
Estrogen-receptor-positive (ER+) tumors employ complex signaling that engages in crosstalk with multiple pathways through genomic and non-genomic regulation. A greater understanding of these pathways is important for developing improved biomarkers that can better determine treatment choices, risk of recurrence and cancer progression. Deficiencies in DNA repair capacity (DRC) is a hallmark of breast cancer (BC); therefore, in this work we tested whether ER signaling influences DRC. We analyzed the association between ER positivity (% receptor activation) and DRC in 270 BC patients, then further stratified our analysis by HER2 receptor status. Our results show that among HER2 negative, the likelihood of having low DRC values among ER- women is 1.92 (95% CI: 1.03, 3.57) times the likelihood of having low DRC values among ER+ women, even adjusting for different potential confounders (p<0.05); however, a contrary pattern was observed among HER2 positives women. In conclusion, there is an association between DRC levels and ER status, and this association is modified by HER2 receptor status. Adding a DNA repair capacity test to hormone receptor testing may provide new information on defective DNA repair phenotypes, which could better stratify BC patients who have ER+ tumors. ER+/HER2- tumors are heterogeneous, incompletely defined, and clinically challenging to treat; the addition of a DRC test could better characterize and classify these patients as well as help clinicians select optimal therapies, which could improve outcomes and reduce recurrences.
Collapse
Affiliation(s)
- Jaime Matta
- Department of Basic Sciences, Division of Pharmacology & Toxicology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Department of Basic Sciences, Division of Cancer Biology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- * E-mail:
| | - Luisa Morales
- Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico, United States of America
| | - Carmen Ortiz
- Department of Basic Sciences, Division of Pharmacology & Toxicology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Department of Basic Sciences, Division of Cancer Biology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Damian Adams
- Department of Basic Sciences, Division of Pharmacology & Toxicology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Department of Basic Sciences, Division of Cancer Biology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Wanda Vargas
- Department of Basic Sciences, Division of Pharmacology & Toxicology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Department of Basic Sciences, Division of Cancer Biology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Patricia Casbas
- Department of Basic Sciences, Division of Cancer Biology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Department of Basic Sciences, Division of Biochemistry, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Julie Dutil
- Department of Basic Sciences, Division of Cancer Biology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Department of Basic Sciences, Division of Biochemistry, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Miguel Echenique
- Auxilio Mutuo Hospital, San Juan, Puerto Rico, United States of America
| | - Erick Suárez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| |
Collapse
|
10
|
Feed-forward transcriptional programming by nuclear receptors: regulatory principles and therapeutic implications. Pharmacol Ther 2014; 145:85-91. [PMID: 25168919 DOI: 10.1016/j.pharmthera.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023]
Abstract
Nuclear receptors (NRs) are widely targeted to treat a range of human diseases. Feed-forward loops are an ancient mechanism through which single cell organisms organize transcriptional programming and modulate gene expression dynamics, but they have not been systematically studied as a regulatory paradigm for NR-mediated transcriptional responses. Here, we provide an overview of the basic properties of feed-forward loops as predicted by mathematical models and validated experimentally in single cell organisms. We review existing evidence implicating feed-forward loops as important in controlling clinically relevant transcriptional responses to estrogens, progestins, and glucocorticoids, among other NR ligands. We propose that feed-forward transcriptional circuits are a major mechanism through which NRs integrate signals, exert temporal control over gene regulation, and compartmentalize client transcriptomes into discrete subunits. Implications for the design and function of novel selective NR ligands are discussed.
Collapse
|
11
|
Li D, Bi FF, Cao JM, Cao C, Liu B, Yang Q. Regulation of DNA methyltransferase 1 transcription in BRCA1-mutated breast cancer: a novel crosstalk between E2F1 motif hypermethylation and loss of histone H3 lysine 9 acetylation. Mol Cancer 2014; 13:26. [PMID: 24502362 PMCID: PMC3936805 DOI: 10.1186/1476-4598-13-26] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND DNA methyltransferase 1 (DNMT1) plays a critical role in breast cancer progression. However, the epigenetic mechanism regulating DNMT1 expression remains largely unknown. METHODS Epigenetic regulation of DNMT1 was assessed in 85 invasive ductal carcinomas from BRCA1 mutation carriers. Association between clinicopathological features and DNMT1 promoter methylation was determined using Fisher's exact test. Univariate analysis of survival was performed using the Kaplan-Meier method. Multivariate Cox regression analysis was performed to identify the independent prognostic factors for overall survival. RESULTS Hypermethylated E2F transcription factor 1 (E2F1) motif is a key regulatory element for the DNMT1 gene in BRCA1-mutated breast cancer. Mechanistically, the abnormal E2F1 motif methylation-mediated loss of active histone H3 lysine 9 acetylation (H3K9ac) and transcription factor E2F1 enrichment synergistically inhibited the transcription of DNMT1. Clinicopathological data indicated that the hypermethylated E2F1 motif was associated with histological grade, lymph node, Ki67 and E-cadherin status; univariate survival and multivariate analyses demonstrated that lymph node metastasis was an independent and reliable prognostic factor for BRCA1-mutated breast cancer patients. CONCLUSIONS Our findings imply that genetic (such as BRCA1 mutation) and epigenetic mechanisms (such as DNA methylation, histone modification, transcription factor binding) are jointly involved in the malignant progression of DNMT1-related breast cancer.
Collapse
Affiliation(s)
- Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China
- Experimental Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Fang-Fang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Ji-Min Cao
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Chen Cao
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Liu
- Department of Laboratory Medicine, No. 1 Hospital of China Medical University, Shenyang 110001, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
12
|
Belfiore A, Perks CM. Grand challenges in cancer endocrinology: endocrine related cancers, an expanding concept. Front Endocrinol (Lausanne) 2013; 4:141. [PMID: 24115945 PMCID: PMC3792368 DOI: 10.3389/fendo.2013.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 09/24/2013] [Indexed: 01/21/2023] Open
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: ;
| | - Claire M. Perks
- IGFs and Metabolic Endocrinology Group, Faculty of Medicine, Southmead Hospital, University of Bristol, Bristol, UK
- *Correspondence: ;
| |
Collapse
|