1
|
Lovsund T, Mashayekhi F, Fitieh A, Stafford J, Ismail IH. Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance. Cells 2023; 12:1904. [PMID: 37508568 PMCID: PMC10378431 DOI: 10.3390/cells12141904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to our understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy. In this review, we summarize the updated understanding of the vast homeostatic functions the PARP family mediates and pin the importance of PARPi therapies as anti-cancer agents while discussing resistance mechanisms and current up-and-coming counter-strategies for countering such resistance.
Collapse
Affiliation(s)
- Taylor Lovsund
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Fitieh
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - James Stafford
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
2
|
Zhang Y, Song Y, Dai J, Wang Z, Zeng Y, Chen F, Zhang P. Endoplasmic Reticulum Stress-Related Signature Predicts Prognosis and Drug Response in Clear Cell Renal Cell Carcinoma. Front Pharmacol 2022; 13:909123. [PMID: 35959432 PMCID: PMC9360548 DOI: 10.3389/fphar.2022.909123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. The maximum number of deaths associated with kidney cancer can be attributed to ccRCC. Disruption of cellular proteostasis results in endoplasmic reticulum (ER) stress, which is associated with various aspects of cancer. It is noteworthy that the role of ER stress in the progression of ccRCC remains unclear. We classified 526 ccRCC samples identified from the TCGA database into the C1 and C2 subtypes by consensus clustering of the 295 ER stress-related genes. The ccRCC samples belonging to subtype C2 were in their advanced tumor stage and grade. These samples were characterized by poor prognosis and malignancy immune microenvironment. The upregulation of the inhibitory immune checkpoint gene expression and unique drug sensitivity were also observed. The differentially expressed genes between the two clusters were explored. An 11-gene ER stress-related prognostic risk model was constructed following the LASSO regression and Cox regression analyses. In addition, a nomogram was constructed by integrating the clinical parameters and risk scores. The calibration curves, ROC curves, and DCA curves helped validate the accuracy of the prediction when both the TCGA dataset and the external E-MTAB-1980 dataset were considered. Moreover, we analyzed the differentially expressed genes common to the E-MTAB-1980 and TCGA datasets to screen out new therapeutic compounds. In summary, our study can potentially help in the comprehensive understanding of ER stress in ccRCC and serve as a reference for future studies on novel prognostic biomarkers and treatments.
Collapse
Affiliation(s)
- Yuke Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Yancheng Song
- The Second Department of General Surgery, Xuanhan Second People’s Hospital, Dazhou, China
| | - Jiangwen Dai
- Department of Oncology, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Zhaoxiang Wang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhao Zeng
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Chen
- Department of Integrated Care Management Center, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Feng Chen, ; Peng Zhang,
| | - Peng Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Feng Chen, ; Peng Zhang,
| |
Collapse
|
3
|
Ördög N, Borsos BN, Majoros H, Ujfaludi Z, Pankotai-Bodó G, Bankó S, Sükösd F, Kuthi L, Pankotai T. The clinical significance of epigenetic and RNAPII variabilities occurring in clear cell renal cell carcinoma as a potential prognostic marker. Transl Oncol 2022; 20:101420. [PMID: 35417813 PMCID: PMC9018449 DOI: 10.1016/j.tranon.2022.101420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
30 ccRCC patients were used, to follow the epigenetic changes (γH2A.X, H3K4me3 and H3K9me3) and the alterations in the level of RNA polymerase II (RNAPII). The variabilities between the tumorous and non-tumorous parts of the tissue were measured by image analysis in which we monitored 30 cells from different positions of either the tumorous or the non-tumorous part of the tissue sections. These markers were classified to predict patient outcomes based on their individual cellular background. These results also support that detection of any alteration in the level of H3K4me3, H3K9me3, and γH2AX can account valuable information for presuming the progression of ccRCC and the clinical benefits to select the most efficient personalized therapy.
Patients diagnosed with clear cell renal cell carcinoma (ccRCC) have poor prognosis for recurrence and approximately 30–40% of them will later develop metastases. For this reason, the appropriate diagnosis and the more detailed molecular characterisation of the primary tumour, including its susceptibility to metastasis, are crucial to select the proper adjuvant therapy by which the most prosperous outcome can be achieved. Nowadays, clinicopathological variables are used for classification of the tumours. Apart from these, molecular biomarkers are also necessary to improve risk classification, which would be the most beneficial amongst modern adjuvant therapies. As a potential molecular biomarker, to follow the transcriptional kinetics in ccRCC patients (n=30), we analysed epigenetic changes (γH2A.X, H3K4me3, and H3K9me3) and the alterations in the level of RNA polymerase II (RNAPII) by immunohistochemical staining on dissected tissue sections. The variabilities between the tumorous and non-tumorous parts of the tissue were detected using quantitative image analysis by monitoring 30 cells from different positions of either the tumorous or the non-tumorous part of the tissue sections. Data obtained from the analyses were used to identify potential prognostic features and to associate them with the progression. These markers might have a value to predict patient outcomes based on their individual cellular background. These results also support that detection of any alteration in the level of H3K4me3, H3K9me3, and γH2A.X can account for valuable information for presuming the progression of ccRCC and the clinical benefits to select the most efficient personalised therapy.
Collapse
|
4
|
The Role of Epigenetics in the Progression of Clear Cell Renal Cell Carcinoma and the Basis for Future Epigenetic Treatments. Cancers (Basel) 2021; 13:cancers13092071. [PMID: 33922974 PMCID: PMC8123355 DOI: 10.3390/cancers13092071] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The accumulated evidence on the role of epigenetic markers of prognosis in clear cell renal cell carcinoma (ccRCC) is reviewed, as well as state of the art on epigenetic treatments for this malignancy. Several epigenetic markers are likely candidates for clinical use, but still have not passed the test of prospective validation. Development of epigenetic therapies, either alone or in combination with tyrosine-kinase inhibitors of immune-checkpoint inhibitors, are still in their infancy. Abstract Clear cell renal cell carcinoma (ccRCC) is curable when diagnosed at an early stage, but when disease is non-confined it is the urologic cancer with worst prognosis. Antiangiogenic treatment and immune checkpoint inhibition therapy constitute a very promising combined therapy for advanced and metastatic disease. Many exploratory studies have identified epigenetic markers based on DNA methylation, histone modification, and ncRNA expression that epigenetically regulate gene expression in ccRCC. Additionally, epigenetic modifiers genes have been proposed as promising biomarkers for ccRCC. We review and discuss the current understanding of how epigenetic changes determine the main molecular pathways of ccRCC initiation and progression, and also its clinical implications. Despite the extensive research performed, candidate epigenetic biomarkers are not used in clinical practice for several reasons. However, the accumulated body of evidence of developing epigenetically-based biomarkers will likely allow the identification of ccRCC at a higher risk of progression. That will facilitate the establishment of firmer therapeutic decisions in a changing landscape and also monitor active surveillance in the aging population. What is more, a better knowledge of the activities of chromatin modifiers may serve to develop new therapeutic opportunities. Interesting clinical trials on epigenetic treatments for ccRCC associated with well established antiangiogenic treatments and immune checkpoint inhibitors are revisited.
Collapse
|
5
|
Rausch M, Weiss A, Zoetemelk M, Piersma SR, Jimenez CR, van Beijnum JR, Nowak-Sliwinska P. Optimized Combination of HDACI and TKI Efficiently Inhibits Metabolic Activity in Renal Cell Carcinoma and Overcomes Sunitinib Resistance. Cancers (Basel) 2020; 12:E3172. [PMID: 33126775 PMCID: PMC7693411 DOI: 10.3390/cancers12113172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by high histone deacetylase (HDAC) activity triggering both cell motility and the development of metastasis. Therefore, there is an unmet need to establish innovative strategies to advance the use of HDAC inhibitors (HDACIs). We selected a set of tyrosine kinase inhibitors (TKIs) and HDACIs to test them in combination, using the validated therapeutically guided multidrug optimization (TGMO) technique based on experimental testing and in silico data modeling. We determined a synergistic low-dose three-drug combination decreasing the cell metabolic activity in metastatic ccRCC cells, Caki-1, by over 80%. This drug combination induced apoptosis and showed anti-angiogenic activity, both in original Caki-1 and in sunitinib-resistant Caki-1 cells. Through phosphoproteomic analysis, we revealed additional targets to improve the translation of this combination in 3-D (co-)culture systems. Cell-cell and cell-environment interactions increased, reverting the invasive and metastatic phenotype of Caki-1 cells. Our data suggest that our optimized low-dose drug combination is highly effective in complex in vitro settings and promotes the activity of HDACIs.
Collapse
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Andrea Weiss
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Marloes Zoetemelk
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan, 1117 Amsterdam, The Netherlands; (S.R.P.); (C.R.J.)
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan, 1117 Amsterdam, The Netherlands; (S.R.P.); (C.R.J.)
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands
| | - Judy R. van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC-Location VUmc, VU University Amsterdam, 1117 Amsterdam, The Netherlands;
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
V Subramaniam A, Yehya AHS, Cheng WK, Wang X, Oon CE. Epigenetics: The master control of endothelial cell fate in cancer. Life Sci 2019; 232:116652. [PMID: 31302197 DOI: 10.1016/j.lfs.2019.116652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
Abstract
The development of new blood vessels from pre-existing vasculature is called angiogenesis. The growth of tumors depends on a network of supplying vessels that provide them with oxygen and nutrients. Pro-angiogenic factors that are secreted by tumors will trigger the sprouting of nearby existing blood vessels towards themselves and therefore researchers have developed targeted therapy towards these pro-angiogenic proteins to inhibit angiogenesis. However, certain pro-angiogenic proteins tend to bypass the inhibition. Thus, instead of targeting these expressed proteins, research towards angiogenesis inhibition had been focused on a deeper scale, epigenetic modifications. Epigenetic regulatory mechanisms are a heritable change in a sequence of stable but reversible gene function modification yet do not affect the DNA primary sequence directly. Methylation of DNA, modification of histone and silencing of micro-RNA (miRNA)-associated gene are currently considered to initiate and sustain epigenetic changes. Recent findings on the subject matter have provided an insight into the mechanism of epigenetic modifications, thus this review aims to present an update on the latest studies.
Collapse
Affiliation(s)
- Ayappa V Subramaniam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, USM, Pulau Pinang, Malaysia
| | - Ashwaq Hamid Salem Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, USM, Pulau Pinang, Malaysia
| | - Wei Kang Cheng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, USM, Pulau Pinang, Malaysia.
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore 138632, Singapore; Department of Cell Biology, Institute of Ophthalmology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, USM, Pulau Pinang, Malaysia.
| |
Collapse
|
7
|
Ferreira MJ, Pires-Luís AS, Vieira-Coimbra M, Costa-Pinheiro P, Antunes L, Dias PC, Lobo F, Oliveira J, Gonçalves CS, Costa BM, Henrique R, Jerónimo C. SETDB2 and RIOX2 are differentially expressed among renal cell tumor subtypes, associating with prognosis and metastization. Epigenetics 2018; 12:1057-1064. [PMID: 29099276 PMCID: PMC5810786 DOI: 10.1080/15592294.2017.1385685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing detection of small renal masses by imaging techniques entails the need for accurate discrimination between benign and malignant renal cell tumors (RCTs) as well as among malignant RCTs, owing to differential risk of progression through metastization. Although histone methylation has been implicated in renal tumorigenesis, its potential as biomarker for renal cell carcinoma (RCC) progression remains largely unexplored. Thus, we aimed to characterize the differential expression of histone methyltransferases (HMTs) and histone demethylases (HDMs) in RCTs to assess their potential as metastasis biomarkers. We found that SETDB2 and RIOX2 (encoding for an HMT and an HDM, respectively) expression levels was significantly altered in RCTs; these genes were further selected for validation by quantitative RT-PCR in 160 RCTs. Moreover, SETDB2, RIOX2, and three genes encoding for enzymes involved in histone methylation (NO66, SETD3, and SMYD2), previously reported by our group, were quantified (RT-PCR) in an independent series of 62 clear cell renal cell carcinoma (ccRCC) to assess its potential role in ccRCC metastasis development. Additional validation was performed using TCGA dataset. SETDB2 and RIOX2 transcripts were overexpressed in RCTs compared to renal normal tissues (RNTs) and in oncocytomas vs. RCCs, with ccRCC and papillary renal cell carcinoma (pRCC) displaying the lowest levels. Low SETDB2 expression levels and higher stage independently predicted shorter disease-free survival. In our 62 ccRCC cohort, significantly higher RIOX2, but not SETDB2, expression levels were depicted in cases that developed metastasis during follow-up. These findings were not apparent in TCGA dataset. We concluded that SETDB2 and RIOX2 might be involved in renal tumorigenesis and RCC progression, especially in metastatic spread. Moreover, SETDB2 expression levels might independently discriminate among RCC subgroups with distinct outcome, whereas higher RIOX2 transcript levels might identify ccRCC cases with more propensity to endure metastatic dissemination.
Collapse
Affiliation(s)
- Maria João Ferreira
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ana Sílvia Pires-Luís
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
- Departments of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Márcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Pedro Costa-Pinheiro
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Luís Antunes
- Departments of Epidemiology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Paula C. Dias
- Departments of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Francisco Lobo
- Departments of Urology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Jorge Oliveira
- Departments of Urology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
- Departments of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS) – University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS) – University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18081774. [PMID: 28812986 PMCID: PMC5578163 DOI: 10.3390/ijms18081774] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/29/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.
Collapse
|
9
|
Pili R, Liu G, Chintala S, Verheul H, Rehman S, Attwood K, Lodge MA, Wahl R, Martin JI, Miles KM, Paesante S, Adelaiye R, Godoy A, King S, Zwiebel J, Carducci MA. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial. Br J Cancer 2017; 116:874-883. [PMID: 28222071 PMCID: PMC5379145 DOI: 10.1038/bjc.2017.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Class II histone deacetylase (HDAC) inhibitors induce hypoxia-inducible factor-1 and -2α degradation and have antitumour effects in combination with vascular endothelial growth factor (VEGF) inhibitors. In this study, we tested the safety and efficacy of the HDAC inhibitor vorinostat and the VEGF blocker bevacizumab in metastatic clear-cell renal cell carcinoma (ccRCC) patients previously treated with different drugs including sunitinib, sorafenib, axitinib, interleukin-2, interferon, and temsirolimus. METHODS Patients with up to two prior regimens were eligible for treatment, consisting of vorinostat 200 mg orally two times daily × 2 weeks, and bevacizumab 15 mg kg-1 intravenously every 3 weeks. The primary end points were safety and tolerability, and the proportion of patients with 6 months of progression-free survival (PFS). Correlative studies included immunohistochemistry, FDG PET/CT scans, and serum analyses for chemokines and microRNAs. RESULTS Thirty-six patients were enrolled, with 33 evaluable for toxicity and efficacy. Eighteen patients had 1 prior treatment, 13 patients had 2 prior treatments, and 2 patients were treatment naïve. Two patients experienced grade 4 thrombocytopenia and three patients had grade 3 thromboembolic events during the course of exposure. We observed six objective responses (18%), including one complete response and five partial responses. The proportion of patients with PFS at 6 months was 48%. The median PFS and overall survival were 5.7 months (confidence interval (CI): 4.1-11.0) and 13.9 months (CI: 9.8-20.7), respectively. Correlative studies showed that modulation of specific chemokines and microRNAs were associated with clinical benefit. CONCLUSIONS The combination of vorinostat with bevacizumab as described is relatively well tolerated. Response rate and median PFS suggest clinical activity for this combination strategy in previously treated ccRCC.
Collapse
Affiliation(s)
- Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Glenn Liu
- University of Wisconsin Carbone Cancer Center, Wisconsin, WI, USA
| | - Sreenivasulu Chintala
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Hendrick Verheul
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - Richard Wahl
- Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA
| | | | | | | | - Remi Adelaiye
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | | | - Serina King
- Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Shenoy N, Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann Oncol 2016; 27:1685-95. [PMID: 27329246 DOI: 10.1093/annonc/mdw241] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for ∼80% of all RCC, and biallelic Von Hippel-Lindau (VHL) gene defects occur in ∼75% of sporadic ccRCC. The etiopathogenesis of VHL mutant metastatic RCC, based on our understanding to date of molecular mechanisms involved, is a sequence of events which can be grouped under the following: (i) loss of VHL activity (germline/somatic mutation + inactivation of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway due to loss of VHL activity and transcription of genes involved in angiogenesis, epithelial-mesenchymal transition, invasion, metastasis, survival, anaerobic glycolysis and pentose phosphate pathway; (iii) interactions of the HIF pathway with other oncogenic pathways; (iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and the influence of epigenetics on various oncogenic, apoptotic, cell cycle regulatory and mismatch repair pathways (inhibition of multiple tumor suppressor genes); (v) immune evasion, at least partially caused by changes in the epigenome. These mechanisms interact throughout the pathogenesis and progression of disease, and also confer chemoresistance and radioresistance, making it one of the most difficult metastatic cancers to treat. This article puts together the sequential pathogenesis of VHL mutant ccRCC by elaborating these mechanisms and the interplay of oncogenic pathways, epigenetics, metabolism and immune evasion, with a perspective on potential therapeutic strategies. We reflect on the huge gap between our understanding of the molecular biology and currently accepted standard of care in metastatic ccRCC, and present ideas for better translational research involving therapeutic strategies with combinatorial drug approach, targeting different aspects of the pathogenesis.
Collapse
Affiliation(s)
- N Shenoy
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - L Pagliaro
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| |
Collapse
|
11
|
Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 2016; 16:1678-89. [PMID: 27060368 DOI: 10.1002/pmic.201600003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/02/2016] [Accepted: 03/31/2016] [Indexed: 12/23/2022]
Abstract
MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (<5 ppm) and resolving power (∼75 000 at m/z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor.
Collapse
Affiliation(s)
- Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - David G Rizzo
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Jessica L Moore
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Michael J Noto
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,United States (U.S.) Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Departments of Pharmacology and Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
12
|
Xing T, He H. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology. Chin J Cancer Res 2016; 28:80-91. [PMID: 27041930 DOI: 10.3978/j.issn.1000-9604.2016.02.09] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy with numerous genetic and epigenetic alterations. This review summarizes the recent major findings of epigenetic alterations including DNA methylation, histone modifications, microRNAs and recently identified long noncoding RNAs in the development and progression of ccRCC. These epigenetic profilings can provide a promising means of prognostication and early diagnosis for patients with ccRCCs. With the developed high-throughput technologies nowadays, the epigenetic analyses will have possible clinical applications in the molecular pathology of ccRCC.
Collapse
Affiliation(s)
- Tianying Xing
- 1 Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 2 Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Huiying He
- 1 Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 2 Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
13
|
Zhu X, Cai L, Meng Q, Jin X. Gelsolin inhibits the proliferation and invasion of the 786-0 clear cell renal cell carcinoma cell line in vitro. Mol Med Rep 2015; 12:6887-94. [PMID: 26398833 DOI: 10.3892/mmr.2015.4313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the effect of gelsolin (GSN) on the proliferation and invasion of the 786-0 clear cell renal cell carcinoma (ccRCC) cell line in vitro. A GSN overexpression lentiviral vector was constructed and transfected into 786‑0 ccRCC cells in vitro. A 3-(4,5-dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay was conducted to detect the effect of GSN on the proliferation and adhesion ability of the 786‑0 ccRCC cells, and a Transwell invasion assay was used to determine the effect of GSN on the invasion of 786‑0 ccRCC cells. In addition, the expression levels of invasion‑associated proteins, matrix metalloproteinase (MMP)2, MMP9 and E‑cadherin were analyzed by ELISA and western blotting. The MTT assay demonstrated a significantly lower optical density value for the 786‑0/GSN cells compared with that of the 786‑0/green fluorescent protein (GFP) and 786‑0 cells following 24‑ and 48‑h culture (P<0.05). The mean penetration rate of the 786‑0/GSN cells was significantly lower than that of the 786‑0/GFP and 786‑0 cells (P<0.05) according to the Transwell invasion assay. The expression levels of MMP2 and MMP9 were significantly decreased in the 786‑0/GSN cells, when compared with the 786‑0/GFP and 786‑0 cells following a 48‑h transfection, according to ELISA (P<0.001). Furthermore, in the 786‑0/GSN cells, the expression levels of MMP2 and MMP9 were markedly decreased, while the expression of E‑cadherin was markedly increased. Thus, the overexpression of GSN may inhibit the proliferation, adhesion ability and invasion of 786‑0 ccRCC cells. Additionally, GSN downregulated the expression of MMP2 and MMP9, and upregulated the expression of E‑cadherin in the 786‑0 ccRCC cells, which may have suppressed the invasion ability of the 786-0 ccRCC cells.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Dermatology, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150089, P.R. China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
14
|
Pires-Luís AS, Vieira-Coimbra M, Vieira FQ, Costa-Pinheiro P, Silva-Santos R, Dias PC, Antunes L, Lobo F, Oliveira J, Gonçalves CS, Costa BM, Henrique R, Jerónimo C. Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication. Epigenetics 2015; 10:1033-43. [PMID: 26488939 PMCID: PMC4844211 DOI: 10.1080/15592294.2015.1103578] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
Renal cell tumors (RCTs) are the most lethal of the common urological cancers. The widespread use of imaging entailed an increased detection of small renal masses, emphasizing the need for accurate distinction between benign and malignant RCTs, which is critical for adequate therapeutic management. Histone methylation has been implicated in renal tumorigenesis, but its potential clinical value as RCT biomarker remains mostly unexplored. Hence, the main goal of this study was to identify differentially expressed histone methyltransferases (HMTs) and histone demethylases (HDMs) that might prove useful for RCT diagnosis and prognostication, emphasizing the discrimination between oncocytoma (a benign tumor) and renal cell carcinoma (RCC), especially the chromophobe subtype (chRCC). We found that the expression levels of 3 genes--SMYD2, SETD3, and NO66--was significantly altered in a set of RCTs, which was further validated in a large independent cohort. Higher expression levels were found in RCTs compared to normal renal tissues (RNTs) and in chRCCs comparatively to oncocytomas. SMYD2 and SETD3 mRNA levels correlated with protein expression assessed by immunohistochemistry. SMYD2 transcript levels discriminated RCTs from RNT, with 82.1% sensitivity and 100% specificity [area under curve (AUC) = 0.959], and distinguished chRCCs from oncocytomas, with 71.0% sensitivity and 73.3% specificity (AUC = 0.784). Low expression levels of SMYD2, SETD3, and NO66 were significantly associated with shorter disease-specific and disease-free survival, especially in patients with non-organ confined tumors. We conclude that expression of selected HMTs and HDMs might constitute novel biomarkers to assist in RCT diagnosis and assessment of tumor aggressiveness.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/enzymology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Diagnosis, Differential
- Dioxygenases
- Early Detection of Cancer
- Gene Expression Regulation, Neoplastic
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Histone Methyltransferases
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/enzymology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Prognosis
- Survival Analysis
- Up-Regulation
Collapse
Affiliation(s)
- Ana Sílvia Pires-Luís
- Cancer Biology and Epigenetics Group – Research Center; Portuguese Oncology Institute – Porto; Porto, Portugal
- Department of Pathology; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Márcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group – Research Center; Portuguese Oncology Institute – Porto; Porto, Portugal
- Department of Pathology; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Filipa Quintela Vieira
- Cancer Biology and Epigenetics Group – Research Center; Portuguese Oncology Institute – Porto; Porto, Portugal
- School of Allied Health Sciences (ESTSP); Polytechnic of Porto; Porto, Portugal
| | - Pedro Costa-Pinheiro
- Cancer Biology and Epigenetics Group – Research Center; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Rui Silva-Santos
- Cancer Biology and Epigenetics Group – Research Center; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Paula C Dias
- Department of Pathology; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Francisco Lobo
- Department of Urology; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Jorge Oliveira
- Department of Urology; Portuguese Oncology Institute – Porto; Porto, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho; Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory; University of Minho; Braga/Guimarães; Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho; Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory; University of Minho; Braga/Guimarães; Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group – Research Center; Portuguese Oncology Institute – Porto; Porto, Portugal
- Department of Pathology; Portuguese Oncology Institute – Porto; Porto, Portugal
- Department of Pathology and Molecular Immunology; Institute of Biomedical Sciences Abel Salazar (ICBAS) – University of Porto; Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group – Research Center; Portuguese Oncology Institute – Porto; Porto, Portugal
- Department of Pathology and Molecular Immunology; Institute of Biomedical Sciences Abel Salazar (ICBAS) – University of Porto; Porto, Portugal
| |
Collapse
|
15
|
Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol 2014; 36:939-51. [PMID: 25315187 DOI: 10.1007/s13277-014-2694-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/30/2014] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in adults, and there is still no acknowledged biomarker for its diagnosis, prognosis, recurrence monitoring, and treatment stratification. Besides, little is known about the post-translational modification (PTM) of proteins in RCC. Here, we performed quantitative proteomic analysis on 12 matched pairs of clear cell RCC (ccRCC) and adjacent kidney tissues using liquid chromatography-tandem mass spectrometry (nanoLCMS/MS) and Progenesis LC-MS software (label-free) to identify and quantify the dysregulated proteins. A total of 1872 and 1927 proteins were identified in ccRCC and adjacent kidney tissues, respectively. Among these proteins, 1037 proteins were quantified by Progenesis LC-MS, and 213 proteins were identified as dysregulated proteins between ccRCC and adjacent tissues. Pathway analysis using IPA, STRING, and David tools was performed, which demonstrated the enrichment of cancer-related signaling pathways and biological processes such as mitochondrial dysfunction, metabolic pathway, cell death, and acetylation. Dysregulation of two mitochondrial proteins, acetyl-CoA acetyltransferase 1 (ACAT1) and manganese superoxide dismutase (MnSOD) were selected and confirmed by Western blotting and immunohistochemistry assays using another 6 pairs of ccRCC and adjacent tissues. Further mass spectrometry analysis indicated that both ACAT1 and MnSOD had characterized acetylation at lysine residues, which is the first time to identify acetylation of ACAT1 and MnSOD in ccRCC. Collectively, these data revealed a number of dysregulated proteins and signaling pathways by label-free quantitative proteomic approach in RCC, which shed light on potential diagnostic or prognostic biomarkers and therapeutic molecular targets for clinical intervention of RCC.
Collapse
|