1
|
Rehman UU, Ghafoor D, Ullah A, Ahmad R, Hanif S. Epigenetics regulation during virus-host interaction and their effects on the virus and host cell. Microb Pathog 2023; 182:106271. [PMID: 37517745 DOI: 10.1016/j.micpath.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Epigenetics, a field of study focused on cellular gene regulation independent of DNA sequence alterations, encompasses DNA methylation, histone modification and microRNA modification. Epigenetics processes play a pivotal role in governing the life cycles of viruses, enabling their transmission, persistence, and maintenance with in host organisms. This review examines the epigenetics regulation of diverse virus including orthomoxyviruses, coronavirus, retroviridae, mononegavirales, and poxviruses among others. The investigation encompasses ten representative viruses from these families. Detailed exploration of the epigenetic mechanisms underlying each virus type, involving miRNA modification, histone modification and DNA methylation, sheds light on the intricate and multifaceted epigenetic interplay between viruses and their hosts. Furthermore, this review investigates the influence of these epigenetic processes on infection cycles, emphasizing the utilization of epigenetics by viruses such as Epstein-Barr virus and Human immunodeficiency virus (HIV) to regulate gene expression during chronic or latent infections, control latency, and transition to lytic infection. Finally, the paper explores the novel treatments possibilities stemming from this epigenetic understanding.
Collapse
Affiliation(s)
- Ubaid Ur Rehman
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Dawood Ghafoor
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430064, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Asad Ullah
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riaz Ahmad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sumaira Hanif
- Department of Biological Sciences, International Islamic University, Islamabad, 45320, Pakistan
| |
Collapse
|
2
|
Ahmed R, Lozano LE, Anastasio A, Lofek S, Mastelic-Gavillet B, Navarro Rodrigo B, Nguyen S, Dartiguenave F, Rodrigues-Dias SC, Cesson V, Valério M, Roth B, Kandalaft LE, Redchenko I, Hill AVS, Harari A, Romero P, Derré L, Viganó S. Phenotype and Reactivity of Lymphocytes Expanded from Benign Prostate Hyperplasic Tissues and Prostate Cancer. Cancers (Basel) 2023; 15:3114. [PMID: 37370724 DOI: 10.3390/cancers15123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Benign prostate hyperplasia (BPH) is a frequent condition in aging men, which affects life quality, causing principally lower urinary tract symptoms. Epidemiologic studies suggest that BPH may raise the risk of developing prostate cancer (PCa), most likely promoting a chronic inflammatory environment. Studies aiming at elucidating the link and risk factors that connect BPH and PCa are urgently needed to develop prevention strategies. The BPH microenvironment, similar to the PCa one, increases immune infiltration of the prostate, but, in contrast to PCa, immunosuppression may not be established yet. In this study, we found that prostate-infiltrating lymphocytes (PILs) expanded from hyperplastic prostate tissue recognized tumor-associated antigens (TAA) and autologous tissue, regardless of the presence of tumor cells. PILs expanded from BPH samples of patients with PCa, however, seem to respond more strongly to autologous tissue. Phenotypic characterization of the infiltrating PILs revealed a trend towards better expanding CD4+ T cells in infiltrates derived from PCa, but no significant differences were found. These findings suggest that T cell tolerance is compromised in BPH-affected prostates, likely due to qualitative or quantitative alterations of the antigenic landscape. Our data support the hypothesis that BPH increases the risk of PCa and may pave the way for new personalized preventive vaccine strategies for these patients.
Collapse
Affiliation(s)
- Ritaparna Ahmed
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Leyder Elena Lozano
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Amandine Anastasio
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Sebastien Lofek
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Beatris Mastelic-Gavillet
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Sylvain Nguyen
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Florence Dartiguenave
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Sonia-Cristina Rodrigues-Dias
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Massimo Valério
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lana Elias Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Irina Redchenko
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford OX3 7BN, UK
| | | | - Alexandre Harari
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Selena Viganó
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Campbell T, Hawsawi O, Henderson V, Dike P, Hwang BJ, Liadi Y, White EZ, Zou J, Wang G, Zhang Q, Bowen N, Scott D, Hinton CV, Odero-Marah V. Novel roles for HMGA2 isoforms in regulating oxidative stress and sensitizing to RSL3-Induced ferroptosis in prostate cancer cells. Heliyon 2023; 9:e14810. [PMID: 37113783 PMCID: PMC10126861 DOI: 10.1016/j.heliyon.2023.e14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.
Collapse
Affiliation(s)
- Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Veronica Henderson
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Precious Dike
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Yusuf Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - ElShaddai Z. White
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - GuangDi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Derrick Scott
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Cimona V. Hinton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
- Corresponding author. Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
4
|
Alade A, Awotoye W, Butali A. Genetic and epigenetic studies in non-syndromic oral clefts. Oral Dis 2022; 28:1339-1350. [PMID: 35122708 DOI: 10.1111/odi.14146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The etiology of non-syndromic oral clefts (NSOFC) is complex with genetics, genomics, epigenetics, and stochastics factors playing a role. Several approaches have been applied to understand the etiology of non-syndromic oral clefts. These include linkage, candidate gene association studies, genome-wide association studies, whole-genome sequencing, copy number variations, and epigenetics. In this review, we shared these approaches, genes, and loci reported in some studies.
Collapse
Affiliation(s)
- Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Waheed Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Mc Auley MT. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev 2021; 72:101488. [PMID: 34662746 DOI: 10.1016/j.arr.2021.101488] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Ageing is characterised by a physical decline in biological functioning which results in a progressive risk of mortality with time. As a biological phenomenon, it is underpinned by the dysregulation of a myriad of complex processes. Recently, however, ever-increasing evidence has associated epigenetic mechanisms, such as DNA methylation (DNAm) with age-onset pathologies, including cancer, cardiovascular disease, and Alzheimer's disease. These diseases compromise healthspan. Consequently, there is a medical imperative to understand the link between epigenetic ageing, and healthspan. Evolutionary theory provides a unique way to gain new insights into epigenetic ageing and health. This review will: (1) provide a brief overview of the main evolutionary theories of ageing; (2) discuss recent genetic evidence which has revealed alleles that have pleiotropic effects on fitness at different ages in humans; (3) consider the effects of DNAm on pleiotropic alleles, which are associated with age related disease; (4) discuss how age related DNAm changes resonate with the mutation accumulation, disposable soma and programmed theories of ageing; (5) discuss how DNAm changes associated with caloric restriction intersect with the evolution of ageing; and (6) conclude by discussing how evolutionary theory can be used to inform investigations which quantify age-related DNAm changes which are linked to age onset pathology.
Collapse
Affiliation(s)
- Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Exton Park, Chester CH1 4BJ, UK.
| |
Collapse
|
6
|
Hou Y, Hu J, Zhou L, Liu L, Chen K, Yang X. Integrative Analysis of Methylation and Copy Number Variations of Prostate Adenocarcinoma Based on Weighted Gene Co-expression Network Analysis. Front Oncol 2021; 11:647253. [PMID: 33869043 PMCID: PMC8047072 DOI: 10.3389/fonc.2021.647253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Prostate adenocarcinoma (PRAD) is the most pervasive carcinoma diagnosed in men with over 170,000 new cases every year in the United States and is the second leading cause of death from cancer in men despite its indolent clinical course. Prostate-specific antigen testing, which is the most commonly used non-invasive diagnostic method for PRAD, has improved early detection rates in the past decade, but its effectiveness for monitoring disease progression and predicting prognosis is controversial. To identify novel biomarkers for these purposes, we carried out weighted gene co-expression network analysis of the top 10,000 variant genes in PRAD from The Cancer Genome Atlas in order to identify gene modules associated with clinical outcomes. Methylation and copy number variation analysis were performed to screen aberrantly expressed genes, and the Kaplan-Meier survival and gene set enrichment analyses were conducted to evaluate the prognostic value and potential mechanisms of the identified genes. Cyclin E2 (CCNE2), rhophilin Rho GTPase-binding protein (RHPN1), enhancer of zeste homolog 2 (EZH2), tonsoku-like DNA repair protein (TONSL), epoxide hydrolase 2 (EPHX2), fibromodulin (FMOD), and solute carrier family 7 member (SLC7A4) were identified as potential prognostic indicators and possible therapeutic targets as well. These findings can improve diagnosis and disease monitoring to achieve better clinical outcomes in PRAD.
Collapse
Affiliation(s)
- Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: Of mice and men. Differentiation 2019; 110:49-63. [PMID: 31622789 PMCID: PMC7339118 DOI: 10.1016/j.diff.2019.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA; George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA; Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA.
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA
| | - Stanley J Robboy
- Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
8
|
Bhandari RK, Taylor JA, Sommerfeld-Sager J, Tillitt DE, Ricke WA, vom Saal FS. Estrogen receptor 1 expression and methylation of Esr1 promoter in mouse fetal prostate mesenchymal cells induced by gestational exposure to bisphenol A or ethinylestradiol. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz012. [PMID: 31463084 PMCID: PMC6705189 DOI: 10.1093/eep/dvz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 05/02/2023]
Abstract
Fetal/neonatal environmental estrogen exposures alter developmental programing of the prostate gland causing onset of diseases later in life. We have previously shown in vitro that exposures to 17β-estradiol (E2) and the endocrine disrupting chemical bisphenol A, at concentrations relevant to human exposure, cause an elevation of estrogen receptor α (Esr1) mRNA in primary cultures of fetal mouse prostate mesenchymal cells; a similar result was observed in the fetal rat urogenital sinus. Effects of these chemicals on prostate mesenchyme in vivo are not well understood. Here we show effects in mice of fetal exposure to the estrogenic drug in mixed oral contraceptives, 17α-ethinylestradiol (EE2), at a concentration of EE2 encountered by human embryos/fetuses whose mothers become pregnant while on EE2-containing oral contraceptives, or bisphenol A at a concentration relevant to exposures observed in human fetuses in vivo. Expression of Esr1 was elevated by bisphenol A or EE2 exposures, which decreased the global expression of DNA methyltransferase 3A (Dnmt3a), while methylation of Esr1 promoter was significantly increased. These results show that exposures to the environmental estrogen bisphenol A and drug EE2 cause transcriptional and epigenetic alterations to expression of estrogen receptors in developing prostate mesenchyme in vivo.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- United States Geological Survey Columbia Environmental Research Center, Columbia, MO, USA
- Correspondence address. Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA. Tel: +1-336-256-0493; Fax: +1-336-334-5839; E-mail:
| | - Julia A Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | | - Donald E Tillitt
- United States Geological Survey Columbia Environmental Research Center, Columbia, MO, USA
| | - William A Ricke
- Department of Urology, Molecular Environmental Toxicology Program, George M. O’Brien Center of Research Excellence, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
9
|
Rubicz R, Zhao S, Geybels M, Wright JL, Kolb S, Klotzle B, Bibikova M, Troyer D, Lance R, Ostrander EA, Feng Z, Fan JB, Stanford JL. DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics 2019; 111:10-16. [PMID: 26902887 PMCID: PMC4992660 DOI: 10.1016/j.ygeno.2016.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/02/2015] [Accepted: 02/18/2016] [Indexed: 12/25/2022]
Abstract
This study examined whether differential DNA methylation is associated with clinical features of more aggressive disease at diagnosis and prostate cancer recurrence in African American men, who are more likely to die from prostate cancer than other populations. Tumor tissues from 76 African Americans diagnosed with prostate cancer who had radical prostatectomy as their primary treatment were profiled for epigenome-wide DNA methylation levels. Long-term follow-up identified 19 patients with prostate cancer recurrence. Twenty-three CpGs were differentially methylated (FDR q≤0.25, mean methylation difference≥0.10) in patients with vs. without recurrence, including CpGs in GCK, CDKL2, PRDM13, and ZFR2. Methylation differences were also observed between men with metastatic-lethal prostate cancer vs. no recurrence (five CpGs), regional vs. local pathological stage (two CpGs), and higher vs. lower tumor aggressiveness (one CpG). These results indicate that differentially methylated CpG sites identified in tumor tissues of African American men may contribute to prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Rohina Rubicz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Milan Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jonathan L Wright
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Urology, University of Washington School of Medicine, Seattle, WA, United States
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | | | - Dean Troyer
- Department of Pathology, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Raymond Lance
- Department of Urology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - Ziding Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Gamage TKJB, Schierding W, Tsai P, Ludgate JL, Chamley LW, Weeks RJ, Macaulay EC, James JL. Human trophoblasts are primarily distinguished from somatic cells by differences in the pattern rather than the degree of global CpG methylation. Biol Open 2018; 7:bio.034884. [PMID: 30026266 PMCID: PMC6124577 DOI: 10.1242/bio.034884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The placenta is a fetal exchange organ connecting mother and baby that facilitates fetal growth in utero. DNA methylation is thought to impact placental development and function. Global DNA methylation studies using human placental lysates suggest that the placenta is uniquely hypomethylated compared to somatic tissue lysates, and this hypomethylation is thought to be important in conserving the unique placental gene expression patterns required for successful function. In the placental field, methylation has frequently been examined in tissue lysates, which contain mixed cell types that can confound results. To better understand how DNA methylation influences placentation, DNA from isolated first trimester trophoblast populations underwent reduced representation bisulfite sequencing and was compared to publicly available data of blastocyst-derived and somatic cell populations. First, this revealed that, unlike murine blastocysts, human trophectoderm and inner cell mass samples did not have significantly different levels of global methylation. Second, our work suggests that differences in global CpG methylation between trophoblasts and somatic cells are much smaller than previously reported. Rather, our findings suggest that different patterns of CpG methylation may be more important in epigenetically distinguishing the placenta from somatic cell populations, and these patterns of methylation may contribute to successful placental/trophoblast function. Summary: The placenta may not be as uniquely hypomethylated as previously reported, rather differences in the pattern of CpG methylation are what make it epigenetically distinct.
Collapse
Affiliation(s)
- Teena K J B Gamage
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - William Schierding
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - Peter Tsai
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Wang Z, Olumi AF. Metformin: an antiproliferative agent and methylation regulator in treating prostatic disease? Am J Physiol Renal Physiol 2018; 314:F407-F411. [PMID: 29117997 PMCID: PMC5899225 DOI: 10.1152/ajprenal.00443.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Existing drugs that have been used in clinical practice for other purposes can prove useful for reutilization, since much of the safety profile and pharmacokinetics have been completed. Therefore, the drugs can enter clinical practice for a variety of causes with less regulatory burden. Metformin may prove to be such a drug; it may have a role in other diseases, besides the management of diabetes. In this perspective, we provide our findings and understanding of metformin as an alternative way to treat urological abnormal proliferation. We propose the potential mechanisms into two hallmarks: direct antiproliferative function via insulin-like growth factor (IGF) signaling pathway and epigenetic modulating via adjusting DNA methylation. These specific hallmarks may ultimately contribute to a better understanding of metformin in treating prostatic diseases.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aria F. Olumi
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Xu H, Chen Y, Chen Q, Xu H, Wang Y, Yu J, Zhou J, Wang Z, Xu B. DNMT1 regulates IL-6- and TGF-β1-induced epithelial mesenchymal transition in prostate epithelial cells. Eur J Histochem 2017; 61:2775. [PMID: 28735516 PMCID: PMC5432940 DOI: 10.4081/ejh.2017.2775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Hui Xu
- Department of Emergency, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Adeyemo WL, Butali A. Genetics and genomics etiology of nonsyndromic orofacial clefts. Mol Genet Genomic Med 2017; 5:3-7. [PMID: 28116324 PMCID: PMC5241211 DOI: 10.1002/mgg3.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Orofacial clefts (OFC) are complex birth defects. Studies using contemporary genomic techniques, bioinformatics, and statistical analyses have led to appreciable advances in identifying the causes of syndromic forms of clefts. This commentary gives an overview of the important cleft gene discoveries found using various genomic methods and tools.
![]()
Collapse
Affiliation(s)
- Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery College of Medicine University of Lagos Surulere Nigeria
| | - Azeez Butali
- Department of Oral Pathology, Radiology and MedicineCollege of DentistryUniversity of IowaIowa CityIowa; Iowa Institute of Oral Health ResearchCollege of DentistryUniversity of IowaIowa CityIowa
| |
Collapse
|
14
|
Lee J, Han JH, Jang A, Kim JW, Hong SA, Myung SC. DNA Methylation-Mediated Downregulation of DEFB1 in Prostate Cancer Cells. PLoS One 2016; 11:e0166664. [PMID: 27835705 PMCID: PMC5105953 DOI: 10.1371/journal.pone.0166664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Epigenetic aberrations play crucial roles in prostate cancer (PCa) development and progression. The DEFB1 gene, which encodes human ß-defensin-1 (HBD-1), contributes to innate immune responses and functions as a potential tumor suppressor in urological cancers. We investigated whether differential DNA methylation at the low CpG-content promoter (LCP) of DEFB1 was associated with transcriptional regulation of DEFB1 in PCa cells. To identify distinct CpG loci within the DEFB1 LCP related to the epigenetic regulation of DEFB1, we performed an in vitro methylated reporter assay followed by bisulfite sequencing of the DEFB1 promoter fragment. The methylation status of two adjacent CpG loci in the DEFB1 LCP was found to be important for DEFB1 expression in PCa cells. Paired epithelial specimens of PCa patients (n = 60), which were distinguished as non-tumor and tumor tissues by microdissection, were analyzed by bisulfite pyrosequencing of site-specific CpG dinucleotide units in the DEFB1 LCP. CpG methylation frequencies in the DEFB1 LCP were significantly higher in malignant tissues than in adjacent benign tissues across almost all PCa patients. These results suggested that methylation status of each CpG site in the DEFB1 promoter could mediate downregulation of DEFB1 in PCa cells.
Collapse
Affiliation(s)
- Jaehyouk Lee
- Department of Urology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Advanced Urogenital Diseases Research Center, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jun Hyun Han
- Department of Urology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea
| | - Ara Jang
- Department of Urology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Advanced Urogenital Diseases Research Center, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Wook Kim
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Advanced Urogenital Diseases Research Center, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 06974, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Brenner C, Luciani J, Bizet M, Ndlovu M, Josseaux E, Dedeurwaerder S, Calonne E, Putmans P, Cartron PF, Defrance M, Fuks F, Deplus R. The interplay between the lysine demethylase KDM1A and DNA methyltransferases in cancer cells is cell cycle dependent. Oncotarget 2016; 7:58939-58952. [PMID: 27449289 PMCID: PMC5312287 DOI: 10.18632/oncotarget.10624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
DNA methylation and histone modifications are key epigenetic regulators of gene expression, and tight connections are known between the two. DNA methyltransferases are upregulated in several tumors and aberrant DNA methylation profiles are a cancer hallmark. On the other hand, histone demethylases are upregulated in cancer cells. Previous work on ES cells has shown that the lysine demethylase KDM1A binds to DNMT1, thereby affecting DNA methylation. In cancer cells, the occurrence of this interaction has not been explored. Here we demonstrate in several tumor cell lines an interaction between KDM1A and both DNMT1 and DNMT3B. Intriguingly and in contrast to what is observed in ES cells, KDM1A depletion in cancer cells was found not to trigger any reduction in the DNMT1 or DNMT3B protein level or any change in DNA methylation. In the S-phase, furthermore, KDM1A and DNMT1 were found, to co-localize within the heterochromatin. Using P-LISA, we revealed substantially increased binding of KDM1A to DNMT1 during the S-phase. Together, our findings propose a mechanistic link between KDM1A and DNA methyltransferases in cancer cells and suggest that the KDM1A/DNMT1 interaction may play a role during replication. Our work also strengthens the idea that DNMTs can exert functions unrelated to act on DNA methylation.
Collapse
Affiliation(s)
- Carmen Brenner
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Judith Luciani
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Matladi Ndlovu
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Eleonore Josseaux
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Pierre-Francois Cartron
- Centre de Recherche en Cancérologie Nantes-Angers, INSERM, U892, Equipe Apoptose et Progression Tumorale, BP7021, 44007 Nantes, France
- Département de Recherche en Cancérologie, Faculté de Médecine, Université de Nantes, IFR26, F-4400, Nantes, France
- LaBCT, Institut de Cancérologie de l'Ouest, 44805 Nantes, Saint Herblain Cedex, France
| | - Matthieu Defrance
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC), Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|