1
|
Yang X, Hu J, Gao Q, Deng Y, Liu Y, He X, Li C, Yu X, Wan Y, Pi C, Wei Y, Li C. Advances in nano-delivery systems based on diagnosis and theranostics strategy for atherosclerosis. J Drug Target 2025; 33:492-507. [PMID: 39601425 DOI: 10.1080/1061186x.2024.2433560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Atherosclerosis (AS) is a chronic systemic inflammatory disease, where early diagnosis and theranostics strategy for AS are crucial for improving outcomes. However, conventional diagnostic techniques are limited in identifying early AS lesions, failing to stop the progression of AS in time. Nano-delivery systems have shown significant potential in AS diagnosis and treatment, offering distinct advantages in plaque identification and enhancing drugs concentration at lesion sites, thereby advancing new-generation theranostics strategy. This review discusses the application of nano-delivery systems based on imaging technology in AS diagnosis, and we further explore recent advancements in combining different imaging technologies with emerging theranostics strategy. In addition, we also discuss the challenges faced by nano-delivery systems for AS diagnosis and theranostics in clinical translation, such as nanoparticle targeting efficiency, cytotoxicity and long-term accumulation, immune clearance and inaccurate disease modelling. Finally, we also provide prospects on nano-delivery systems based on diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Hu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Quanle Gao
- Department of Neurology, Geriatrics, Hejiang County People's Hospital, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chuang Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Pi
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yumeng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Rehman S, Nadeem A, Akram U, Sarwar A, Quraishi A, Siddiqui H, Malik MAJ, Nabi M, Ul Haq I, Cho A, Mazumdar I, Kim M, Chen K, Sepehri S, Wang R, Balar AB, Lakhani DA, Yedavalli VS. Molecular Mechanisms of Ischemic Stroke: A Review Integrating Clinical Imaging and Therapeutic Perspectives. Biomedicines 2024; 12:812. [PMID: 38672167 PMCID: PMC11048412 DOI: 10.3390/biomedicines12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke poses a significant global health challenge, necessitating ongoing exploration of its pathophysiology and treatment strategies. This comprehensive review integrates various aspects of ischemic stroke research, emphasizing crucial mechanisms, therapeutic approaches, and the role of clinical imaging in disease management. It discusses the multifaceted role of Netrin-1, highlighting its potential in promoting neurovascular repair and mitigating post-stroke neurological decline. It also examines the impact of blood-brain barrier permeability on stroke outcomes and explores alternative therapeutic targets such as statins and sphingosine-1-phosphate signaling. Neurocardiology investigations underscore the contribution of cardiac factors to post-stroke mortality, emphasizing the importance of understanding the brain-heart axis for targeted interventions. Additionally, the review advocates for early reperfusion and neuroprotective agents to counter-time-dependent excitotoxicity and inflammation, aiming to preserve tissue viability. Advanced imaging techniques, including DWI, PI, and MR angiography, are discussed for their role in evaluating ischemic penumbra evolution and guiding therapeutic decisions. By integrating molecular insights with imaging modalities, this interdisciplinary approach enhances our understanding of ischemic stroke and offers promising avenues for future research and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Sana Rehman
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Umar Akram
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Abeer Sarwar
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | - Ammara Quraishi
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Hina Siddiqui
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | | | - Mehreen Nabi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ihtisham Ul Haq
- Department of Medicine, Amna Inayat Medical College, Sheikhupura 54300, Pakistan;
| | - Andrew Cho
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ishan Mazumdar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Minsoo Kim
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Kevin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Sadra Sepehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Aneri B. Balar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Dhairya A. Lakhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Vivek S. Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| |
Collapse
|
3
|
Abstract
Most of the acute ischemic events, such as acute coronary syndromes and stroke, are attributed to vulnerable plaques. These lesions have common histological and pathophysiological features, including inflammatory cell infiltration, neo-angiogenesis, remodelling, haemorrhage predisposition, thin fibrous cap, large lipid core, and micro-calcifications. Early detection of the presence of a plaque prone to rupture could be life-saving for the patient; however, vulnerable plaques usually cause non-haemodynamically significant stenosis, and anatomical imaging techniques often underestimate, or may not even detect, these lesions. Although ultrasound techniques are currently considered as the "first-line" examinations for the diagnostic investigation and treatment monitoring in patients with atherosclerotic plaques, positron emission tomography (PET) imaging could open new horizons in the assessment of atherosclerosis, given its ability to visualize metabolic processes and provide molecular-functional evidence regarding vulnerable plaques. Moreover, modern hybrid imaging techniques, combining PET with computed tomography or magnetic resonance imaging, can evaluate simultaneously both functional and morphological parameters of the atherosclerotic plaques, and are expected to significantly expand their clinical role in the future. This review summarizes current research on the PET imaging of the vulnerable atherosclerotic plaques, outlining current and potential applications in the clinical setting.
Collapse
|
4
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
5
|
Fox KAA, Metra M, Morais J, Atar D. The myth of ‘stable’ coronary artery disease. Nat Rev Cardiol 2019; 17:9-21. [DOI: 10.1038/s41569-019-0233-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
|
6
|
Liu Y, Luehmann HP, Detering L, Pressly ED, McGrath AJ, Sultan D, Nguyen A, Grathwohl S, Shokeen M, Zayed M, Gropler RJ, Abendschein D, Hawker CJ, Woodard PK. Assessment of Targeted Nanoparticle Assemblies for Atherosclerosis Imaging with Positron Emission Tomography and Potential for Clinical Translation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15316-15321. [PMID: 30969098 PMCID: PMC6918720 DOI: 10.1021/acsami.9b02750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanoparticles have been assessed in preclinical models of atherosclerosis for detection of plaque complexity and treatment. However, their successful clinical translation has been hampered by less than satisfactory plaque detection and lack of a general strategy for assessing the translational potential of nanoparticles. Herein, nanoparticles based on comb-co-polymer assemblies were synthesized through a modular construction approach with precise control over the conjugation of multiple functional building blocks for in vivo evaluation. This high level of design control also allows physicochemical properties to be varied in a controllable fashion. Through conjugation of c-atrial natriuretic factor (CANF) peptide and radiolabeling with 64Cu, the 64Cu-CANF-comb nanoparticle was assessed for plaque imaging by targeting natriuretic peptide clearance receptor (NPRC) in a double-injury atherosclerosis model in rabbits. The prolonged blood circulation and enhanced binding capacity of 64Cu-CANF-comb nanoparticles provided sensitive and specific imaging of NPRC overexpressed in atherosclerotic lesions by positron emission tomography at intervals during the progression of the disease. Ex vivo tissue validation using autoradiography and immunostaining on human carotid endarterectomy specimens demonstrated specific binding of 64Cu-CANF-comb to human NPRC receptors. Taken together, this study not only shows the potential of NPRC-targeted 64Cu-CANF-comb nanoparticles for increased sensitivity to an epitope that increases during atherosclerosis plaque development but also provides a useful strategy for the general design and assessment of the translational potential of nanoparticles in cardiovascular imaging.
Collapse
Affiliation(s)
- Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Hannah P. Luehmann
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Eric D. Pressly
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Alaina J. McGrath
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Annie Nguyen
- Department of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Susannah Grathwohl
- Department of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Monica Shokeen
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Mohamed Zayed
- Department of Surgery, Washington University, St. Louis, Missouri 63110, United States
| | - Robert J. Gropler
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Dana Abendschein
- Department of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Craig J. Hawker
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Pamela K. Woodard
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Kopecky C, Pandzic E, Parmar A, Szajer J, Lee V, Dupuy A, Arthur A, Fok S, Whan R, Ryder WJ, Rye KA, Cochran BJ. Translocator protein localises to CD11b + macrophages in atherosclerosis. Atherosclerosis 2019; 284:153-159. [PMID: 30913515 DOI: 10.1016/j.atherosclerosis.2019.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is characterized by lipid deposition, monocyte infiltration and foam cell formation in the artery wall. Translocator protein (TSPO) is abundantly expressed in lipid rich tissues. Recently, TSPO has been identified as a potential diagnostic tool in cardiovascular disease. The purpose of this study was to determine if the TSPO ligand, 18F-PBR111, can identify early atherosclerotic lesions and if TSPO expression can be used to identify distinct macrophage populations during lesion progression. METHODS ApoE-/- mice were maintained on a high-fat diet for 3 or 12 weeks. C57BL/6J mice maintained on chow diet served as controls. Mice were administered 18F-PBR111 intravenously and PET/CT imaged. After euthanasia, aortas were isolated, fixed and optically cleared. Cleared aortas were immunostained with DAPI, and fluorescently labelled with antibodies to TSPO, the tissue resident macrophage marker F4/80 and the monocyte-derived macrophage marker CD11b. TSPO expression and the macrophage markers were visualised in fatty streaks and established plaques by light sheet microscopy. RESULTS While tissue resident F4/80 + macrophages were evident in the arteries of animals without atherosclerosis, no CD11b + macrophages were observed in these animals. In contrast, established plaques had high CD11b and low F4/80 expression. A ∼3-fold increase in the uptake of 18F-PBR111 was observed in the aortas of atherosclerotic mice relative to controls. CONCLUSIONS Imaging of TSPO expression is a new approach for studying atherosclerotic lesion progression and inflammatory cell infiltration. The TSPO ligand, 18F-PBR111, is a potential clinical diagnostic tool for the detection and quantification of atherosclerotic lesion progression in humans.
Collapse
Affiliation(s)
- Chantal Kopecky
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Arvind Parmar
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Jeremy Szajer
- Department of Nuclear Medicine, Concord Repatriation General Hospital, Sydney, Australia
| | - Victoria Lee
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Alexander Dupuy
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Andrew Arthur
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - Sandra Fok
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Renee Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - William J Ryder
- Department of Nuclear Medicine, Concord Repatriation General Hospital, Sydney, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Pirro M, Simental-Mendía LE, Bianconi V, Watts GF, Banach M, Sahebkar A. Effect of Statin Therapy on Arterial Wall Inflammation Based on 18F-FDG PET/CT: A Systematic Review and Meta-Analysis of Interventional Studies. J Clin Med 2019; 8:jcm8010118. [PMID: 30669380 PMCID: PMC6352284 DOI: 10.3390/jcm8010118] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Aim. To evaluate by meta-analysis of interventional studies the effect of statin therapy on arterial wall inflammation. Background. Arterial exposure to low-density lipoprotein (LDL) cholesterol levels is responsible for initiation and progression of atherosclerosis and arterial wall inflammation. 18F-fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (18F-FDG PET/CT) has been used to detect arterial wall inflammation and monitor the vascular anti-inflammatory effects of lipid-lowering therapy. Despite a number of statin-based interventional studies exploring 18F-FDG uptake, these trials have produced inconsistent results. Methods. Trials with at least one statin treatment arm were searched in PubMed-Medline, SCOPUS, ISI Web of Knowledge, and Google Scholar databases. Target-to-background ratio (TBR), an indicator of blood-corrected 18F-FDG uptake, was used as the target variable of the statin anti-inflammatory activity. Evaluation of studies biases, a random-effects model with generic inverse variance weighting, and sensitivity analysis were performed for qualitative and quantitative data assessment and synthesis. Subgroup and meta-regression analyses were also performed. Results. Meta-analysis of seven eligible studies, comprising 10 treatment arms with 287 subjects showed a significant reduction of TBR following statin treatment (Weighted Mean Difference (WMD): −0.104, p = 0.002), which was consistent both in high-intensity (WMD: −0.132, p = 0.019) and low-to-moderate intensity statin trials (WMD: −0.069, p = 0.037). Statin dose/duration, plasma cholesterol and C-reactive protein level changes, and baseline TBR did not affect the TBR treatment response to statins. Conclusions. Statins were effective in reducing arterial wall inflammation, as assessed by 18F-FDG PET/CT imaging. Larger clinical trials should clarify whether either cholesterol-lowering or other pleiotropic mechanisms were responsible for this effect.
Collapse
Affiliation(s)
- Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06129 Perugia, Italy.
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06129 Perugia, Italy.
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth X2213, Australia.
- Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Perth X2213, Australia.
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 93-338 Lodz, Poland.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| |
Collapse
|
9
|
Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med 2018; 126:296-312. [PMID: 30130569 DOI: 10.1016/j.freeradbiomed.2018.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Northern and Central Clinical Schools, Faculty of Medicine, Sydney University, Sydney, NSW 2006, Australia; Chemical Pathology Department, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia.
| | - Stuart Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2050, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia; Cardiology Department, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
10
|
Woodard PK, Liu Y, Pressly ED, Luehmann HP, Detering L, Sultan DE, Laforest R, McGrath AJ, Gropler RJ, Hawker CJ. Design and Modular Construction of a Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% (64)Cu-CANF-Comb. Pharm Res 2016; 33:2400-10. [PMID: 27286872 PMCID: PMC5096390 DOI: 10.1007/s11095-016-1963-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/01/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles. METHODS To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after (64)Cu radiolabeling. PET imaging was performed on an apolipoprotein E-deficient (ApoE(-/-)) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice. RESULTS All three (64)Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted (64)Cu-comb. Of the three nanoparticles, the 25% (64)Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE(-/-) mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis. CONCLUSION The 25% (64)Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status.
Collapse
Affiliation(s)
- Pamela K Woodard
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Eric D Pressly
- Materials Research Laboratory, University of California, Santa Barbara, California,, USA
| | - Hannah P Luehmann
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Lisa Detering
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Deborah E Sultan
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Richard Laforest
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Alaina J McGrath
- Materials Research Laboratory, University of California, Santa Barbara, California,, USA
| | - Robert J Gropler
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California,, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California,, USA.
- Materials Department, University of California, Santa Barbara, California, USA.
| |
Collapse
|
11
|
Forbes C, Quek RGW, Deshpande S, Worthy G, Ross J, Kleijnen J, Gandra SR, Kassahun H, Wong ND, Nicholls SJ. Relationship between changes in coronary atherosclerotic plaque burden measured by intravascular ultrasound and cardiovascular disease outcomes: a systematic literature review. Curr Med Res Opin 2016; 32:1143-50. [PMID: 26949994 DOI: 10.1185/03007995.2016.1162775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective Evidence from coronary imaging studies suggests an association between increased atherosclerotic plaque burden and cardiovascular disease (CVD) outcomes. A systematic review was performed to evaluate the relationship between coronary atherosclerotic plaque burden changes measured by intravascular ultrasound (IVUS) and CVD outcomes. Research design and methods Rigorous systematic review methodology was used to identify prospective studies of any design assessing the relationship between atherosclerotic plaque volume (percentage or total atheroma volume [PAV or TAV]) changes and CVD outcomes, using multivariable analyses. Main outcome measures CVD outcomes including major adverse cardiac events (MACEs) and major adverse cardiac and cerebrovascular events (MACCEs). Results Literature searches from inception to February 2015 retrieved 6958 records after de-duplication. From these four studies (14 papers) were included. One study reported a significantly lower rate of CVD outcomes associated with a greater reduction in PAV (hazard ratio [HR] 0.26, 95% confidence interval [CI] 0.07-0.83). One study reported that large plaque volume was significantly associated with a greater risk of major adverse cardiac events (MACEs) (HR 1.73, 95% CI: 1.02-2.96). Similarly, a third study reported a significant increase in MACE with an increase in baseline PAV (HR 1.51, 95% CI: 1.06-2.51). Only one potentially inadequately powered Japanese study did not find a statistically significant relationship between PAV changes and MACE. Conclusions The current evidence suggests an independent and statistically significant association between increases in coronary atherosclerotic plaque burden measured by IVUS and greater long-term risk of future CVD outcomes. However, this evidence comes from a limited number of studies which mainly focus on Japanese populations and populations after PCI. Further large prospective studies are required to confirm these findings.
Collapse
Affiliation(s)
| | | | | | - Gill Worthy
- a Kleijnen Systematic Reviews Ltd. , York , UK
| | - Janine Ross
- a Kleijnen Systematic Reviews Ltd. , York , UK
| | - Jos Kleijnen
- b Amgen Inc. , Thousand Oaks , CA , USA
- c School for Public Health and Primary Care , Maastricht , The Netherlands
| | | | | | | | - Stephen J Nicholls
- e South Australian Health and Medical Research Institute, University of Adelaide , Australia
| |
Collapse
|
12
|
Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012. Molecules 2016; 21:molecules21050650. [PMID: 27213312 PMCID: PMC6273803 DOI: 10.3390/molecules21050650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.
Collapse
|
13
|
Zeitler EP, Al-Khatib SM, Slotwiner D, Kumar UN, Varosy P, Van Wagoner DR, Marcus GM, Kusumoto FM, Blum L. Proceedings from Heart Rhythm Society's emerging technologies forum, Boston, MA, May 12, 2015. Heart Rhythm 2016; 13:e39-49. [PMID: 26801401 PMCID: PMC4724379 DOI: 10.1016/j.hrthm.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/15/2022]
Abstract
Physicians are in an excellent position to significantly contribute to medical device innovation, but the process of bringing an idea to the bedside is complex. To begin to address these perceived barriers, the Heart Rhythm Society convened a forum of stakeholders in medical device innovation in conjunction with the 2015 Heart Rhythm Society Annual Scientific Sessions. The forum facilitated open discussion on medical device innovation, including obstacles to physician involvement and possible solutions. This report is based on the themes that emerged. First, physician innovators must take an organized approach to identifying unmet clinical needs and potential solutions. Second, extensive funds, usually secured through solicitation for investment, are often required to achieve meaningful progress, developing an idea into a device. Third, planning for regulatory requirements of the US Food and Drug Administration and Centers for Medicare & Medicaid Services is essential. In addition to these issues, intellectual property and overall trends in health care, including international markets, are critically relevant considerations for the physician innovator. Importantly, there are a number of ways in which professional societies can assist physician innovators to navigate the complex medical device innovation landscape, bring clinically meaningful devices to market more quickly, and ultimately improve patient care. These efforts include facilitating interaction between potential collaborators through scientific meetings and other gatherings; collecting, evaluating, and disseminating state-of-the-art scientific information; and representing the interests of members in interactions with regulators and policymakers.
Collapse
Affiliation(s)
- Emily P Zeitler
- Duke Clinical Research Institute; Duke University Hospital, Durham, North Carolina.
| | - Sana M Al-Khatib
- Duke Clinical Research Institute; Duke University Hospital, Durham, North Carolina
| | | | - Uday N Kumar
- Biodesign Program, Stanford University, Stanford, California
| | - Paul Varosy
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David R Van Wagoner
- Cleveland Clinic Lerner College of Medicine, Case Western Research University, Cleveland, Ohio
| | - Gregory M Marcus
- University of California, San Francisco, San Francisco, California
| | | | - Laura Blum
- Heart Rhythm Society, Washington, District of Columbia
| |
Collapse
|
14
|
Gregersen I, Holm S, Dahl TB, Halvorsen B, Aukrust P. A focus on inflammation as a major risk factor for atherosclerotic cardiovascular diseases. Expert Rev Cardiovasc Ther 2015; 14:391-403. [PMID: 26641944 DOI: 10.1586/14779072.2016.1128828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a dynamic, pathogenic process in the artery wall, with potential adverse outcome for the host. Acute events such as myocardial infarction and ischemic stroke often result from rupture of unstable atherosclerotic lesions. Understanding the underlying pathology of such lesions and why and when they rupture, is therefore of great interest for the development of new diagnostics and treatment. Inflammation is one of the key drivers of atherosclerotic plaque development and the interplay between inflammation and lipids constitutes the hallmark of atherosclerotic disease. This review summarizes the role of inflammation in atherosclerosis and presents some of the latest discoveries as well as unmet needs regarding the role of inflammation as major risk factor in atherosclerotic disease.
Collapse
Affiliation(s)
- Ida Gregersen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Sverre Holm
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,c Hospital for Rheumatic Diseases , Lillehammer , Norway
| | - Tuva B Dahl
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Bente Halvorsen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway
| | - Pål Aukrust
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway.,e Section of Clinical Immunology and Infectious Diseases , Oslo University Hospital Rikshospitalet , Oslo , Norway
| |
Collapse
|