1
|
Carcione D, Intra J, Andriani L, Campanile F, Gona F, Carletti S, Mancini N, Brigante G, Cattaneo D, Baldelli S, Chisari M, Piccirilli A, Di Bella S, Principe L. New Antimicrobials for Gram-Positive Sustained Infections: A Comprehensive Guide for Clinicians. Pharmaceuticals (Basel) 2023; 16:1304. [PMID: 37765112 PMCID: PMC10536666 DOI: 10.3390/ph16091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance is a public health problem with increasingly alarming data being reported. Gram-positive bacteria are among the protagonists of severe nosocomial and community infections. The objective of this review is to conduct an extensive examination of emerging treatments for Gram-positive infections including ceftobiprole, ceftaroline, dalbavancin, oritavancin, omadacycline, tedizolid, and delafloxacin. From a methodological standpoint, a comprehensive analysis on clinical trials, molecular structure, mechanism of action, microbiological targeting, clinical use, pharmacokinetic/pharmacodynamic features, and potential for therapeutic drug monitoring will be addressed. Each antibiotic paragraph is divided into specialized microbiological, clinical, and pharmacological sections, including detailed and appropriate tables. A better understanding of the latest promising advances in the field of therapeutic options could lead to the development of a better approach in managing antimicrobial therapy for multidrug-resistant Gram-positive pathogens, which increasingly needs to be better stratified and targeted.
Collapse
Affiliation(s)
- Davide Carcione
- Laboratory of Medicine and Microbiology, Busto Arsizio Hospital—ASST Valle Olona, 21052 Busto Arsizio, VA, Italy; (D.C.); (G.B.)
| | - Jari Intra
- Clinical Chemistry Laboratory, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, MB, Italy;
| | - Lilia Andriani
- Clinical Pathology and Microbiology Unit, Hospital of Sondrio, 23100 Sondrio, Italy;
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy;
| | - Floriana Gona
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (S.C.)
| | - Silvia Carletti
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (S.C.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, 21100 Varese, Italy
| | - Gioconda Brigante
- Laboratory of Medicine and Microbiology, Busto Arsizio Hospital—ASST Valle Olona, 21052 Busto Arsizio, VA, Italy; (D.C.); (G.B.)
| | - Dario Cattaneo
- Department of Infectious Diseases ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Sara Baldelli
- Pharmacology Laboratory, Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Mattia Chisari
- Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical, and Health Sciences, Trieste University, 34129 Trieste, Italy;
| | - Luigi Principe
- Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| |
Collapse
|
2
|
Pathogens susceptible to tetracycline are also susceptible to omadacycline: Tetracycline as a one-sided surrogate to predict omadacycline susceptible pathogens. Diagn Microbiol Infect Dis 2022; 104:115785. [DOI: 10.1016/j.diagmicrobio.2022.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
|
3
|
Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics (Basel) 2022; 11:antibiotics11040427. [PMID: 35453179 PMCID: PMC9024665 DOI: 10.3390/antibiotics11040427] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a major threat to public health globally. Accurate and rapid detection of resistance to antimicrobial drugs, and subsequent appropriate antimicrobial treatment, combined with antimicrobial stewardship, are essential for controlling the emergence and spread of AMR. This article reviews common antimicrobial susceptibility testing (AST) methods and relevant issues concerning the advantages and disadvantages of each method. Although accurate, classic technologies used in clinical microbiology to profile antimicrobial susceptibility are time-consuming and relatively expensive. As a result, physicians often prescribe empirical antimicrobial therapies and broad-spectrum antibiotics. Although recently developed AST systems have shown advantages over traditional methods in terms of testing speed and the potential for providing a deeper insight into resistance mechanisms, extensive validation is required to translate these methodologies to clinical practice. With a continuous increase in antimicrobial resistance, additional efforts are needed to develop innovative, rapid, accurate, and portable diagnostic tools for AST. The wide implementation of novel devices would enable the identification of the optimal treatment approaches and the surveillance of antibiotic resistance in health, agriculture, and the environment, allowing monitoring and better tackling the emergence of AMR.
Collapse
|
4
|
Bassetti M, Castaldo N, Carnelutti A, Peghin M, Giacobbe DR. Tedizolid phosphate for the treatment of acute bacterial skin and skin-structure infections: an evidence-based review of its place in therapy. CORE EVIDENCE 2019; 14:31-40. [PMID: 31308835 PMCID: PMC6615724 DOI: 10.2147/ce.s187499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Introduction Tedizolid phosphate is an oxazolidinone approved for the treatment of acute bacterial skin and skin-structure infections (ABSSSIs) and active against methicillin-resistant Staphylococcus aureus. Aims The objective of this article was to review the evidence for the efficacy and safety of tedizolid phosphate for the treatment of ABSSSI. Evidence review Approval of tedizolid phosphate for the treatment of ABSSSI was based on the results of two phase III randomized controlled trials, ESTABLISH-1 (NCT01170221) and ESTABLISH-2 (NCT01421511), comparing 6-day once-daily tedizolid vs 10-day twice-daily linezolid. In ESTABLISH-1, noninferiority was met with early clinical response rates of 79.5% and 79.4% in tedizolid and linezolid groups, respectively (difference 0.1%, 95% CI –6.1% to 6.2%, with a 10% noninferiority margin). In ESTABLISH-2, noninferiority was met with 85% and 83% rates of early clinical response in tedizolid and linezolid groups, respectively (difference 2.6%, 95% CI –3.0% to 8.2%). Pooled data from ESTABLISH-1 and ESTABLISH-2 indicated a lower frequency of thrombocytopenia in tedizolid-treated than in linezolid-treated patients. Conclusion Tedizolid offers the option of an intravenous to oral switch, allows once-daily administration, and presents lower risk of myelotoxicity when a 6-day course is used for the treatment of ABSSSI. Greater economic cost associated with this antibiotic could be offset by its shorter treatment duration and possibility of oral administration in routine clinical practice, although either sponsored or nonsponsored postmarketing observational experience remains essential for ultimately confirming the effectiveness and tolerability of tedizolid outside clinical trials.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Alessia Carnelutti
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Maddalena Peghin
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | |
Collapse
|
5
|
Åhman J, Matuschek E, Kahlmeter G. The quality of antimicrobial discs from nine manufacturers—EUCAST evaluations in 2014 and 2017. Clin Microbiol Infect 2019; 25:346-352. [DOI: 10.1016/j.cmi.2018.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
6
|
Wilcox M, Al-Obeid S, Gales A, Kozlov R, Martínez-Orozco JA, Rossi F, Sidorenko S, Blondeau J. Reporting elevated vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus: consensus by an International Working Group. Future Microbiol 2019; 14:345-352. [PMID: 30724113 PMCID: PMC6479275 DOI: 10.2217/fmb-2018-0346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains an important cause of serious infection, for which vancomycin is often recommended as the first-choice antibiotic treatment. Appropriate vancomycin prescribing requires accurate measurement of minimum inhibitory concentrations (MICs) to avoid treatment failure, and yet determination can be challenging due to methodological difficulties associated with susceptibility testing. An International Working Group of infectious disease specialists and clinical/medical microbiologists reached a consensus that empirical MRSA infection therapies should be chosen regardless of the suspected origin of the infecting strain (e.g., community or hospital) due to the complex intermingling epidemiology of MRSA clones in these settings. Also, if an elevated vancomycin MIC in the susceptible range is obtained in routine testing, an alternative second method should be used for confirmation and to aid antibiotic therapy recommendations. There is no absolutely dependable method for the accurate determination of vancomycin MIC, but broth microdilution appears to be the most reliable.
Collapse
Affiliation(s)
- Mark Wilcox
- Leeds Teaching Hospitals NHS Trust & University of Leeds, Leeds, UK
| | - Suleiman Al-Obeid
- Microbiology Department, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Ana Gales
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roman Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - José A Martínez-Orozco
- Infectious Diseases & Clinical Microbiology Department, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Flavia Rossi
- Hospital das Clínicas da Faculdade de Medicina, Seção de Microbiologia, Divisão de Laboratório Central LIM03, Universidade de São Paulo, São Paulo, Brazil
| | - Sergey Sidorenko
- Department of Medical Microbiology & Molecular Epidemiology, Pediatric Research & Clinical Center for Infectious Diseases, Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Joseph Blondeau
- Department of Clinical Microbiology, Royal University Hospital, Saskatchewan, Canada
| |
Collapse
|