1
|
Cleverley TL, Peddineni S, Guarner J, Cingolani F, Garcia PK, Koehler H, Mocarski ES, Kalman D. The host-directed therapeutic imatinib mesylate accelerates immune responses to Mycobacterium marinum infection and limits pathology associated with granulomas. PLoS Pathog 2023; 19:e1011387. [PMID: 37200402 PMCID: PMC10231790 DOI: 10.1371/journal.ppat.1011387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.
Collapse
Affiliation(s)
- Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Siri Peddineni
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeannette Guarner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Pamela K. Garcia
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Heather Koehler
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
2
|
In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2017; 115:E62-E71. [PMID: 29255022 PMCID: PMC5776797 DOI: 10.1073/pnas.1711373114] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB.
Collapse
|
3
|
Napier RJ, Norris BA, Swimm A, Giver CR, Harris WAC, Laval J, Napier BA, Patel G, Crump R, Peng Z, Bornmann W, Pulendran B, Buller RM, Weiss DS, Tirouvanziam R, Waller EK, Kalman D. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog 2015; 11:e1004770. [PMID: 25822986 PMCID: PMC4379053 DOI: 10.1371/journal.ppat.1004770] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/27/2015] [Indexed: 01/10/2023] Open
Abstract
Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics “emergency hematopoiesis,” a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens. Host-directed therapeutics (HDTs) for infectious diseases target cellular mechanisms used by pathogens to move into, through, or out of cells. The Abl tyrosine kinase (TK) inhibitor and cancer therapeutic imatinib mesylate (Gleevec), for example, has activity against bacterial and viral pathogens via effects on pathogen entry (polyomaviruses), intracellular transit (Mycobacteria) and exit (poxviruses and filoviruses). Other HDTs target the host immune system by suppressing or activating circulating innate and adaptive cells. Here we report that imatinib at doses that are effective in clearing Mycobacterial infections but which are 10-fold lower than those used for cancer, mimics a physiological innate response to infection in the bone marrow, called the “emergency response,” in which hematopoietic stem cells and multipotent progenitors expand and differentiate into mature myeloid cells that migrate to peripheral sites. Imatinib effects occur in part via partial inhibition of c-Kit, suggesting a mechanism by which c-Kit controls the earliest stages of hematopoiesis. Mimicking a physiological antimicrobial response may make imatinib broadly useful. Accordingly, imatinib also has efficacy against infections caused by Franciscella spp., which do not use imatinib-sensitive TKs for pathogenesis. These observations identify myelopoiesis as an important target for HDTs, and provide information on how to dose imatinib for clinical use.
Collapse
Affiliation(s)
- Ruth J. Napier
- Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Brian A. Norris
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alyson Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cynthia R. Giver
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Wayne A. C. Harris
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Julie Laval
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Cystic Fibrosis Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS UMR5535, Université Montpellier, Montpellier, France
| | - Brooke A. Napier
- Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gopi Patel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ryan Crump
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Zhenghong Peng
- MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - William Bornmann
- MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Bali Pulendran
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - R. Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, United States of America
| | - David S. Weiss
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Cystic Fibrosis Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|