1
|
Chen T, Zhou X, Feng R, Shi S, Chen X, Wei B, Hu Z, Peng T. Novel function of single-target regulator NorR involved in swarming motility and biofilm formation revealed in Vibrio alginolyticus. BMC Biol 2024; 22:253. [PMID: 39506750 PMCID: PMC11542441 DOI: 10.1186/s12915-024-02057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
NorR, as a single-target regulator, has been demonstrated to be involved in NO detoxification in bacteria under anaerobic conditions. Here, the norR gene was identified and deleted in the genome of Vibrio alginolyticus. The results showed that deletion of norR in Vibrio alginolyticus led to lower swarming motility and more biofilm formation on aerobic condition. Moreover, we proved that NorR from E. coli had a similar function in controlling motility. NorR overexpression led to increased resistance to oxidative stress and tetracycline. We also observed a reduced ability of the NorR-overexpressing strain to adapt to iron limitation condition. Transcriptome analysis showed that the genes responsible for bacterial motility and biofilm formation were affected by NorR. The expressions of several sigma factors (RpoS, RpoN, and RpoH) and response regulators (LuxR and MarR) were also controlled by NorR. Furthermore, Chip-qPCR showed that there is a direct binding between NorR and the promoter of rpoS. Based on these results, NorR appears to be a central regulator involved in biofilm formation and swarming motility in Vibrio alginolyticus.
Collapse
Affiliation(s)
- Tongxian Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
- Dongguan Nancheng Business District North School, Dongguan, 523000, China
| | - Xiaoling Zhou
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Ruonan Feng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Shuhao Shi
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiyu Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Bingqi Wei
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Tao Peng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China.
- Dongguan Nancheng Business District North School, Dongguan, 523000, China.
| |
Collapse
|
2
|
Ye TJ, Fung KM, Lee IM, Ko TP, Lin CY, Wong CL, Tu IF, Huang TY, Yang FL, Chang YP, Wang JT, Lin TL, Huang KF, Wu SH. Klebsiella pneumoniae K2 capsular polysaccharide degradation by a bacteriophage depolymerase does not require trimer formation. mBio 2024; 15:e0351923. [PMID: 38349137 PMCID: PMC10936425 DOI: 10.1128/mbio.03519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
K2-capsular Klebsiella pneumoniae is a hypervirulent pathogen that causes fatal infections. Here, we describe a phage tailspike protein, named K2-2, that specifically depolymerizes the K2 capsular polysaccharide (CPS) of K. pneumoniae into tetrasaccharide repeating units. Nearly half of the products contained O-acetylation, which was thought crucial to the immunogenicity of CPS. The product-bound structures of this trimeric enzyme revealed intersubunit carbohydrate-binding grooves, each accommodating three tetrasaccharide units of K2 CPS. The catalytic residues and the key interactions responsible for K2 CPS recognition were identified and verified by site-directed mutagenesis. Further biophysical and functional characterization, along with the structure of a tetrameric form of K2-2, demonstrated that the formation of intersubunit catalytic center does not require trimerization, which could be nearly completely disrupted by a single-residue mutation in the C-terminal domain. Our findings regarding the assembly and catalysis of K2-2 provide cues for the development of glycoconjugate vaccines against K. pneumoniae infection. IMPORTANCE Generating fragments of capsular polysaccharides from pathogenic bacteria with crucial antigenic determinants for vaccine development continues to pose challenges. The significance of the C-terminal region of phage tailspike protein (TSP) in relation to its folding and trimer formation remains largely unexplored. The polysaccharide depolymerase described here demonstrates the ability to depolymerize the K2 CPS of K. pneumoniae into tetrasaccharide fragments while retaining the vital O-acetylation modification crucial for immunogenicity. By carefully characterizing the enzyme, elucidating its three-dimensional structures, conducting site-directed mutagenesis, and assessing the antimicrobial efficacy of the mutant enzymes against K2 K. pneumoniae, we offer valuable insights into the mechanism by which this enzyme recognizes and depolymerizes the K2 CPS. Our findings, particularly the discovery that trimer formation is not required for depolymerizing activity, challenge the current understanding of trimer-dependent TSP activity and highlight the catalytic mechanism of the TSP with an intersubunit catalytic center.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kit-Man Fung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - I-Ming Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Ling Wong
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Yin Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Pei Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Rivera-Araya J, Heine T, Chávez R, Schlömann M, Levicán G. Transcriptomic analysis of chloride tolerance in Leptospirillum ferriphilum DSM 14647 adapted to NaCl. PLoS One 2022; 17:e0267316. [PMID: 35486621 PMCID: PMC9053815 DOI: 10.1371/journal.pone.0267316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Chloride ions are toxic for most acidophilic microorganisms. In this study, the chloride tolerance mechanisms in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 adapted to 180 mM NaCl were investigated by a transcriptomic approach. Results showed that 99 genes were differentially expressed in the adapted versus the non-adapted cultures, of which 69 and 30 were significantly up-regulated or down-regulated, respectively. Genes that were up-regulated include carbonic anhydrase, cytochrome c oxidase (ccoN) and sulfide:quinone reductase (sqr), likely involved in intracellular pH regulation. Towards the same end, the cation/proton antiporter CzcA (czcA) was down-regulated. Adapted cells showed a higher oxygen consumption rate (2.2 x 10−9 ppm O2 s-1cell-1) than non-adapted cells (1.2 x 10−9 ppm O2 s-1cell-1). Genes coding for the antioxidants flavohemoprotein and cytochrome c peroxidase were also up-regulated. Measurements of the intracellular reactive oxygen species (ROS) level revealed that adapted cells had a lower level than non-adapted cells, suggesting that detoxification of ROS could be an important strategy to withstand NaCl. In addition, data analysis revealed the up-regulation of genes for Fe-S cluster biosynthesis (iscR), metal reduction (merA) and activation of a cellular response mediated by diffusible signal factors (DSFs) and the second messenger c-di-GMP. Several genes related to the synthesis of lipopolysaccharide and peptidoglycan were consistently down-regulated. Unexpectedly, the genes ectB, ectC and ectD involved in the biosynthesis of the compatible solutes (hydroxy)ectoine were also down-regulated. In line with these findings, although hydroxyectoine reached 20 nmol mg-1 of wet biomass in non-adapted cells, it was not detected in L. ferriphilum adapted to NaCl, suggesting that this canonical osmotic stress response was dispensable for salt adaptation. Differentially expressed transcripts and experimental validations suggest that adaptation to chloride in acidophilic microorganisms involves a multifactorial response that is different from the response in other bacteria studied.
Collapse
Affiliation(s)
- Javier Rivera-Araya
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Thomas Heine
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Renato Chávez
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Gloria Levicán
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
- * E-mail:
| |
Collapse
|
4
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Chen Y, Wang D, Liu Y, Gao G, Zhi J. Redox activity of single bacteria revealed by electrochemical collision technique. Biosens Bioelectron 2020; 176:112914. [PMID: 33353760 DOI: 10.1016/j.bios.2020.112914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
This paper reports on an innovative strategy based on the electrochemical collision technique to quantify the redox activity of two bacterial species: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. Thionine (TH), as a redox mediator, was electrostatically adsorbed on bacterial surface and formed the bacterium-TH complexes. TH can receive electrons from bacterial metabolic pathways and be reduced. When a single bacterium-TH complex collides on the ultramicroelectrode, the reduced TH will be re-oxidized at certain potential and generate current spike. The frequency of the spikes is linearly proportional to the living bacteria concentration, and the redox activity of individual bacterium can be quantified by the charges enclosed in the current spike. The redox ability of Gram-negative E.coli to the TH mediator was 6.79 ± 0.26 × 10-18 mol per bacterial cell in 30 min, which is relatively more reactive than B. subtilis (3.52 ± 0.31 × 10-18 mol per cell). The spike signals, fitted by 3D COMSOL Multiphysics simulation, revealed that there is inherent redox ability difference of two bacterial strains besides the difference in bacterial size and collision position. This work successfully quantified the bacterial redox activity to mediator in single cells level, which is of great significance to improve understanding of heterogeneous electron transfer process and build foundations to the microorganism selection in the design of microbial electrochemical devices.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
6
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Micol V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem 2020; 27:2576-2606. [PMID: 30295182 DOI: 10.2174/0929867325666181008115650] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multi-drug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) disseminate rapidly amongst patients in healthcare facilities and suppose an increasingly important cause of community-associated infections and associated mortality. The development of effective therapeutic options against resistant bacteria is a public health priority. Plant polyphenols are structurally diverse compounds that have been used for centuries for medicinal purposes, including infections treatment and possess, not only antimicrobial activity, but also antioxidant, anti-inflammatory and anticancer activities among others. Based on the existing evidence on the polyphenols' antibacterial capacity, polyphenols may be postulated as an alternative or complementary therapy for infectious diseases. OBJECTIVE To review the antimicrobial activity of plant polyphenols against Gram-positive bacteria, especially against S. aureus and its resistant strains. Determine the main bacterial molecular targets of polyphenols and their potential mechanism of action. METHODOLOGY The most relevant reports on plant polyphenols' antibacterial activity and their putative molecular targets were studied. We also performed virtual screening of thousand different polyphenols against proteins involved in the peptidoglycan biosynthesis to find potential valuable bioactive compounds. The bibliographic information used in this review was obtained from MEDLINE via PubMed. RESULTS Several polyphenols: phenolic acids, flavonoids (especially flavonols), tannins, lignans, stilbenes and combinations of these in botanical mixtures, have exhibited significant antibacterial activity against resistant and non-resistant Gram-positive bacteria at low μg/mL range MIC values. Their mechanism of action is quite diverse, targeting cell wall, lipid membrane, membrane receptors and ion channels, bacteria metabolites and biofilm formation. Synergic effects were also demonstrated for some combinations of polyphenols and antibiotics. CONCLUSION Plant polyphenols mean a promising source of antibacterial agents, either alone or in combination with existing antibiotics, for the development of new antibiotic therapies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - José Antonio Encinar
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Juan Carlos Rodríguez-Díaz
- Microbiology Section, University General Hospital of Alicante, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante 03010, Spain
| | - Vicente Micol
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain.,CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| |
Collapse
|
7
|
Diversity and Horizontal Transfer of Antarctic Pseudomonas spp. Plasmids. Genes (Basel) 2019; 10:genes10110850. [PMID: 31661808 PMCID: PMC6896180 DOI: 10.3390/genes10110850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas spp. are widely distributed in various environments around the world. They are also common in the Antarctic regions. To date, almost 200 plasmids of Pseudomonas spp. have been sequenced, but only 12 of them were isolated from psychrotolerant strains. In this study, 15 novel plasmids of cold-active Pseudomonas spp. originating from the King George Island (Antarctica) were characterized using a combined, structural and functional approach, including thorough genomic analyses, functional analyses of selected genetic modules, and identification of active transposable elements localized within the plasmids and comparative genomics. The analyses performed in this study increased the understanding of the horizontal transfer of plasmids found within Pseudomonas populations inhabiting Antarctic soils. It was shown that the majority of the studied plasmids are narrow-host-range replicons, whose transfer across taxonomic boundaries may be limited. Moreover, structural and functional analyses enabled identification and characterization of various accessory genetic modules, including genes encoding major pilin protein (PilA), that enhance biofilm formation, as well as active transposable elements. Furthermore, comparative genomic analyses revealed that the studied plasmids of Antarctic Pseudomonas spp. are unique, as they are highly dissimilar to the other known plasmids of Pseudomonas spp.
Collapse
|
8
|
Li Y, Tang M, Wang G, Li C, Chen W, Luo Y, Zeng J, Hu X, Zhou Y, Gao Y, Zhang L. Genomic characterization of Kerstersia gyiorum SWMUKG01, an isolate from a patient with respiratory infection in China. PLoS One 2019; 14:e0214686. [PMID: 30978196 PMCID: PMC6461280 DOI: 10.1371/journal.pone.0214686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Gram-negative bacterium Kerstersia gyiorum, a potential etiological agent of clinical infections, was isolated from several human patients presenting clinical symptoms. Its significance as a possible pathogen has been previously overlooked as no disease has thus far been definitively associated with this bacterium. To better understand how the organism contributes to the infectious disease, we determined the complete genomic sequence of K. gyiorum SWMUKG01, the first clinical isolate from southwest China. RESULTS The genomic data obtained displayed a single circular chromosome of 3, 945, 801 base pairs in length, which contains 3, 441 protein-coding genes, 55 tRNA genes and 9 rRNA genes. Analysis on the full spectrum of protein coding genes for cellular structures, two-component regulatory systems and iron uptake pathways that may be important for the success of the bacterial survival, colonization and establishment in the host conferred new insights into the virulence characteristics of K. gyiorum. Phylogenomic comparisons with Alcaligenaceae species indicated that K. gyiorum SWMUKG01 had a close evolutionary relationships with Alcaligenes aquatilis and Alcaligenes faecalis. CONCLUSIONS The comprehensive analysis presented in this work determinates for the first time a complete genome sequence of K. gyiorum, which is expected to provide useful information for subsequent studies on pathogenesis of this species.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Guangxi Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengwen Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghong Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Zeng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Hu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yungang Zhou
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Gao
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- * E-mail:
| |
Collapse
|
9
|
Identification of a wza-like gene involved in capsule biosynthesis, pathogenicity and biofilm formation in Riemerella anatipestifer. Microb Pathog 2017; 107:442-450. [PMID: 28442426 DOI: 10.1016/j.micpath.2017.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022]
Abstract
Duck infectious serositis is the most serious bacterial disease of ducks. It is caused by Riemerella anatipestifer (RA) infection. The capsule plays an important role in virulence of many pathogenic bacteria. In addition, the capsule has some key biological features. However, few studies have explored the characteristics of the RA capsule. In this study, we mainly constructed a capsular mutants of RA by inactivating the wza gene using homologous recombination. We found that the mutant was failed to produce a capsule layer. The mutant was less resistant to killing by the host complement or by desiccation and oxidative stress. Furthermore, the mutant strain was more hydrophobic, more able to auto-aggregate and underwent increased biofilm formation. Moreover, the mutant was less virulent than the wild-type in vivo studies. In summary, we found that the RA capsule was involved in the desiccation and oxidative stress, surface hydrophobicity, complement-mediated killing, biofilm formation, and virulence.
Collapse
|
10
|
Sachdeva S, Palur RV, Sudhakar KU, Rathinavelan T. E. coli Group 1 Capsular Polysaccharide Exportation Nanomachinary as a Plausible Antivirulence Target in the Perspective of Emerging Antimicrobial Resistance. Front Microbiol 2017; 8:70. [PMID: 28217109 PMCID: PMC5290995 DOI: 10.3389/fmicb.2017.00070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Bacteria evolving resistance against the action of multiple drugs and its ability to disseminate the multidrug resistance trait(s) across various strains of the same bacteria or different bacterial species impose serious threat to public health. Evolution of such multidrug resistance is due to the fact that, most of the antibiotics target bacterial survival mechanisms which exert selective pressure on the bacteria and aids them to escape from the action of antibiotics. Nonetheless, targeting bacterial virulence strategies such as bacterial surface associated polysaccharides biosynthesis and their surface accumulation mechanisms may be an attractive strategy, as they impose less selective pressure on the bacteria. Capsular polysaccharide (CPS) or K-antigen that is located on the bacterial surface armors bacteria from host immune response. Thus, unencapsulating bacteria would be a good strategy for drug design, besides CPS itself being a good vaccine target, by interfering with CPS biosynthesis and surface assembly pathway. Gram-negative Escherichia coli uses Wzy-polymerase dependent (Groups 1 and 4) and ATP dependent (Groups 1 and 3) pathways for CPS production. Considering E. coli as a case in point, this review explains the structure and functional roles of proteins involved in Group 1 Wzy dependent CPS biosynthesis, surface expression and anchorage in relevance to drug and vaccine developments.
Collapse
Affiliation(s)
- Shivangi Sachdeva
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | - Raghuvamsi V Palur
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | - Karpagam U Sudhakar
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | | |
Collapse
|
11
|
LptD is a promising vaccine antigen and potential immunotherapeutic target for protection against Vibrio species infection. Sci Rep 2016; 6:38577. [PMID: 27922123 PMCID: PMC5138612 DOI: 10.1038/srep38577] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
Outer membrane proteins (OMPs) are unique to Gram-negative bacteria. Several features, including surface exposure, conservation among strains and ability to induce immune responses, make OMPs attractive targets for using as vaccine antigens and immunotherapeutics. LptD is an essential OMP that mediates the final transport of lipopolysaccharide (LPS) to outer leaflet. The protein in Vibrio parahaemolyticus was identified to have immunogenicity in our previous report. In this study, broad distribution, high conservation and similar surface-epitopes of LptD were found among the major Vibrio species. LptD was further revealed to be associated with immune responses, and it has a strong ability to stimulate antibody response. More importantly, it conferred 100% immune protection against lethal challenge by V. parahaemolyticus in mice when the mice were vaccinated with LptD, and this finding was consistent with the observation of efficient clearance of bacteria in vaccination mice. Strikingly, targeting of bacteria by the LptD antibody caused significant decreases in both the growth and LPS level and an increase in susceptibility to hydrophobic antibiotics. These findings were consistent with those previously obtained in lptD-deletion bacteria. These data demonstrated LptD is a promising vaccine antigens and a potential target for antibody-based therapy to protect against Vibrio infections.
Collapse
|
12
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|