1
|
Lipke PN. Not gently down the stream: flow induces amyloid bonding in environmental and pathological fungal biofilms. mBio 2025:e0020325. [PMID: 40377304 DOI: 10.1128/mbio.00203-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Surface-bound biofilms are the predominant microbial life form in the environment and host organisms. Many biofilms survive and thrive under physical stress from liquid flow in streams, fuel lines, blood, and airways. Strategies for biofilm persistence include shear-dependent adhesion (called catch bonding). In some cases, biofilms are physically strengthened by the formation of cross-β bonds between proteins: the same process that generates amyloids. Cross-β bonds have low dissociation rates. In biofilms, they bind cells to substrates, each other, and the biofilm matrix. Most fungal adhesins include amino acid sequences that can form amyloids. Shear flow activates these adhesins by unfolding pseudo-stable protein domains. The unfolding exposes sequence segments that can form cross-β bonds. These segments interact to form high-avidity adhesin patches on the cell surface. Thus, cross-β bonding is a consequence of flow-induced exposure of the cross-β core sequences. Liquid flow leads to both biofilm establishment through catch bonding and biofilm strengthening through amyloid-like bonds. This shear-dependent induction of biofilm establishment and persistence is a model for many microbial systems.IMPORTANCEThe microbes in biofilms persist in many environments, including industrial and pathological settings. These surface-associated communities show high resistance to antibiotics and microbicides. Biofilms also resist scouring by liquid flow. Amyloid-like cross-β bonds allow the establishment, strengthening, and persistence of many biofilms. This discovery opens a window on the novel use of anti-amyloid strategies to control microbes in biofilms.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| |
Collapse
|
2
|
Bonnecaze L, Jumel K, Vial A, Khemtemourian L, Feuillie C, Molinari M, Lecomte S, Mathelié-Guinlet M. N-Formylation modifies membrane damage associated with PSMα3 interfacial fibrillation. NANOSCALE HORIZONS 2024; 9:1175-1189. [PMID: 38689531 DOI: 10.1039/d4nh00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The virulence of Staphylococcus aureus, a multi-drug resistant pathogen, notably depends on the expression of the phenol soluble modulins α3 (PSMα3) peptides, able to self-assemble into amyloid-like cross-α fibrils. Despite remarkable advances evidencing the crucial, yet insufficient, role of fibrils in PSMα3 cytotoxic activities towards host cells, the relationship between its molecular structures, assembly propensities, and modes of action remains an open intriguing problem. In this study, combining atomic force microscopy (AFM) imaging and infrared spectroscopy, we first demonstrated in vitro that the charge provided by the N-terminal capping of PSMα3 alters its interactions with model membranes of controlled lipid composition without compromising its fibrillation kinetics or morphology. N-formylation eventually dictates PSMα3-membrane binding via electrostatic interactions with the lipid head groups. Furthermore, PSMα3 insertion within the lipid bilayer is favoured by hydrophobic interactions with the lipid acyl chains only in the fluid phase of membranes and not in the gel-like ordered domains. Strikingly, our real-time AFM imaging emphasizes how intermediate protofibrillar entities, formed along PSMα3 self-assembly and promoted at the membrane interface, likely disrupt membrane integrity via peptide accumulation and subsequent membrane thinning in a peptide concentration and lipid-dependent manner. Overall, our multiscale and multimodal approach sheds new light on the key roles of N-formylation and intermediate self-assembling entities, rather than mature fibrils, in dictating deleterious interactions of PSMα3 with membrane lipids, likely underscoring its ultimate cellular toxicity in vivo, and in turn S. aureus pathogenesis.
Collapse
Affiliation(s)
- Laura Bonnecaze
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Katlyn Jumel
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Anthony Vial
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Cécile Feuillie
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | |
Collapse
|
3
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
4
|
Vinodhini V, Kavitha M. Deciphering agr quorum sensing in Staphylococcus aureus: insights and therapeutic prospects. Mol Biol Rep 2024; 51:155. [PMID: 38252331 DOI: 10.1007/s11033-023-08930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
The emergence of superbugs like methicillin-resistant Staphylococcus aureus exposed the limitations of treating microbial infections using antibiotics. At present, the discovery of novel and convincing therapeutic methods are being executed increasingly as possible substitutes to conventional antibiotic therapies. The quorum sensing helps Staphylococcus aureus become more viable through their signaling mechanisms. In recent years, targeting the prominent factors of quorum sensing has obtained remarkable attention as a futuristic approach to dealing with bacterial pathogenicity. The standard antibiotic therapy intends to inhibit the organism by targeting specific molecules and afford a chance for the evolution of antibiotic resistance. This prompts the development of novel therapeutic strategies like inhibiting quorum sensing that can limit bacterial virulence by decreasing the selective pressure, thereby restricting antibiotic resistance evolution. This review furnishes new insights into the accessory gene regulator quorum sensing in Staphylococcus aureus and its inhibition by targeting the genes that regulate the operon. Further, this review comprehensively explores the inhibitors reported up to date and their specific targets and discusses their potentially ineffective alternative therapy against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- V Vinodhini
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - M Kavitha
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Baquer F, Jaulhac B, Barthel C, Paz M, Wolfgramm J, Müller A, Boulanger N, Grillon A. Skin microbiota secretomes modulate cutaneous innate immunity against Borrelia burgdorferi s.s. Sci Rep 2023; 13:16393. [PMID: 37773515 PMCID: PMC10541882 DOI: 10.1038/s41598-023-43566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
In Lyme borreliosis, the skin constitutes a major interface for the host, the bacteria and the tick. Skin immunity is provided by specialized immune cells but also by the resident cells: the keratinocytes and the fibroblasts. Discoveries on the role of the microbiome in the modulation of skin inflammation and immunity have reinforced the potential importance of the skin in vector-borne diseases. In this study, we analyzed in vitro the interaction of human primary keratinocytes and fibroblasts with Borrelia burgdorferi sensu stricto N40 in presence or absence of bacterial commensal supernatants. We aimed to highlight the role of resident skin cells and skin microbiome on the inflammation induced by B. burgdorferi s.s.. The secretomes of Staphylococcus epidermidis, Corynebacterium striatum and Cutibacterium acnes showed an overall increase in the expression of IL-8, CXCL1, MCP-1 and SOD-2 by fibroblasts, and of IL-8, CXCL1, MCP-1 and hBD-2 in the undifferentiated keratinocytes. Commensal bacteria showed a repressive effect on the expression of IL-8, CXCL1 and MCP-1 by differentiated keratinocytes. Besides the inflammatory effect observed in the presence of Borrelia on all cell types, the cutaneous microbiome appears to promote a rapid innate response of resident skin cells during the onset of Borrelia infection.
Collapse
Affiliation(s)
- F Baquer
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Laboratory of Bacteriology, Strasbourg University Hospital, 67000, Strasbourg, France.
| | - B Jaulhac
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
- Laboratory of Bacteriology, Strasbourg University Hospital, 67000, Strasbourg, France
- French National Reference Center for Borrelia, Strasbourg University Hospital, 67000, Strasbourg, France
| | - C Barthel
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - M Paz
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - J Wolfgramm
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - A Müller
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
| | - N Boulanger
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
- French National Reference Center for Borrelia, Strasbourg University Hospital, 67000, Strasbourg, France
| | - A Grillon
- Institut de Bactériologie, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, UR7290, ITI InnoVec, 3 Rue Koeberlé, 67000, Strasbourg, France
- Laboratory of Bacteriology, Strasbourg University Hospital, 67000, Strasbourg, France
- French National Reference Center for Borrelia, Strasbourg University Hospital, 67000, Strasbourg, France
| |
Collapse
|
6
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Lee SM, Keum HL, Sul WJ. Bacterial Crosstalk via Antimicrobial Peptides on the Human Skin: Therapeutics from a Sustainable Perspective. J Microbiol 2023; 61:1-11. [PMID: 36719618 DOI: 10.1007/s12275-022-00002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023]
Abstract
The skin's epidermis is an essential barrier as the first guard against invading pathogens, and physical protector from external injury. The skin microbiome, which consists of numerous bacteria, fungi, viruses, and archaea on the epidermis, play a key role in skin homeostasis. Antibiotics are a fast-acting and effective treatment method, however, antibiotic use is a nuisance that can disrupt skin homeostasis by eradicating beneficial bacteria along with the intended pathogens and cause antibiotic-resistant bacteria spread. Increased numbers of antimicrobial peptides (AMPs) derived from humans and bacteria have been reported, and their roles have been well defined. Recently, modulation of the skin microbiome with AMPs rather than artificially synthesized antibiotics has attracted the attention of researchers as many antibiotic-resistant strains make treatment mediation difficult in the context of ecological problems. Herein, we discuss the overall insights into the skin microbiome, including its regulation by different AMPs, as well as their composition and role in health and disease.
Collapse
Affiliation(s)
- Seon Mi Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
8
|
Study of SarA by DNA Affinity Capture Assay (DACA) Employing Three Promoters of Key Virulence and Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121714. [PMID: 36551372 PMCID: PMC9774152 DOI: 10.3390/antibiotics11121714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the most well-known human pathogens, houses many virulence factors and regulatory proteins that confer resistance to diverse antibiotics. Although they have been investigated intensively, the correlations among virulence factors, regulatory proteins and antibiotic resistance are still elusive. We aimed to identify the most significant global MRSA regulator by concurrently analyzing protein-binding and several promoters under same conditions and at the same time point. DNA affinity capture assay (DACA) was performed with the promoters of mecA, sarA, and sarR, all of which significantly impact survival of MRSA. Here, we show that SarA protein binds to all three promoters. Consistent with the previous reports, ΔsarA mutant exhibited weakened antibiotic resistance to oxacillin and reduced biofilm formation. Additionally, production and activity of many virulence factors such as phenol-soluble modulins (PSM), α-hemolysin, motility, staphyloxanthin, and other related proteins were decreased. Comparing the sequence of SarA with that of clinical strains of various lineages showed that all sequences were highly conserved, in contrast to that observed for AgrA, another major regulator of virulence and resistance in MRSA. We have demonstrated that SarA regulates antibiotic resistance and the expression of various virulence factors. Our results warrant that SarA could be a leading target for developing therapeutic agents against MRSA infections.
Collapse
|
9
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
10
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
11
|
Liu Q, Chen N, Chen H, Huang Y. RNA-Seq analysis of differentially expressed genes of Staphylococcus epidermidis isolated from postoperative endophthalmitis and the healthy conjunctiva. Sci Rep 2020; 10:14234. [PMID: 32859978 PMCID: PMC7455711 DOI: 10.1038/s41598-020-71050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus epidermidis (S. epidermidis) is one of the primary pathogens in postoperative endophthalmitis, which is a devastating complication of cataract surgery and often results in irreversible visual loss and even blindness. Meanwhile, it is the most frequently isolated commensal bacterium in the healthy conjunctiva. In this study, we investigated the differentially expressed genes (DEGs) of S. epidermidis isolated from the patients with postoperative endophthalmitis and the healthy conjunctiva to predict their functions and pathways by Illumina high-throughput RNA sequencing. Using genome-wide transcriptional analysis, 281 genes (142 upregulated and 139 downregulated genes) were found to be differentially expressed (fold change ≥ 2, p ≤ 0.05) in the strains from endophthalmitis. Ten randomly selected DEGs were further validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). GO enrichment analysis suggested that more DEGs were associated with the thioredoxin system and iron ion metabolism. KEGG pathway analysis revealed that more DEGs were associated with the pathways of the two-component system and pyruvate metabolism. Moreover, the gene SE1634 code for staphylococcal toxin was significantly upregulated in S. epidermidis strains of the endophthalmitis, which might be directly responsible for the pathogenesis of endophthalmitis. In conclusion, this research is helpful for further investigations on genes or pathways related with the pathogenesis and therapeutic targets of S. epidermidis endophthalmitis.
Collapse
Affiliation(s)
- Qing Liu
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yanerdao Road, Qingdao, 266071, China
| | - Nan Chen
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yanerdao Road, Qingdao, 266071, China
| | - Huabo Chen
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yanerdao Road, Qingdao, 266071, China
| | - Yusen Huang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China. .,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yanerdao Road, Qingdao, 266071, China.
| |
Collapse
|
12
|
De Gregorio E, Esposito A, Vollaro A, De Fenza M, D’Alonzo D, Migliaccio A, Iula VD, Zarrilli R, Guaragna A. N-Nonyloxypentyl-l-Deoxynojirimycin Inhibits Growth, Biofilm Formation and Virulence Factors Expression of Staphylococcus aureus. Antibiotics (Basel) 2020; 9:E362. [PMID: 32604791 PMCID: PMC7344813 DOI: 10.3390/antibiotics9060362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is one of the major causes of hospital- and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d- and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 μg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin- and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| | - Antonella Migliaccio
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Vita Dora Iula
- Complex Operative Unit of Clinical Pathology, “Ospedale del Mare-ASL NA1 Centro”, 80131 Naples, Italy;
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (M.D.F.); (D.D.)
| |
Collapse
|
13
|
Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator ( agr) System. Front Microbiol 2018; 9:55. [PMID: 29422887 PMCID: PMC5789755 DOI: 10.3389/fmicb.2018.00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus can cause numerous different diseases, which has been attributed to its large repertoire of virulence factors, many of which are under the control of the accessory gene regulator (agr) quorum sensing system. Under conditions of high cell density, agr increases the production of many virulence factors, decreases expression of several colonization factors, and is intimately associated with the pathogenesis and biofilm formation of S. aureus. This review summarizes our current understanding of the molecular mechanisms underlying agr quorum sensing and the regulation of agr expression. The discussion also examines subgroups of agr and their association with different diseases, and concludes with an analysis of strategies for designing drugs and vaccines that target agr to combat S. aureus infections.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Si Rui Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bei Jiang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiao Mei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Abstract
The secretion of proteins that damage host tissue is well established as integral to the infectious processes of many bacterial pathogens. However, recent advances in our understanding of the activity of toxins suggest that the attributes we have assigned to them from early in vitro experimentation have misled us into thinking of them as merely destructive tools. Here, we will discuss the multifarious ways in which toxins contribute to the lifestyle of bacteria and, by considering their activity from an evolutionary perspective, demonstrate how this extends far beyond their ability to destroy host tissue.
Collapse
|
15
|
Bronsard J, Pascreau G, Sassi M, Mauro T, Augagneur Y, Felden B. sRNA and cis-antisense sRNA identification in Staphylococcus aureus highlights an unusual sRNA gene cluster with one encoding a secreted peptide. Sci Rep 2017; 7:4565. [PMID: 28676719 PMCID: PMC5496865 DOI: 10.1038/s41598-017-04786-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Staphylococcus aureus expresses a set of transcriptional factors and small RNAs (sRNAs) to adapt to environmental variations. Recent harmonization of staphylococcal sRNA data allowed us to search for novel sRNAs using DETR'PROK, a computational pipeline for identifying sRNA in prokaryotes. We performed RNA-Seq on Newman strain and identified a set of 48 sRNA candidates. To avoid bioinformatic artefacts, we applied a series of cut-offs and tested experimentally each selected intergenic region. This narrowed the field to 24 expressed sRNAs, of which 21 were new and designated with Srn identifiers. Further examination of these loci revealed that one exhibited an unusual condensed sRNA cluster of about 650 nucleotides. We determined the transcriptional start sites within this region and demonstrated the presence of three contiguous sRNA genes (srn_9342, srn_9344 and srn_9345) expressed from the positive strand, and two others (srn_9343 and srn_9346) transcribed from the opposite one. Using comparative genomics, we showed that genetic organization of the srn_9342-9346 locus is specific to Newman and that its expression is growth-phase dependent and subjected to nutrient deprivation and oxidative stress. Finally, we demonstrated that srn_9343 encodes a secreted peptide that could belong to a novel S. aureus toxin-antitoxin system.
Collapse
Affiliation(s)
- Julie Bronsard
- Inserm U1230 Biochimie Pharmaceutique, Université de Rennes 1, Rennes, France
| | - Gaetan Pascreau
- Inserm U1230 Biochimie Pharmaceutique, Université de Rennes 1, Rennes, France
| | - Mohamed Sassi
- Inserm U1230 Biochimie Pharmaceutique, Université de Rennes 1, Rennes, France
| | - Tony Mauro
- Inserm U1230 Biochimie Pharmaceutique, Université de Rennes 1, Rennes, France
| | - Yoann Augagneur
- Inserm U1230 Biochimie Pharmaceutique, Université de Rennes 1, Rennes, France.
| | - Brice Felden
- Inserm U1230 Biochimie Pharmaceutique, Université de Rennes 1, Rennes, France
| |
Collapse
|
16
|
Hajighahramani N, Nezafat N, Eslami M, Negahdaripour M, Rahmatabadi SS, Ghasemi Y. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2017; 48:83-94. [DOI: 10.1016/j.meegid.2016.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
|
17
|
Figueiredo AMS, Ferreira FA, Beltrame CO, Côrtes MF. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit Rev Microbiol 2017; 43:602-620. [PMID: 28581360 DOI: 10.1080/1040841x.2017.1282941] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.
Collapse
Affiliation(s)
- Agnes Marie Sá Figueiredo
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Fabienne Antunes Ferreira
- b Departamento de Microbiologia, Imunologia e Parasitologia , Campus Universitário Setor F, Bloco A. Florianópolis, Universidade Federal de Santa Catarina , Florianopolis , Brazil
| | - Cristiana Ossaille Beltrame
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Marina Farrel Côrtes
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
18
|
Mendonça SCF. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasit Vectors 2016; 9:492. [PMID: 27600664 PMCID: PMC5013623 DOI: 10.1186/s13071-016-1777-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines.
Collapse
Affiliation(s)
- Sergio C F Mendonça
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. 4365 - Manguinhos, 21040-360, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
de Mendonça SCF, Cysne-Finkelstein L, Matos DCDS. Kinetoplastid Membrane Protein-11 as a Vaccine Candidate and a Virulence Factor in Leishmania. Front Immunol 2015; 6:524. [PMID: 26528287 PMCID: PMC4602152 DOI: 10.3389/fimmu.2015.00524] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
Kinetoplastid membrane protein-11 (KMP-11), a protein present in all kinetoplastid protozoa, is considered a potential candidate for a leishmaniasis vaccine. In Leishmania amazonensis, KMP-11 is expressed in promastigotes and amastigotes. In both stages, the protein was found in association with membrane structures at the cell surface, flagellar pocket, and intracellular vesicles. More importantly, its surface expression is higher in amastigotes than in promastigotes and increases during metacyclogenesis. The increased expression of KMP-11 in metacyclic promastigotes, and especially in amastigotes, indicates a role for this molecule in the parasite relationship with the mammalian host. In this connection, we have shown that addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide production. The doses of KMP-11, the IL-10 levels, and the intracellular amastigote loads were strongly, positively, and significantly correlated. The increase in parasite load induced by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10-neutralizing antibodies, but not by isotype controls. The neutralizing antibodies, but not the isotype controls, were also able to significantly decrease the parasite load in macrophages cultured without the addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection is not dependent on the addition of exogenous KMP-11 and that the protein naturally expressed by the parasite is able to promote it. All these data indicate that KMP-11 acts as a virulence factor in L. amazonensis infection.
Collapse
Affiliation(s)
| | - Léa Cysne-Finkelstein
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz , Rio de Janeiro , Brazil
| | - Denise Cristina de Souza Matos
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz , Rio de Janeiro , Brazil
| |
Collapse
|