1
|
Saroha T, Patil PP, Rana R, Kumar R, Kumar S, Singhal L, Gautam V, Patil PB. Genomic features, antimicrobial susceptibility, and epidemiological insights into Burkholderia cenocepacia clonal complex 31 isolates from bloodstream infections in India. Front Cell Infect Microbiol 2023; 13:1151594. [PMID: 37153161 PMCID: PMC10155701 DOI: 10.3389/fcimb.2023.1151594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Burkholderia cepacia complex (Bcc) clonal complex (CC) 31, the predominant lineage causing devastating outbreaks globally, has been a growing concern of infections in non-cystic fibrosis (NCF) patients in India. B. cenocepacia is very challenging to treat owing to its virulence determinants and antibiotic resistance. Improving the management of these infections requires a better knowledge of their resistance patterns and mechanisms. Methods Whole-genome sequences of 35 CC31 isolates obtained from patient samples, were analyzed against available 210 CC31 genomes in the NCBI database to glean details of resistance, virulence, mobile elements, and phylogenetic markers to study genomic diversity and evolution of CC31 lineage in India. Results Genomic analysis revealed that 35 isolates belonging to CC31 were categorized into 11 sequence types (ST), of which five STs were reported exclusively from India. Phylogenetic analysis classified 245 CC31 isolates into eight distinct clades (I-VIII) and unveiled that NCF isolates are evolving independently from the global cystic fibrosis (CF) isolates forming a distinct clade. The detection rate of seven classes of antibiotic-related genes in 35 isolates was 35 (100%) for tetracyclines, aminoglycosides, and fluoroquinolones; 26 (74.2%) for sulphonamides and phenicols; 7 (20%) for beta-lactamases; and 1 (2.8%) for trimethoprim resistance genes. Additionally, 3 (8.5%) NCF isolates were resistant to disinfecting agents and antiseptics. Antimicrobial susceptibility testing revealed that majority of NCF isolates were resistant to chloramphenicol (77%) and levofloxacin (34%). NCF isolates have a comparable number of virulence genes to CF isolates. A well-studied pathogenicity island of B. cenocepacia, GI11 is present in ST628 and ST709 isolates from the Indian Bcc population. In contrast, genomic island GI15 (highly similar to the island found in B. pseudomallei strain EY1) is exclusively reported in ST839 and ST824 isolates from two different locations in India. Horizontal acquisition of lytic phage ST79 of pathogenic B. pseudomallei is demonstrated in ST628 isolates Bcc1463, Bcc29163, and BccR4654 amongst CC31 lineage. Discussion The study reveals a high diversity of CC31 lineages among B. cenocepacia isolates from India. The extensive information from this study will facilitate the development of rapid diagnostic and novel therapeutic approaches to manage B. cenocepacia infections.
Collapse
Affiliation(s)
- Tanu Saroha
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant P. Patil
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Rekha Rana
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Kumar
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Lipika Singhal
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Vikas Gautam
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Prabhu B. Patil, ; Vikas Gautam,
| | - Prabhu B. Patil
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- *Correspondence: Prabhu B. Patil, ; Vikas Gautam,
| |
Collapse
|
2
|
The role of small proteins in Burkholderia cenocepacia J2315 biofilm formation, persistence and intracellular growth. Biofilm 2019; 1:100001. [PMID: 33447789 PMCID: PMC7798474 DOI: 10.1016/j.bioflm.2019.100001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
Burkholderia cenocepacia infections are difficult to treat due to resistance, biofilm formation and persistence. B. cenocepacia strain J2315 has a large multi-replicon genome (8.06 Mb) and the function of a large fraction of (conserved) hypothetical genes remains elusive. The goal of the present study is to elucidate the role of small proteins in B. cenocepacia, focusing on genes smaller than 300 base pairs of which the function is unknown. Almost 10% (572) of the B. cenocepacia J2315 genes are smaller than 300 base pairs and more than half of these are annotated as coding for hypothetical proteins. For 234 of them no similarity could be found with non-hypothetical genes in other bacteria using BLAST. Using available RNA sequencing data obtained from biofilms, a list of 27 highly expressed B. cenocepacia J2315 genes coding for small proteins was compiled. For nine of them expression in biofilms was also confirmed using LC-MS based proteomics and/or expression was confirmed using eGFP translational fusions. Overexpression of two of these genes negatively impacted growth, whereas for four others overexpression led to an increase in biofilm biomass. Overexpression did not have an influence on the MIC for tobramycin, ciprofloxacin or meropenem but for five small protein encoding genes, overexpression had an effect on the number of persister cells in biofilms. While there were no significant differences in adherence to and invasion of A549 epithelial cells between the overexpression mutants and the WT, significant differences were observed in intracellular growth/survival. Finally, the small protein BCAM0271 was identified as an antitoxin belonging to a toxin-antitoxin module. The toxin was found to encode a tRNA acetylase that inhibits translation. In conclusion, our results confirm that small proteins are present in the genome of B. cenocepacia J2315 and indicate that they are involved in various biological processes, including biofilm formation, persistence and intracellular growth.
Collapse
|
3
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
4
|
Zhang Y, Sass A, Van Acker H, Wille J, Verhasselt B, Van Nieuwerburgh F, Kaever V, Crabbé A, Coenye T. Coumarin Reduces Virulence and Biofilm Formation in Pseudomonas aeruginosa by Affecting Quorum Sensing, Type III Secretion and C-di-GMP Levels. Front Microbiol 2018; 9:1952. [PMID: 30186266 PMCID: PMC6110822 DOI: 10.3389/fmicb.2018.01952] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
As one of the major pathogens in wound infections, Pseudomonas aeruginosa produces several virulence factors and forms biofilms; these processes are under the regulation of various quorum sensing (QS) systems. Therefore, QS has been regarded as a promising target to treat P. aeruginosa infections. In the present study, we evaluated the effect of the plant-derived QS inhibitor coumarin on P. aeruginosa biofilms and virulence. Coumarin inhibited QS in the P. aeruginosa QSIS2 biosensor strain, reduced protease and pyocyanin production, and inhibited biofilm formation in microtiter plates in different P. aeruginosa strains. The effects of coumarin in inhibiting biofilm formation in an in vitro wound model and reducing P. aeruginosa virulence in the Lucilia sericata infection model were strain-dependent. Transcriptome analysis revealed that several key genes involved in the las, rhl, Pseudomonas quinolone signal (PQS), and integrated QS (IQS) systems were downregulated in coumarin-treated biofilms of P. aeruginosa PAO1. Coumarin also changed the expression of genes related to type III secretion and cyclic diguanylate (c-di-GMP) metabolism. The cellular c-di-GMP level of P. aeruginosa PAO1 and recent clinical P. aeruginosa strains was significantly reduced by coumarin. These results provide new evidence for the possible application of coumarin as an anti-biofilm and anti-virulence agent against P. aeruginosa in wound infections.
Collapse
Affiliation(s)
- Yunhui Zhang
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jasper Wille
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | | | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
The Small RNA ncS35 Regulates Growth in Burkholderia cenocepacia J2315. mSphere 2018; 3:mSphere00579-17. [PMID: 29359187 PMCID: PMC5760752 DOI: 10.1128/msphere.00579-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
Small RNAs play an important role in the survival of bacteria in diverse environments. We explored the physiological role of ncS35, a small RNA expressed in B. cenocepacia J2315, an opportunistic pathogen in cystic fibrosis patients. In cystic fibrosis patients, infections can lead to “cepacia syndrome,” a rapidly progressing and often fatal pneumonia. Infections with Burkholderia spp. are difficult to threat with antibiotics because of their high intrinsic resistance and ability to form biofilms. We show that ncS35 attenuates the growth and reduces the metabolic rate of B. cenocepacia and influences biofilm structure. This demonstrates that as-yet-uncharacterized small RNAs with regulatory function can influence physiological traits of B. cenocepacia that are relevant for infection. Burkholderia cenocepacia J2315 is a member of the B. cepacia complex. It has a large genome with three replicons and one plasmid; 7,261 genes code for annotated proteins, while 113 code for functional RNAs. Small regulatory RNAs of B. cenocepacia have not yet been functionally characterized. We investigated a small regulatory RNA, designated ncS35, that was discovered by differential RNA sequencing. Its expression under various conditions was quantified, and a deletion mutant, ΔncS35, was constructed. Compared to planktonic growth in a rich medium, the expression of ncS35 was elevated when B. cenocepacia J2315 was grown in biofilms and in minimal medium. Cells of the deletion mutant showed increased aggregation, higher metabolic activity, a higher growth rate, and an increased susceptibility to tobramycin. A transcriptomic analysis revealed upregulation of the phenylacetic acid and tryptophan degradation pathways in ΔncS35. Computational target prediction indicated that ncS35 likely interacts with the first gene of the tryptophan degradation pathway. Overall, we demonstrated that small RNA ncS35 is a noncoding RNA with an attenuating effect on the metabolic rate and growth. It is possible that slower growth protects B. cenocepacia J2315 against stressors acting on fast-dividing cells and enhances survival under unfavorable conditions. IMPORTANCE Small RNAs play an important role in the survival of bacteria in diverse environments. We explored the physiological role of ncS35, a small RNA expressed in B. cenocepacia J2315, an opportunistic pathogen in cystic fibrosis patients. In cystic fibrosis patients, infections can lead to “cepacia syndrome,” a rapidly progressing and often fatal pneumonia. Infections with Burkholderia spp. are difficult to threat with antibiotics because of their high intrinsic resistance and ability to form biofilms. We show that ncS35 attenuates the growth and reduces the metabolic rate of B. cenocepacia and influences biofilm structure. This demonstrates that as-yet-uncharacterized small RNAs with regulatory function can influence physiological traits of B. cenocepacia that are relevant for infection.
Collapse
|
6
|
Sass A, Kiekens S, Coenye T. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci Rep 2017; 7:15665. [PMID: 29142288 PMCID: PMC5688073 DOI: 10.1038/s41598-017-15818-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Small RNAs play a regulatory role in many central metabolic processes of bacteria, as well as in developmental processes such as biofilm formation. Small RNAs of Burkholderia cenocepacia, an opportunistic pathogenic beta-proteobacterium, are to date not well characterised. To address that, we performed genome-wide transcriptome structure analysis of biofilm grown B. cenocepacia J2315. 41 unannotated short transcripts were identified in intergenic regions of the B. cenocepacia genome. 15 of these short transcripts, highly abundant in biofilms, widely conserved in Burkholderia sp. and without known function, were selected for in-depth analysis. Expression profiling showed that most of these sRNAs are more abundant in biofilms than in planktonic cultures. Many are also highly abundant in cells grown in minimal media, suggesting they are involved in adaptation to nutrient limitation and growth arrest. Their computationally predicted targets include a high proportion of genes involved in carbon metabolism. Expression and target genes of one sRNA suggest a potential role in regulating iron homoeostasis. The strategy used for this study to detect sRNAs expressed in B. cenocepacia biofilms has successfully identified sRNAs with a regulatory function.
Collapse
Affiliation(s)
- Andrea Sass
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Sanne Kiekens
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
8
|
Brackman G, Garcia-Fernandez MJ, Lenoir J, De Meyer L, Remon JP, De Beer T, Concheiro A, Alvarez-Lorenzo C, Coenye T. Dressings Loaded with Cyclodextrin-Hamamelitannin Complexes Increase Staphylococcus aureus Susceptibility Toward Antibiotics Both in Single as well as in Mixed Biofilm Communities. Macromol Biosci 2016; 16:859-69. [PMID: 26891369 DOI: 10.1002/mabi.201500437] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Indexed: 01/16/2023]
Abstract
Bacteria reside within biofilms at the infection site, making them extremely difficult to eradicate with conventional wound care products. Bacteria use quorum sensing (QS) systems to regulate biofilm formation, and QS inhibitors (QSIs) have been proposed as promising antibiofilm agents. Despite this, few antimicrobial therapies that interfere with QS exist. Nontoxic hydroxypropyl-β-cyclodextrin-functionalized cellulose gauzes releasing a burst of the antibiotic vancomycin and the QSI hamamelitannin are developed, followed by a sustained release of both. The gauzes affect QS and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro model of chronic wound infection and can be considered as candidates to be used to prevent wound infection as well as treat infected wounds.
Collapse
Affiliation(s)
- Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Maria José Garcia-Fernandez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Joke Lenoir
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laurens De Meyer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Jean-Paul Remon
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Sass AM, Van Acker H, Förstner KU, Van Nieuwerburgh F, Deforce D, Vogel J, Coenye T. Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315. BMC Genomics 2015; 16:775. [PMID: 26462475 PMCID: PMC4603805 DOI: 10.1186/s12864-015-1993-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. METHODS RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. RESULTS Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. CONCLUSIONS Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation.
Collapse
Affiliation(s)
- Andrea M Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany.
| | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium.
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|