1
|
Metters G, Hemsley C, Norville I, Titball R. Identification of essential genes in Coxiella burnetii. Microb Genom 2023; 9:mgen000944. [PMID: 36723494 PMCID: PMC9997736 DOI: 10.1099/mgen.0.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
Collapse
Affiliation(s)
- Georgie Metters
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Present address: Molecular Microbiology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5AA, UK
| | - Isobel Norville
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard Titball
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Abou Abdallah R, Million M, Delerce J, Anani H, Diop A, Caputo A, Zgheib R, Rousset E, Sidi Boumedine K, Raoult D, Fournier PE. Pangenomic analysis of Coxiella burnetii unveils new traits in genome architecture. Front Microbiol 2022; 13:1022356. [PMID: 36478861 PMCID: PMC9721466 DOI: 10.3389/fmicb.2022.1022356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 08/25/2023] Open
Abstract
Coxiella burnetii is the etiological agent of Q fever, a worldwide zoonosis able to cause large outbreaks. The disease is polymorphic. Symptomatic primary infection is named acute Q fever and is associated with hepatitis, pneumonia, fever, and auto-immune complications while persistent focalized infections, mainly endocarditis, and vascular infections, occur in a minority of patients but are potentially lethal. In order to evaluate the genomic features, genetic diversity, evolution, as well as genetic determinants of antibiotic resistance, pathogenicity, and ability to cause outbreaks of Q fever, we performed a pangenomic analysis and genomic comparison of 75 C. burnetii strains including 63 newly sequenced genomes. Our analysis demonstrated that C. burnetii has an open pangenome, unique genes being found in many strains. In addition, pathogenicity islands were detected in all genomes. In consequence C. burnetii has a high genomic plasticity, higher than that of other intracellular bacteria. The core- and pan-genomes are made of 1,211 and 4,501 genes, respectively (ratio 0.27). The core gene-based phylogenetic analysis matched that obtained from multi-spacer typing and the distribution of plasmid types. Genomic characteristics were associated to clinical and epidemiological features. Some genotypes were associated to specific clinical forms and countries. MST1 genotype strains were associated to acute Q fever. A significant association was also found between clinical forms and plasmids. Strains harboring the QpRS plasmid were never found in acute Q fever and were only associated to persistent focalized infections. The QpDV and QpH1 plasmids were associated to acute Q fever. In addition, the Guyanese strain CB175, the most virulent strain to date, exhibited a unique MST genotype, a distinct COG profile and an important variation in gene number that may explain its unique pathogenesis. Therefore, strain-specific factors play an important role in determining the epidemiological and clinical manifestations of Q fever alongside with host-specific factors (valvular and vascular defects notably).
Collapse
Affiliation(s)
- Rita Abou Abdallah
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Matthieu Million
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Jeremy Delerce
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Hussein Anani
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Awa Diop
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Aurelia Caputo
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Rita Zgheib
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Elodie Rousset
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - Karim Sidi Boumedine
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Molecular detection of Coxiella burnetii in aborted bovine fetuses in Brazil. Acta Trop 2022; 227:106258. [PMID: 34826384 DOI: 10.1016/j.actatropica.2021.106258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022]
Abstract
In the past decade, cases of Q fever have been reported in Brazil. Although the previous report of Coxiella burnetii in humans and animals, the knowledge about the occurrence of this pathogen in livestock in Brazil is scarce. This study aimed to search C. burnetii and possible coinfections in tissues of aborted bovine fetuses from Brazil. Tissue samples from seventy-six aborted bovine fetuses sent to the laboratory of molecular diagnosis of infectious diseases from 2013 to 2019 were evaluated by real-time PCR for C. burnetii. Overall, 9.2% (7/76) of the samples were positive for C. burnetii. Moreover, the molecular diagnostic history of our lab revealed the coinfection with Neospora spp. in three fetuses and the presence of histopathological features suggestive with fetal neosporosis in another one. The previous report of C. burnetii in humans and animals in the country, with the detection of C. burnetii from tissues of aborted bovine fetuses reported here, reinforces the neglected state of the disease in Brazil and raises the question of the role of the pathogen in reproductive disorders in national livestock.
Collapse
|
4
|
Correlating Genotyping Data of Coxiella burnetii with Genomic Groups. Pathogens 2021; 10:pathogens10050604. [PMID: 34069306 PMCID: PMC8156542 DOI: 10.3390/pathogens10050604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Coxiella burnetii is a zoonotic pathogen that resides in wild and domesticated animals across the globe and causes a febrile illness, Q fever, in humans. Several distinct genetic lineages or genomic groups have been shown to exist, with evidence for different virulence potential of these lineages. Multispacer Sequence Typing (MST) and Multiple-Locus Variable number tandem repeat Analysis (MLVA) are being used to genotype strains. However, it is unclear how these typing schemes correlate with each other or with the classification into different genomic groups. Here, we created extensive databases for published MLVA and MST genotypes of C. burnetii and analysed the associated metadata, revealing associations between animal host and human disease type. We established a new classification scheme that assigns both MST and MLVA genotypes to a genomic group and which revealed additional sub-lineages in two genomic groups. Finally, we report a novel, rapid genomotyping method for assigning an isolate into a genomic group based on the Cox51 spacer sequence. We conclude that by pooling and streamlining existing datasets, associations between genotype and clinical outcome or host source were identified, which in combination with our novel genomotyping method, should enable an estimation of the disease potential of new C. burnetii isolates.
Collapse
|
5
|
Anani H, Zgheib R, Hasni I, Raoult D, Fournier PE. Interest of bacterial pangenome analyses in clinical microbiology. Microb Pathog 2020; 149:104275. [PMID: 32562810 DOI: 10.1016/j.micpath.2020.104275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Thanks to the progress and decreasing costs in genome sequencing technologies, more than 250,000 bacterial genomes are currently available in public databases, covering most, if not all, of the major human-associated phylogenetic groups of these microorganisms, pathogenic or not. In addition, for many of them, sequences from several strains of a given species are available, thus enabling to evaluate their genetic diversity and study their evolution. In addition, the significant cost reduction of bacterial whole genome sequencing as well as the rapid increase in the number of available bacterial genomes have prompted the development of pangenomic software tools. The study of bacterial pangenome has many applications in clinical microbiology. It can unveil the pathogenic potential and ability of bacteria to resist antimicrobials as well identify specific sequences and predict antigenic epitopes that allow molecular or serologic assays and vaccines to be designed. Bacterial pangenome constitutes a powerful method for understanding the history of human bacteria and relating these findings to diagnosis in clinical microbiology laboratories in order to optimize patient management.
Collapse
Affiliation(s)
- Hussein Anani
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Rita Zgheib
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Issam Hasni
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.
| |
Collapse
|
6
|
Mioni MDSR, Sidi-Boumedine K, Morales Dalanezi F, Fernandes Joaquim S, Denadai R, Reis Teixeira WS, Bahia Labruna M, Megid J. New Genotypes of Coxiella burnetii Circulating in Brazil and Argentina. Pathogens 2019; 9:30. [PMID: 31905637 PMCID: PMC7168634 DOI: 10.3390/pathogens9010030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023] Open
Abstract
Coxiella burnetii, the zoonotic agent of Q fever, has a worldwide distribution. Despite the vast information about the circulating genotypes in Europe and North America, there is a lack of data regarding C. burnetii strains in South America. Here, we show the presence of novel multispacer sequence typing (MST) genotypes of C. burnetii in two clusters detected in Brazil and Argentina that seem to be distant in parenthood. Argentinian strains isolated from a tick belongs to a new phylogenetic branch of C. burnetii, and the Brazilians strains may be related to MST 20 and 61. Multilocus variable number tandem repeats analysis (MLVA) typing provided a deeper resolution that may be related to host clusters of bovines, caprine, ovine, and ticks. Our results corroborate with the reports of geotypes of C. burnetii. Thus, we highlight the need for more genotyping studies to understand the genetic diversity of C. burnetii in South America and to confirm the hypothesis of host-related genotypes. We also emphasize the importance of virulence studies for a better understanding of Q fever in the region, which may help in surveillance and disease prevention programs.
Collapse
Affiliation(s)
- Mateus de Souza Ribeiro Mioni
- Departamento de Higiene Veterinária e Saúde Pública, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 18610-000 São Paulo, Brazil; (M.d.S.R.M.); (F.M.D.); (S.F.J.); (R.D.); (W.S.R.T.)
| | - Karim Sidi-Boumedine
- Agence Nationale de sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, 06902 Sophia Antipolis, France;
| | - Felipe Morales Dalanezi
- Departamento de Higiene Veterinária e Saúde Pública, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 18610-000 São Paulo, Brazil; (M.d.S.R.M.); (F.M.D.); (S.F.J.); (R.D.); (W.S.R.T.)
| | - Sâmea Fernandes Joaquim
- Departamento de Higiene Veterinária e Saúde Pública, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 18610-000 São Paulo, Brazil; (M.d.S.R.M.); (F.M.D.); (S.F.J.); (R.D.); (W.S.R.T.)
| | - Renan Denadai
- Departamento de Higiene Veterinária e Saúde Pública, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 18610-000 São Paulo, Brazil; (M.d.S.R.M.); (F.M.D.); (S.F.J.); (R.D.); (W.S.R.T.)
| | - Wanderson Sirley Reis Teixeira
- Departamento de Higiene Veterinária e Saúde Pública, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 18610-000 São Paulo, Brazil; (M.d.S.R.M.); (F.M.D.); (S.F.J.); (R.D.); (W.S.R.T.)
- Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Marcelo Bahia Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Universidade de São Paulo, São Paulo, 05508-270 São Paulo, Brazil;
| | - Jane Megid
- Departamento de Higiene Veterinária e Saúde Pública, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, 18610-000 São Paulo, Brazil; (M.d.S.R.M.); (F.M.D.); (S.F.J.); (R.D.); (W.S.R.T.)
| |
Collapse
|
7
|
Metters G, Norville IH, Titball RW, Hemsley CM. From cell culture to cynomolgus macaque: infection models show lineage-specific virulence potential of Coxiella burnetii. J Med Microbiol 2019; 68:1419-1430. [PMID: 31424378 DOI: 10.1099/jmm.0.001064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen that causes the zoonotic disease Q fever in humans, which can occur in either an acute or a chronic form with serious complications. The bacterium has a wide host range, including unicellular organisms, invertebrates, birds and mammals, with livestock representing the most significant reservoir for human infections. Cell culture models have been used to decipher the intracellular lifestyle of C. burnetii, and several infection models, including invertebrates, rodents and non-human primates, are being used to investigate host-pathogen interactions and to identify bacterial virulence factors and vaccine candidates. However, none of the models replicate all aspects of human disease. Furthermore, it is becoming evident that C. burnetii isolates belonging to different lineages exhibit differences in their virulence in these models. Here, we compare the advantages and disadvantages of commonly used infection models and summarize currently available data for lineage-specific virulence.
Collapse
Affiliation(s)
- Georgina Metters
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Richard W Titball
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| | - Claudia M Hemsley
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
de Souza Ribeiro Mioni M, Ribeiro BLD, Peres MG, Teixeira WSR, Pelícia VC, Motta RG, Labruna MB, Ribeiro MG, Sidi-Boumedine K, Megid J. Real-time quantitative PCR-based detection of Coxiella burnetii in unpasteurized cow's milk sold for human consumption. Zoonoses Public Health 2019; 66:695-700. [PMID: 31173477 DOI: 10.1111/zph.12609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022]
Abstract
Coxiella burnetii is a zoonotic pathogen with a worldwide distribution that is responsible for Q fever in humans. It is a highly infectious bacterium that can be transmitted from cattle to humans through the consumption of unpasteurized milk. We report the molecular identification of C. burnetii in raw cow's milk being sold directly for human consumption in Brazil without official inspection or pasteurization. One hundred and twelve samples of raw milk were analysed by real-time quantitative PCR (qPCR), and C. burnetii was detected in 3.57% (4/112) of the samples at a concentration ranging from 125 to 404 bacteria per millilitre. The identification of this zoonotic pathogen in raw milk sold directly for human consumption is a public health concern since C. burnetii can be transmitted through the oral route. This result indicates that health education and other preventive measures should be officially implemented in Brazil to prevent the spread of infection. To our knowledge, this is the first qPCR-based detection of C. burnetii in raw milk samples from cows sold in Brazil that do not undergo official inspection or pasteurization.
Collapse
Affiliation(s)
- Mateus de Souza Ribeiro Mioni
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| | - Bruna Letícia Devidé Ribeiro
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| | - Marina Gea Peres
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| | - Wanderson Sirley Reis Teixeira
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| | - Vanessa Cristina Pelícia
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| | | | | | - Márcio Garcia Ribeiro
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| | - Karim Sidi-Boumedine
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Sophia-Antipolis, France
| | - Jane Megid
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| |
Collapse
|
9
|
Hemsley CM, O’Neill PA, Essex-Lopresti A, Norville IH, Atkins TP, Titball RW. Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics 2019; 20:441. [PMID: 31164106 PMCID: PMC6549354 DOI: 10.1186/s12864-019-5833-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coxiella burnetii is a zoonotic pathogen that resides in wild and domesticated animals across the globe and causes a febrile illness, Q fever, in humans. An improved understanding of the genetic diversity of C. burnetii is essential for the development of diagnostics, vaccines and therapeutics, but genotyping data is lacking from many parts of the world. Sporadic outbreaks of Q fever have occurred in the United Kingdom, but the local genetic make-up of C. burnetii has not been studied in detail. RESULTS Here, we report whole genome data for nine C. burnetii sequences obtained in the UK. All four genomes of C. burnetii from cattle, as well as one sheep sample, belonged to Multi-spacer sequence type (MST) 20, whereas the goat samples were MST33 (three genomes) and MST32 (one genome), two genotypes that have not been described to be present in the UK to date. We established the phylogenetic relationship between the UK genomes and 67 publically available genomes based on single nucleotide polymorphisms (SNPs) in the core genome, which confirmed tight clustering of strains within genomic groups, but also indicated that sub-groups exist within those groups. Variation is mainly achieved through SNPs, many of which are non-synonymous, thereby confirming that evolution of C. burnetii is based on modification of existing genes. Finally, we discovered genomic-group specific genome content, which supports a model of clonal expansion of previously established genotypes, with large scale dissemination of some of these genotypes across continents being observed. CONCLUSIONS The genetic make-up of C. burnetii in the UK is similar to the one in neighboring European countries. As a species, C. burnetii has been considered a clonal pathogen with low genetic diversity at the nucleotide level. Here, we present evidence for significant variation at the protein level between isolates of different genomic groups, which mainly affects secreted and membrane-associated proteins. Our results thereby increase our understanding of the global genetic diversity of C. burnetii and provide new insights into the evolution of this emerging zoonotic pathogen.
Collapse
Affiliation(s)
- Claudia M. Hemsley
- College of Life and Environmental Sciences – Biosciences, University of Exeter, Exeter, UK
| | - Paul A. O’Neill
- College of Life and Environmental Sciences – Biosciences, University of Exeter, Exeter, UK
| | | | | | - Tim P. Atkins
- College of Life and Environmental Sciences – Biosciences, University of Exeter, Exeter, UK
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Richard W. Titball
- College of Life and Environmental Sciences – Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Delaloye J, Pillonel T, Smaoui M, Znazen A, Abid L, Greub G. Culture-independent genome sequencing of Coxiella burnetii from a native heart valve of a Tunisian patient with severe infective endocarditis. New Microbes New Infect 2018; 21:31-35. [PMID: 29201381 PMCID: PMC5701788 DOI: 10.1016/j.nmni.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023] Open
Abstract
We report draft genome of a Coxiella burnetii strain sequenced from the native valve of a patient presenting with severe endocarditis in Tunisia. The genome could be sequenced without a cellular or axenic culture step. The MST5 strain was demonstrated to be closely related to the published reference genome of C. burnetii CbuK_Q154.
Collapse
Affiliation(s)
- J. Delaloye
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- Intensive Care Unit, Department of Intensive Care Medicine, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - T. Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - M. Smaoui
- Laboratory of Microbiology, CHU Habib Bourguiba Sfax, University of Sfax, Tunisia
| | - A. Znazen
- Laboratory of Microbiology, CHU Habib Bourguiba Sfax, University of Sfax, Tunisia
| | - L. Abid
- Department of Cardiology, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - G. Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
11
|
McLaughlin HP, Cherney B, Hakovirta JR, Priestley RA, Conley A, Carter A, Hodge D, Pillai SP, Weigel LM, Kersh GJ, Sue D. Phylogenetic inference of Coxiella burnetii by 16S rRNA gene sequencing. PLoS One 2017; 12:e0189910. [PMID: 29287100 PMCID: PMC5747434 DOI: 10.1371/journal.pone.0189910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022] Open
Abstract
Coxiella burnetii is a human pathogen that causes the serious zoonotic disease Q fever. It is ubiquitous in the environment and due to its wide host range, long-range dispersal potential and classification as a bioterrorism agent, this microorganism is considered an HHS Select Agent. In the event of an outbreak or intentional release, laboratory strain typing methods can contribute to epidemiological investigations, law enforcement investigation and the public health response by providing critical information about the relatedness between C. burnetii isolates collected from different sources. Laboratory cultivation of C. burnetii is both time-consuming and challenging. Availability of strain collections is often limited and while several strain typing methods have been described over the years, a true gold-standard method is still elusive. Building upon epidemiological knowledge from limited, historical strain collections and typing data is essential to more accurately infer C. burnetii phylogeny. Harmonization of auspicious high-resolution laboratory typing techniques is critical to support epidemiological and law enforcement investigation. The single nucleotide polymorphism (SNP) -based genotyping approach offers simplicity, rapidity and robustness. Herein, we demonstrate SNPs identified within 16S rRNA gene sequences can differentiate C. burnetii strains. Using this method, 55 isolates were assigned to six groups based on six polymorphisms. These 16S rRNA SNP-based genotyping results were largely congruent with those obtained by analyzing restriction-endonuclease (RE)-digested DNA separated by SDS-PAGE and by the high-resolution approach based on SNPs within multispacer sequence typing (MST) loci. The SNPs identified within the 16S rRNA gene can be used as targets for the development of additional SNP-based genotyping assays for C. burnetii.
Collapse
Affiliation(s)
- Heather P. McLaughlin
- Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Blake Cherney
- Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Janetta R. Hakovirta
- Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Rachael A. Priestley
- Rickettsial Zoonoses Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Andrew Conley
- Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Andrew Carter
- Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - David Hodge
- Science and Technology Directorate, U.S. Department of Homeland Security, Washington, D.C., United States of America
| | - Segaran P. Pillai
- Office of Laboratory Science and Safety, Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Linda M. Weigel
- Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - David Sue
- Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege JL, Maurin M, Raoult D. From Q Fever to Coxiella burnetii Infection: a Paradigm Change. Clin Microbiol Rev 2017; 30:115-190. [PMID: 27856520 PMCID: PMC5217791 DOI: 10.1128/cmr.00045-16] [Citation(s) in RCA: 608] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coxiella burnetii is the agent of Q fever, or "query fever," a zoonosis first described in Australia in 1937. Since this first description, knowledge about this pathogen and its associated infections has increased dramatically. We review here all the progress made over the last 20 years on this topic. C. burnetii is classically a strict intracellular, Gram-negative bacterium. However, a major step in the characterization of this pathogen was achieved by the establishment of its axenic culture. C. burnetii infects a wide range of animals, from arthropods to humans. The genetic determinants of virulence are now better known, thanks to the achievement of determining the genome sequences of several strains of this species and comparative genomic analyses. Q fever can be found worldwide, but the epidemiological features of this disease vary according to the geographic area considered, including situations where it is endemic or hyperendemic, and the occurrence of large epidemic outbreaks. In recent years, a major breakthrough in the understanding of the natural history of human infection with C. burnetii was the breaking of the old dichotomy between "acute" and "chronic" Q fever. The clinical presentation of C. burnetii infection depends on both the virulence of the infecting C. burnetii strain and specific risks factors in the infected patient. Moreover, no persistent infection can exist without a focus of infection. This paradigm change should allow better diagnosis and management of primary infection and long-term complications in patients with C. burnetii infection.
Collapse
Affiliation(s)
- Carole Eldin
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Cléa Mélenotte
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Oleg Mediannikov
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Eric Ghigo
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Matthieu Million
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Sophie Edouard
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Jean-Louis Mege
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Max Maurin
- Institut de Biologie et de Pathologie, CHU de Grenoble, Grenoble, France
| | - Didier Raoult
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| |
Collapse
|
13
|
Olivas S, Hornstra H, Priestley RA, Kaufman E, Hepp C, Sonderegger DL, Handady K, Massung RF, Keim P, Kersh GJ, Pearson T. Massive dispersal of Coxiella burnetii among cattle across the United States. Microb Genom 2016; 2:e000068. [PMID: 28348863 PMCID: PMC5320587 DOI: 10.1099/mgen.0.000068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
Q-fever is an underreported disease caused by the bacterium Coxiella burnetii, which is highly infectious and has the ability to disperse great distances. It is a completely clonal pathogen with low genetic diversity and requires whole-genome analysis to identify discriminating features among closely related isolates. C. burnetii, and in particular one genotype (ST20), is commonly found in cow's milk across the entire dairy industry of the USA. This single genotype dominance is suggestive of host-specific adaptation, rapid dispersal and persistence within cattle. We used a comparative genomic approach to identify SNPs for high-resolution and high-throughput genotyping assays to better describe the dispersal of ST20 across the USA. We genotyped 507 ST20 cow milk samples and discovered three subgenotypes, all of which were present across the entire country and over the complete time period studied. Only one of these sub-genotypes was observed in a single dairy herd. The temporal and geographic distribution of these sub-genotypes is consistent with a model of large-scale, rapid, frequent and continuous dissemination on a continental scale. The distribution of subgenotypes is not consistent with wind-based dispersal alone, and it is likely that animal husbandry and transportation practices, including pooling of milk from multiple herds, have also shaped the patterns. On the scale of an entire country, there appear to be few barriers to rapid, frequent and large-scale dissemination of the ST20 subgenotypes.
Collapse
Affiliation(s)
- Sonora Olivas
- Center for Microbial Genetics and Genomics, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Heidie Hornstra
- Center for Microbial Genetics and Genomics, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Rachael A. Priestley
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | - Emily Kaufman
- Center for Microbial Genetics and Genomics, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Crystal Hepp
- Center for Microbial Genetics and Genomics, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
- Informatics and Computing Program, Northern Arizona University, PO Box 5717, Flagstaff, AZ 86011, USA
| | - Derek L. Sonderegger
- Department of Mathematics and Statistics, Northern Arizona University, PO Box 5717, Flagstaff, AZ 86011, USA
| | - Karthik Handady
- Center for Microbial Genetics and Genomics, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Robert F. Massung
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
- Pathogen Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | - Talima Pearson
- Center for Microbial Genetics and Genomics, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| |
Collapse
|