1
|
Xue H, Han L, Sun H, Piao Z, Cao W, Qian H, Zhao Z, Lang MF, Gu C. Metastasis-associated 1 localizes to the sarcomeric Z-disc and is implicated in skeletal muscle pathology. Cytoskeleton (Hoboken) 2024; 81:427-435. [PMID: 38391059 DOI: 10.1002/cm.21841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Metastasis-associated 1 (MTA1), a subunit of the nucleosome remodeling and histone deacetylation (NuRD) corepressor complex, was reported to be expressed in the cytoplasm of skeletal muscles. However, the exact subcellular localization and the functional implications of MTA1 in skeletal muscles have not been examined. This study aims to demonstrate the subcellular localization of MTA1 in skeletal muscles and reveal its possible roles in skeletal muscle pathogenesis. Striated muscles (skeletal and cardiac) from C57BL/6 mice of 4-5 weeks were collected to examine the expression of MTA1 by Western blotting and immunohistochemistry. Immunofluorescence and immunoelectron microscopy were performed for MTA1, α-actinin (a Z-disc marker protein), and SMN (survival of motor neuron) proteins. Gene Expression Omnibus (GEO) data sets were analyzed using the GEO2R online tool to explore the functional implications of MTA1 in skeletal muscles. MTA1 expression was detected by Western blotting and immunohistochemistry in skeletal and cardiac muscles. Subcellular localization of MTA1 was found in the Z-disc of sarcomeres, where α-actinin and SMN were expressed. Data mining of GEO profiles suggested that MTA1 dysregulation is associated with multiple skeletal muscle defects, such as Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, nemaline myopathy, and dermatomyositis. The GEO analysis also showed that MTA1 expression gradually decreased with age in mouse skeletal muscle precursor cells. The subcellular localization of MTA1 in sarcomeres of skeletal muscles implies its biological roles in sarcomere structures and its possible contribution to skeletal muscle pathology.
Collapse
Affiliation(s)
- Hongsheng Xue
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Li Han
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Haidi Sun
- Department of Physiology and Medical Biology, Medical College, Dalian University, Dalian, China
| | - Zhe Piao
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wenjun Cao
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhilong Zhao
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ming-Fei Lang
- Department of Physiology and Medical Biology, Medical College, Dalian University, Dalian, China
| | - Chundong Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Habets LE, Bartels B, Asselman FL, Hooijmans MT, van den Berg S, Nederveen AJ, van der Pol WL, Jeneson JAL. Magnetic resonance reveals mitochondrial dysfunction and muscle remodelling in spinal muscular atrophy. Brain 2021; 145:1422-1435. [PMID: 34788410 PMCID: PMC9128825 DOI: 10.1093/brain/awab411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
Genetic therapy has changed the prognosis of hereditary proximal spinal muscular atrophy, although treatment efficacy has been variable. There is a clear need for deeper understanding of underlying causes of muscle weakness and exercise intolerance in patients with this disease to further optimize treatment strategies. Animal models suggest that in addition to motor neuron and associated musculature degeneration, intrinsic abnormalities of muscle itself including mitochondrial dysfunction contribute to the disease aetiology. To test this hypothesis in patients, we conducted the first in vivo clinical investigation of muscle bioenergetics. We recruited 15 patients and 15 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. MRI and 31P magnetic resonance spectroscopy, the modality of choice to interrogate muscle energetics and phenotypic fibre-type makeup, was performed of the proximal arm musculature in combination with fatiguing arm-cycling exercise and blood lactate testing. We derived bioenergetic parameter estimates including: blood lactate, intramuscular pH and inorganic phosphate accumulation during exercise, and muscle dynamic recovery constants. A linear correlation was used to test for associations between muscle morphological and bioenergetic parameters and clinico-functional measures of muscle weakness. MRI showed significant atrophy of triceps but not biceps muscles in patients. Maximal voluntary contraction force normalized to muscle cross-sectional area for both arm muscles was 1.4-fold lower in patients than in controls, indicating altered intrinsic muscle properties other than atrophy contributed to muscle weakness in this cohort. In vivo31P magnetic resonance spectroscopy identified white-to-red remodelling of residual proximal arm musculature in patients on the basis of altered intramuscular inorganic phosphate accumulation during arm-cycling in red versus white and intermediate myofibres. Blood lactate rise during arm-cycling was blunted in patients and correlated with muscle weakness and phenotypic muscle makeup. Post-exercise metabolic recovery was slower in residual intramuscular white myofibres in patients demonstrating mitochondrial ATP synthetic dysfunction in this particular fibre type. This study provides the first in vivo evidence in patients that degeneration of motor neurons and associated musculature causing atrophy and muscle weakness in 5q spinal muscular atrophy type 3 and 4 is aggravated by disproportionate depletion of myofibres that contract fastest and strongest. Our finding of decreased mitochondrial ATP synthetic function selectively in residual white myofibres provides both a possible clue to understanding the apparent vulnerability of this particular fibre type in 5q spinal muscular atrophy types 3 and 4 as well as a new biomarker and target for therapy.
Collapse
Affiliation(s)
- Laura E Habets
- Centre for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Centre Utrecht, P.O. Box 85090 3508 AB Utrecht, The Netherlands
| | - Bart Bartels
- Centre for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Centre Utrecht, P.O. Box 85090 3508 AB Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- UMC Utrecht Brain Centre, Department of Neurology and Neurosurgery, University Medical Centre Utrecht Brain Center, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Melissa T Hooijmans
- Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centre, location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Sandra van den Berg
- Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centre, location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centre, location AMC, 1105 AZ Amsterdam, The Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Centre, Department of Neurology and Neurosurgery, University Medical Centre Utrecht Brain Center, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Jeroen A L Jeneson
- Centre for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Centre Utrecht, P.O. Box 85090 3508 AB Utrecht, The Netherlands
| |
Collapse
|
3
|
Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB. Drug Discovery of Spinal Muscular Atrophy (SMA) from the Computational Perspective: A Comprehensive Review. Int J Mol Sci 2021; 22:8962. [PMID: 34445667 PMCID: PMC8396480 DOI: 10.3390/ijms22168962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
Collapse
Affiliation(s)
- Li Chuin Chong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Jian Ming Lee
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Sy-Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| |
Collapse
|
4
|
Walter LM, Deguise MO, Meijboom KE, Betts CA, Ahlskog N, van Westering TLE, Hazell G, McFall E, Kordala A, Hammond SM, Abendroth F, Murray LM, Shorrock HK, Prosdocimo DA, Haldar SM, Jain MK, Gillingwater TH, Claus P, Kothary R, Wood MJA, Bowerman M. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine 2018; 31:226-242. [PMID: 29735415 PMCID: PMC6013932 DOI: 10.1016/j.ebiom.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. SMA is a neuromuscular disease characterized by motoneuron loss, muscle abnormalities and metabolic perturbations. The regulatory GC-KLF15-BCAA pathway is dysregulated in serum and skeletal muscle of SMA mice during disease progression. Modulating GC-KLF15-BCAA signaling by pharmacological, dietary and genetic interventions improves phenotype of SMA mice.
Spinal muscular atrophy (SMA) is a devastating and debilitating childhood genetic disease. Although nerve cells are mainly affected, muscle is also severely impacted. The normal communication between the glucocorticoid (GC) hormone, the protein KLF15 and the dietary branched-chain amino acids (BCAAs) maintains muscle and whole-body health. In this study, we identified an abnormal activity of GC-KLF15- BCAA in blood and muscle of SMA mice. Importantly, targeting GC-KLF15-BCAA activity with an existing drug or a specific diet improved disease progression in SMA mice. Our research uncovers GCs, KLF15 and BCAAs as therapeutic targets to ameliorate SMA muscle and whole-body health.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily McFall
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anna Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lyndsay M Murray
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Medicine, Division of Cardiology University of California, San Francisco, CA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Nash LA, McFall ER, Perozzo AM, Turner M, Poulin KL, De Repentigny Y, Burns JK, McMillan HJ, Warman Chardon J, Burger D, Kothary R, Parks RJ. Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy. Sci Rep 2017; 7:13859. [PMID: 29066780 PMCID: PMC5655039 DOI: 10.1038/s41598-017-14313-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous mutation of the survival motor neuron 1 (SMN1) gene. Disease severity inversely correlates to the amount of SMN protein produced from the homologous SMN2 gene. We show that SMN protein is naturally released in exosomes from all cell types examined. Fibroblasts from patients or a mouse model of SMA released exosomes containing reduced levels of SMN protein relative to normal controls. Cells overexpressing SMN protein released exosomes with dramatically elevated levels of SMN protein. We observed enhanced quantities of exosomes in the medium from SMN-depleted cells, and in serum from a mouse model of SMA and a patient with Type 3 SMA, suggesting that SMN-depletion causes a deregulation of exosome release or uptake. The quantity of SMN protein contained in the serum-derived exosomes correlated with the genotype of the animal, with progressively less protein in carrier and affected animals compared to wildtype mice. SMN protein was easily detectable in exosomes isolated from human serum, with a reduction in the amount of SMN protein in exosomes from a patient with Type 3 SMA compared to a normal control. Our results suggest that exosome-derived SMN protein may serve as an effective biomarker for SMA.
Collapse
Affiliation(s)
- Leslie A Nash
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Amanda M Perozzo
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maddison Turner
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kathy L Poulin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joseph K Burns
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Hugh J McMillan
- University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jodi Warman Chardon
- University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Division of Neurogenetics, Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada. .,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
O'Meara RW, Cummings SE, De Repentigny Y, McFall E, Michalski JP, Deguise MO, Gibeault S, Kothary R. Oligodendrocyte development and CNS myelination are unaffected in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 2017; 26:282-292. [PMID: 28069797 DOI: 10.1093/hmg/ddw385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 11/12/2022] Open
Abstract
The childhood neurodegenerative disease spinal muscular atrophy (SMA) is caused by loss-of-function mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene resulting in insufficient levels of survival motor neuron (SMN) protein. Classically considered a motor neuron disease, increasing evidence now supports SMA as a multi-system disorder with phenotypes discovered in cortical neuron, astrocyte, and Schwann cell function within the nervous system. In this study, we sought to determine whether Smn was critical for oligodendrocyte (OL) development and central nervous system myelination. A mouse model of severe SMA was used to assess OL growth, migration, differentiation and myelination. All aspects of OL development and function studied were unaffected by Smn depletion. The tremendous impact of Smn depletion on a wide variety of other cell types renders the OL response unique. Further investigation of the OLs derived from SMA models may reveal disease modifiers or a compensatory mechanism allowing these cells to flourish despite the reduced levels of this multifunctional protein.
Collapse
Affiliation(s)
- Ryan W O'Meara
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Sarah E Cummings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Emily McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - John-Paul Michalski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Sabrina Gibeault
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Deguise MO, De Repentigny Y, McFall E, Auclair N, Sad S, Kothary R. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Hum Mol Genet 2017; 26:801-819. [PMID: 28108555 PMCID: PMC5409095 DOI: 10.1093/hmg/ddw434] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 01/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis.
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine.,Centre for Neuromuscular Disease, University of Ottawa
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Centre for Neuromuscular Disease, University of Ottawa
| | - Emily McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Centre for Neuromuscular Disease, University of Ottawa
| | - Nicole Auclair
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada, K1N 9B4
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine.,Centre for Neuromuscular Disease, University of Ottawa.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
8
|
Wijngaarde CA, Blank AC, Stam M, Wadman RI, van den Berg LH, van der Pol WL. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis 2017; 12:67. [PMID: 28399889 PMCID: PMC5387385 DOI: 10.1186/s13023-017-0613-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
Background Hereditary proximal spinal muscular atrophy (SMA) is a severe neuromuscular disease of childhood caused by homozygous loss of function of the survival motor neuron (SMN) 1 gene. The presence of a second, nearly identical SMN gene (SMN2) in the human genome ensures production of residual levels of the ubiquitously expressed SMN protein. Alpha-motor neurons in the ventral horns of the spinal cord are most vulnerable to reduced SMN concentrations but the development or function of other tissues may also be affected, and cardiovascular abnormalities have frequently been reported both in patients and SMA mouse models. Methods We systematically reviewed reported cardiac pathology in relation to SMN deficiency. To investigate the relevance of the possible association in more detail, we used clinical classification systems to characterize structural cardiac defects and arrhythmias. Conclusions Seventy-two studies with a total of 264 SMA patients with reported cardiac pathology were identified, along with 14 publications on SMA mouse models with abnormalities of the heart. Structural cardiac pathology, mainly septal defects and abnormalities of the cardiac outflow tract, was reported predominantly in the most severely affected patients (i.e. SMA type 1). Cardiac rhythm disorders were most frequently reported in patients with milder SMA types (e.g. SMA type 3). All included studies lacked control groups and a standardized approach for cardiac evaluation. The convergence to specific abnormalities of cardiac structure and function may indicate vulnerability of specific cell types or developmental processes relevant for cardiogenesis. Future studies would benefit from a controlled and standardized approach for cardiac evaluation in patients with SMA. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0613-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C A Wijngaarde
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | - A C Blank
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Stam
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - R I Wadman
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - L H van den Berg
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - W L van der Pol
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Deguise MO, Boyer JG, McFall ER, Yazdani A, De Repentigny Y, Kothary R. Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Sci Rep 2016; 6:28846. [PMID: 27349908 PMCID: PMC4924104 DOI: 10.1038/srep28846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Motor neuron loss and neurogenic atrophy are hallmarks of spinal muscular atrophy (SMA), a leading genetic cause of infant deaths. Previous studies have focused on deciphering disease pathogenesis in motor neurons. However, a systematic evaluation of atrophy pathways in muscles is lacking. Here, we show that these pathways are differentially activated depending on severity of disease in two different SMA model mice. Although proteasomal degradation is induced in skeletal muscle of both models, autophagosomal degradation is present only in Smn(2B/-) mice but not in the more severe Smn(-/-); SMN2 mice. Expression of FoxO transcription factors, which regulate both proteasomal and autophagosomal degradation, is elevated in Smn(2B/-) muscle. Remarkably, administration of trichostatin A reversed all molecular changes associated with atrophy. Cardiac muscle also exhibits differential induction of atrophy between Smn(2B/-) and Smn(-/-); SMN2 mice, albeit in the opposite direction to that of skeletal muscle. Altogether, our work highlights the importance of cautious analysis of different mouse models of SMA as distinct patterns of atrophy induction are at play depending on disease severity. We also revealed that one of the beneficial impacts of trichostatin A on SMA model mice is via attenuation of muscle atrophy through reduction of FoxO expression to normal levels.
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| | - Justin G Boyer
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| | - Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada
| | - Armin Yazdani
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| |
Collapse
|
10
|
Burns JK, Kothary R, Parks RJ. Opening the window: The case for carrier and perinatal screening for spinal muscular atrophy. Neuromuscul Disord 2016; 26:551-9. [PMID: 27460292 DOI: 10.1016/j.nmd.2016.06.459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease that leads to infant mortality worldwide. SMA is caused by genetic deletion or mutation in the survival of motor neuron 1 (SMN1) gene, which results in a deficiency in SMN protein. For reasons that are still unclear, SMN protein deficiency predominantly affects α-motor neurons, resulting in their degeneration and subsequent paralysis of limb and trunk muscles, progressing to death in severe cases. Emerging evidence suggests that SMN protein deficiency also affects the heart, autonomic nervous system, skeletal muscle, liver, pancreas and perhaps many other organs. Currently, there is no cure for SMA. Patient treatment includes respiratory care, physiotherapy, and nutritional management, which can somewhat ameliorate disease symptoms and increase life span. Fortunately, several novel therapies have advanced to human clinical trials. However, data from studies in animal models of SMA indicate that the greatest therapeutic benefit is achieved through initiating treatment as early as possible, before widespread loss of motor neurons has occurred. In this review, we discuss the merit of carrier and perinatal patient screening for SMA considering the efficacy of emerging therapeutics and the physical, emotional and financial burden of the disease on affected families and society.
Collapse
Affiliation(s)
- Joseph K Burns
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
11
|
Coque E, Raoul C, Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets. Front Neurosci 2014; 8:271. [PMID: 25221469 PMCID: PMC4148024 DOI: 10.3389/fnins.2014.00271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/28/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.
Collapse
Affiliation(s)
- Emmanuelle Coque
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Mélissa Bowerman
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| |
Collapse
|
12
|
Boyer JG, Deguise MO, Murray LM, Yazdani A, De Repentigny Y, Boudreau-Larivière C, Kothary R. Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Hum Mol Genet 2014; 23:4249-59. [PMID: 24691550 PMCID: PMC4103674 DOI: 10.1093/hmg/ddu142] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the survival motor neuron (SMN1) gene lead to the neuromuscular disease spinal muscular atrophy (SMA). Although SMA is primarily considered as a motor neuron disease, the importance of muscle defects in its pathogenesis has not been fully examined. We use both primary cell culture and two different SMA model mice to demonstrate that reduced levels of Smn lead to a profound disruption in the expression of myogenic genes. This disruption was associated with a decrease in myofiber size and an increase in immature myofibers, suggesting that Smn is crucial for myogenic gene regulation and early muscle development. Histone deacetylase inhibitor trichostatin A treatment of SMA model mice increased myofiber size, myofiber maturity and attenuated the disruption of the myogenic program in these mice. Taken together, our work highlights the important contribution of myogenic program dysregulation to the muscle weakness observed in SMA.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Lyndsay M Murray
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6
| | - Armin Yazdani
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6
| | | | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine Department of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| |
Collapse
|
13
|
Boyer JG, Murray LM, Scott K, De Repentigny Y, Renaud JM, Kothary R. Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skelet Muscle 2013; 3:24. [PMID: 24119341 PMCID: PMC3852932 DOI: 10.1186/2044-5040-3-24] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022] Open
Abstract
Background The childhood neuromuscular disease spinal muscular atrophy (SMA) is caused by mutations or deletions of the survival motor neuron (SMN1) gene. Although SMA has traditionally been considered a motor neuron disease, the muscle-specific requirement for SMN has never been fully defined. Therefore, the purpose of this study was to investigate muscle defects in mouse models of SMA. Methods We have taken advantage of two different mouse models of SMA, the severe Smn-/-;SMN2 mice and the less severe Smn2B/- mice. We have measured the maximal force produced from control muscles and those of SMA model mice by direct stimulation using an ex vivo apparatus. Immunofluorescence and immunoblot experiments were performed to uncover muscle defects in mouse models of SMA. Means from control and SMA model mice samples were compared using an analysis of variance test and Student’s t tests. Results We report that tibialis anterior (TA) muscles of phenotype stage Smn-/-;SMN2 mice generate 39% less maximal force than muscles from control mice, independently of aberrant motor neuron signal transmission. In addition, during muscle fatigue, the Smn-/-;SMN2 muscle shows early onset and increased unstimulated force compared with controls. Moreover, we demonstrate a significant decrease in force production in muscles from pre-symptomatic Smn-/-;SMN2 and Smn2B/- mice, indicating that muscle weakness is an early event occurring prior to any overt motor neuron loss and muscle denervation. Muscle weakness in mouse models of SMA was associated with a delay in the transition from neonatal to adult isoforms of proteins important for proper muscle contractions, such as ryanodine receptors and sodium channels. Immunoblot analyses of extracts from hindlimb skeletal muscle revealed aberrant levels of the sarcoplasmic reticulum Ca2+ ATPase. Conclusions The findings from this study reveal a delay in the appearance of mature isoforms of proteins important for muscle contractions, as well as muscle weakness early in the disease etiology, thus highlighting the contributions of skeletal muscle defects to the SMA phenotype.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Goulet BB, McFall ER, Wong CM, Kothary R, Parks RJ. Supraphysiological expression of survival motor neuron protein from an adenovirus vector does not adversely affect cell function. Biochem Cell Biol 2013; 91:252-64. [DOI: 10.1139/bcb-2012-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the most common inherited neurodegenerative disease that leads to infant mortality. It is caused by mutations in the survival motor neuron (SMN) protein resulting in death of alpha motor neurons. Increasing evidence suggests that several other tissues are also affected in SMA, including skeletal and cardiac muscle, liver, and pancreas, indicating that systemic delivery of therapeutics may be necessary for true disease correction. Due to the natural biodistribution of therapeutics, a level of SMN several-fold above physiological levels can be achieved in some tissues. In this study, we address whether supraphysiological levels of SMN adversely affects cell function. Infection of a variety of cell types with an adenovirus (Ad) vector encoding SMN leads to very high expression, but the resulting protein correctly localizes within the cell, and associates with normal cellular partners. Although SMN affects transcription of certain target genes and can alter the splicing pattern of others, we did not observe any difference in select target gene splicing or expression in cells overexpressing SMN. However, normal human fibroblasts treated with Ad-SMN showed a slight reduction in growth rate, suggesting that certain cell types may be differently impacted by high levels of SMN.
Collapse
Affiliation(s)
- Benoit B. Goulet
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emily R. McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmen M. Wong
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Bowerman M, Murray LM, Boyer JG, Anderson CL, Kothary R. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Med 2012; 10:24. [PMID: 22397316 PMCID: PMC3310724 DOI: 10.1186/1741-7015-10-24] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/07/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (SMN1) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (ROCK) pathway is misregulated in cellular and animal SMA models, and that inhibition of ROCK with the chemical Y-27632 significantly increased the lifespan of a mouse model of SMA. In the present study, we evaluated the therapeutic potential of the clinically approved ROCK inhibitor fasudil. METHODS Fasudil was administered by oral gavage from post-natal day 3 to 21 at a concentration of 30 mg/kg twice daily. The effects of fasudil on lifespan and SMA pathological hallmarks of the SMA mice were assessed and compared to vehicle-treated mice. For the Kaplan-Meier survival analysis, the log-rank test was used and survival curves were considered significantly different at P < 0.05. For the remaining analyses, the Student's two-tail t test for paired variables and one-way analysis of variance (ANOVA) were used to test for differences between samples and data were considered significantly different at P < 0.05. RESULTS Fasudil significantly improves survival of SMA mice. This dramatic phenotypic improvement is not mediated by an up-regulation of Smn protein or via preservation of motor neurons. However, fasudil administration results in a significant increase in muscle fiber and postsynaptic endplate size, and restores normal expression of markers of skeletal muscle development, suggesting that the beneficial effects of fasudil could be muscle-specific. CONCLUSIONS Our work underscores the importance of muscle as a therapeutic target in SMA and highlights the beneficial potential of ROCK inhibitors as a therapeutic strategy for SMA and for other degenerative diseases characterized by muscular atrophy and postsynaptic immaturity.
Collapse
Affiliation(s)
- Melissa Bowerman
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, Canada K1H 8L6
| | | | | | | | | |
Collapse
|
16
|
Bowerman M, Murray LM, Beauvais A, Pinheiro B, Kothary R. A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology. Neuromuscul Disord 2012; 22:263-76. [DOI: 10.1016/j.nmd.2011.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/07/2011] [Accepted: 09/27/2011] [Indexed: 11/24/2022]
|