1
|
Kamara S, Wen H, Guo Y, Liu Y, Liu L, Du W, Chen J, Zhu S, Zhang L. Axl and EGFR Dual-Specific Binding Affibody for Targeted Therapy in Nasopharyngeal Carcinoma. Cells 2024; 13:1823. [PMID: 39594573 PMCID: PMC11592995 DOI: 10.3390/cells13221823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor of the head and neck, with a higher incidence in southern China and Southeast Asia. Radiotherapy and chemotherapy are the main treatments; however, metastasis and recurrence remain the main causes of treatment failure. Further, the majority of patients are diagnosed in the late stage due to lack of tumor-specific biomarker for early diagnosis. Therefore, an effective treatment and early detection can improve the outcome of patient with NPC. Axl and EGFR are co-expressed in NPC tissues and play key roles in tumor proliferation, migration, and invasion, which are often correlated with poor prognosis and therapy resistance. In this study, we generated a novel bispecific affibody (Z239-1907) for the dual targeting and inhibition of Axl and EGFR expression in NPC-positive cells both in vitro and in vivo. The in vitro experiments demonstrated that Z239-1907 had more pronounced antitumor effects than either modality alone (ZAXL239 or ZEGFR1907) in NPC-positive cells. Further, mice bearing NPC-positive tumors showed significant inhibition in tumor growth after treatment with Z239-1907 compared to ZAXL239 and ZEGFR1907. The in vivo tumor targeting ability and imaging also showed that Z239-1907 specifically and selectively targeted NPC xenograft mice models and accumulate at tumor site as early as 30 min and disappeared within 24 h post-injection. Collectively, these results suggest that Z239-1907 dual-target affibody is a promising therapeutic agent and a molecular imaging probe for early diagnosis in NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (S.K.); (H.W.); (Y.G.); (Y.L.); (L.L.); (W.D.); (J.C.); (S.Z.)
| |
Collapse
|
2
|
Pinter M, Scheiner B, Pinato DJ. Immune checkpoint inhibitors in hepatocellular carcinoma: emerging challenges in clinical practice. Lancet Gastroenterol Hepatol 2023; 8:760-770. [PMID: 37327807 DOI: 10.1016/s2468-1253(23)00147-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/18/2023]
Abstract
Systemic therapy for advanced hepatocellular carcinoma has expanded at an unprecedented pace over the past 5 years. After tyrosine kinase inhibitors dominated the field for more than a decade, immune checkpoint inhibitor (ICI)-based therapies have become the main component in systemic first-line treatment of this cancer. Delivery of immunotherapy in routine clinical practice recognises several challenges. In this Viewpoint, we discuss the major gaps in knowledge around the role of ICI-based therapies in patients with Child-Pugh class B. We discuss the challenges in individuals with rare histological subtypes of primary liver cancer, including combined hepatocellular-cholangiocarcinoma, fibrolamellar hepatocellular carcinoma, and sarcomatoid hepatocellular carcinoma. We also review data on ICI rechallenge in patients previously treated with ICIs, and discuss atypical patterns of progression related to immunotherapy (ie, hyperprogressive disease and pseudoprogression).
Collapse
Affiliation(s)
- Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Liver Cancer (HCC) Study Group Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Liver Cancer (HCC) Study Group Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
3
|
Ma Y, Xue J, Zhao Y, Zhang Y, Huang Y, Yang Y, Fang W, Guo Y, Li Q, Ge X, Sun J, Zhang B, Zhang Y, Xiao J, Zhang L, Zhao H. Phase I trial of KN046, a novel bispecific antibody targeting PD-L1 and CTLA-4 in patients with advanced solid tumors. J Immunother Cancer 2023; 11:jitc-2022-006654. [PMID: 37263673 DOI: 10.1136/jitc-2022-006654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND KN046 is a novel bispecific antibody targeting programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). This multicenter phase I trial investigated the safety, tolerability, pharmacokinetics (PK), and efficacy of KN046 in patients with advanced solid tumors. METHODS Patients who failed standard treatment were included. KN046 was administered at doses of 1, 3, and 5 mg/kg every 2 weeks (Q2W), 5 mg/kg every 3 weeks (Q3W), and 300 mg Q3W based on the modified toxicity probability interval method in the dose-escalation phase; the recommended dose was used in the expansion phase. Primary objectives were maximum tolerated dose (MTD) and recommended phase II dose (RP2D) in escalation and preliminary efficacy in expansion. Secondary objectives included PK, pharmacodynamics, safety, and tolerability of KN046. We also explored biomarkers based on PD-L1 expression, multiplex immunofluorescence (mIF) staining, and RNAseq-derived nCounter platform. RESULTS Totally, 100 eligible patients were enrolled, including 59 with nasopharyngeal carcinoma (NPC), 36 with epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC), and those with other advanced solid tumors. The most common treatment-related adverse events (TRAEs) were rash (33.0%), pruritus (31.0%), and fatigue (20.0%). Grade ≥3 TRAEs were observed in 14.0% of participants. No dose-limiting toxicity occurred in the dose-escalation phase, and the MTD was not reached. The RP2D was determined as 5 mg/kg Q2W according to the pharmacokinetic-pharmacodynamic model, the preliminary exposure-response analysis, and the overall safety profile. Among 88 efficacy-evaluable participants, the objective response rate (ORR) was 12.5%, and the median duration of response was 16.6 months. In the NPC subgroup, the ORR was 15.4%, and the median overall survival (OS) was 24.7 (95% CI 16.3 to not estimable) months. In the EGFR-mutant NSCLC subgroup, the ORR was 6.3%. mIF analysis results showed patients with high CD8 expression showed longer median OS (27.1 vs 9.2 months, p=0.02); better prognosis was observed in patients with high CD8 and PD-L1 expression. CONCLUSIONS KN046 was well tolerated and showed promising antitumor efficacy in advanced solid tumors, especially in patients with NPC. The combination of both CD8 and PD-L1 expression improved the prediction of KN046 response. TRIAL REGISTRATION NUMBERS NCT03733951 .
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinhui Xue
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yang Zhang
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital,School of Medicine, Tongji University, Shanghai, China
| | - Qun Li
- Department of Oncology, Shanghai East Hospital,School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiao Ge
- Department of Oncology, Shanghai East Hospital,School of Medicine, Tongji University, Shanghai, China
| | - Jie Sun
- Department of Clinical Medicine, Jiangsu Alphamab Biopharmaceuticals Co.,Ltd, Jiangsu, China
| | - Bangyong Zhang
- Department of Clinical Operations, Jiangsu Alphamab Biopharmaceuticals Co.,Ltd, Jiangsu, China
| | - Yuhan Zhang
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Jinyuan Xiao
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
4
|
Hepatocellular Carcinoma: Current Therapeutic Algorithm for Localized and Advanced Disease. JOURNAL OF ONCOLOGY 2022; 2022:3817724. [PMID: 36624801 PMCID: PMC9825221 DOI: 10.1155/2022/3817724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer in patients with liver cirrhosis of various etiologies. In recent years, there has been an advance in the knowledge of molecular mechanisms and a better staging definition of patients which has allowed the development of new therapies that have entered the therapeutic workup of these patients. Deep information on molecular drivers of HCC contributed to the development of targeted therapies with remarkable benefits. The novel strategies of targeting immune evasion using immune checkpoint inhibitors and CAR-T and TCR-T therapeutics have also shown promising results. For advanced diseases, the therapeutic algorithm has been recently updated, thanks to the efficacy of combining immunotherapy and antiangiogenic therapy in the first-line setting, and new drugs, both as single-agents or combinations, are currently under investigation.
Collapse
|
5
|
Advances in novel systemic therapies for advanced hepatocellular carcinoma. Future Med Chem 2022; 14:1455-1470. [PMID: 35997677 DOI: 10.4155/fmc-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most frequent type of primary liver tumor. Most HCC patients present with advanced disease at diagnosis and the recurrence rate after surgery remains high. Treatment options for advanced HCC are limited, with sorafenib representing the only systemic agent approved for treatment of advanced HCC in more than a decade. However, in recent years new molecular targeted therapies and immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced HCC. In particular, combinations of ICIs with antiangiogenic drugs, or with other ICIs, represent one of the most promising strategies. Herein we provide a comprehensive overview of the main therapeutic advances in the systemic treatment of HCC, focusing on the most relevant ongoing clinical trials.
Collapse
|