1
|
Dangoni GD, Teixeira ACB, da Costa SS, Scliar MO, Carvalho LML, Silva LN, Novak EM, Vince CSC, Maschietto MC, Sugayama SMM, Odone-Filho V, Krepischi ACV. Germline mutations in cancer predisposition genes among pediatric patients with cancer and congenital anomalies. Pediatr Res 2024; 95:1346-1355. [PMID: 38182823 DOI: 10.1038/s41390-023-03000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility. METHODS We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants. RESULTS A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient's tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes. CONCLUSION We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. IMPACT Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer. Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk. Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.
Collapse
Affiliation(s)
- Gustavo D Dangoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anne Caroline B Teixeira
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia S da Costa
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Laura M L Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana N Silva
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Estela M Novak
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Sofia M M Sugayama
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Vicente Odone-Filho
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina V Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, Iolascon A. Genetic Predisposition to Solid Pediatric Cancers. Front Oncol 2020; 10:590033. [PMID: 33194750 PMCID: PMC7656777 DOI: 10.3389/fonc.2020.590033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Progresses over the past years have extensively improved our capacity to use genome-scale analyses—including high-density genotyping and exome and genome sequencing—to identify the genetic basis of pediatric tumors. In particular, exome sequencing has contributed to the evidence that about 10% of children and adolescents with tumors have germline genetic variants associated with cancer predisposition. In this review, we provide an overview of genetic variations predisposing to solid pediatric tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the biological processes affected by the involved mutated genes. A careful description of the genetic basis underlying a large number of syndromes associated with an increased risk of pediatric cancer is also reported. We place particular emphasis on the emerging view that interactions between germline and somatic alterations are a key determinant of cancer development. We propose future research directions, which focus on the biological function of pediatric risk alleles and on the potential links between the germline genome and somatic changes. Finally, the importance of developing new molecular diagnostic tests including all the identified risk germline mutations and of considering the genetic predisposition in screening tests and novel therapies is emphasized.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Maiorino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
3
|
Molecular karyotyping and gene expression analysis in childhood cancer patients. J Mol Med (Berl) 2020; 98:1107-1123. [PMID: 32577795 PMCID: PMC7769790 DOI: 10.1007/s00109-020-01937-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Abstract The genetic etiology of sporadic childhood cancer cases remains unclear. We recruited a cohort of 20 patients who survived a childhood malignancy and then developed a second primary cancer (2N), and 20 carefully matched patients who survived a childhood cancer without developing a second malignancy (1N). Twenty matched cancer-free (0N) and additional 1000 (0N) GHS participants served as controls. Aiming to identify new candidate loci for cancer predisposition, we compared the genome-wide DNA copy number variations (CNV) with the RNA-expression data obtained after in vitro irradiation of primary fibroblasts. In 2N patients, we detected a total of 142 genes affected by CNV. A total of 53 genes of these were not altered in controls. Six genes (POLR3F, SEC23B, ZNF133, C16orf45, RRN3, and NTAN1) that we found to be overexpressed after irradiation were also duplicated in the genome of the 2N patients. For the 1N collective, 185 genes were affected by CNV and 38 of these genes were not altered in controls. Five genes (ZCWPW2, SYNCRIP, DHX30, DHRS4L2, and THSD1) were located in duplicated genomic regions and exhibited altered RNA expression after irradiation. One gene (ABCC6) was partially duplicated in one 1N and one 2N patient. Analysis of methylation levels of THSD1 and GSTT2 genes which were detected in duplicated regions and are frequently aberrantly methylated in cancer showed no changes in patient’s fibroblasts. In summary, we describe rare and radiation-sensitive genes affected by CNV in childhood sporadic cancer cases, which may have an impact on cancer development. Key messages • Rare CNV’s may have an impact on cancer development in sporadic, non-familial, non-syndromic childhood cancer cases. • In our cohort, each patient displayed a unique pattern of cancer-related gene CNVs, and only few cases shared similar CNV. • Genes that are transcriptionally regulated after radiation can be located in CNVs in cancer patients and controls. • THSD1 and GSTT2 methylation is not altered by CNV. Electronic supplementary material The online version of this article (10.1007/s00109-020-01937-4) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Abstract
Ewing sarcoma is a rare tumor developed in bone and soft tissues of children and teenagers. This entity is biologically led by a chromosomal translocation, typically including EWS and FLI1 genes. Little is known about Ewing sarcoma predisposition, although the role of environmental factors, ethnicity and certain polymorphisms on Ewing sarcoma susceptibility has been studied during the last few years. Its prevalence among cancer predisposition syndromes has also been thoroughly examined. This review summarizes the available evidence on predisposing factors involved in Ewing sarcoma susceptibility. On the basis of these data, an integrated approach of the most influential factors on Ewing sarcoma predisposition is proposed.
Collapse
|
5
|
Fidalgo F, Rodrigues TC, Silva AG, Facure L, de Sá BCS, Duprat JP, Achatz MI, Rosenberg C, Carraro DM, Krepischi ACV. Role of rare germline copy number variation in melanoma-prone patients. Future Oncol 2016; 12:1345-57. [PMID: 27020340 DOI: 10.2217/fon.16.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This work evaluates a possible causative role for germline copy number variants (CNVs) in melanoma predisposition. PATIENTS & METHODS A total of 41 melanoma-prone Brazilian patients were investigated for CNVs using 850K single nucleotide polymorphism arrays. RESULTS Ten rare CNVs were identified in nine patients, comprising 54 known genes, mostly related to cancer. In silico analyses revealed gene enrichment for cellular development and growth, and proliferation, highlighting five genes directly associated with the melanoma phenotype (ANGPT1, IDH1, PDE5A, HIST1H1B and GCNT2). CONCLUSION Patients harboring rare CNVs exhibited a decreased age of disease onset, in addition to an overall higher skin cancer predisposition. Our findings suggest that rare CNVs contribute to melanoma susceptibility, and should be taken into account when investigating cancer risk factors.
Collapse
Affiliation(s)
- Felipe Fidalgo
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Tatiane Cristina Rodrigues
- Department of Genetics & Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil
| | - Amanda Gonçalves Silva
- Department of Genetics & Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil
| | - Luciana Facure
- Department of Skin Cancer, AC Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | - Carla Rosenberg
- Department of Genetics & Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil
| | | | | |
Collapse
|