1
|
Cai S, Deng Y, Wang Z, Zhu J, Huang C, Du L, Wang C, Yu X, Liu W, Yang C, Wang Z, Wang L, Ma K, Huang R, Zhou X, Zou H, Zhang W, Huang Y, Li Z, Qin T, Xu T, Guo X, Yu Z. Development and clinical validation of a microfluidic-based platform for CTC enrichment and downstream molecular analysis. Front Oncol 2023; 13:1238332. [PMID: 37849806 PMCID: PMC10578963 DOI: 10.3389/fonc.2023.1238332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
Background Although many CTC isolation and detection methods can provide information on cancer cell counts, downstream gene and protein analysis remain incomplete. Therefore, it is crucial to develop a technology that can provide comprehensive information on both the number and profile of CTC. Methods In this study, we developed a novel microfluidics-based CTC separation and enrichment platform that provided detailed information about CTC. Results This platform exhibits exceptional functionality, achieving high rates of CTC recovery (87.1%) and purification (∼4 log depletion of WBCs), as well as accurate detection (95.10%), providing intact and viable CTCs for downstream analysis. This platform enables successful separation and enrichment of CTCs from a 4 mL whole-blood sample within 15 minutes. Additionally, CTC subtypes, selected protein expression levels on the CTC surface, and target mutations in selected genes can be directly analyzed for clinical utility using immunofluorescence and real-time polymerase chain reaction, and the detected PD-L1 expression in CTCs is consistent with immunohistochemical assay results. Conclusion The microfluidic-based CTC enrichment platform and downstream molecular analysis together provide a possible alternative to tissue biopsy for precision cancer management, especially for patients whose tissue biopsies are unavailable.
Collapse
Affiliation(s)
- Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Youjun Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Junyu Zhu
- Institute of Cancer Control, Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Chujian Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Longde Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chunguang Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiangyang Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wenyi Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenglin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhe Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Lixu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Kai Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Rui Huang
- Shenzhen Futian Research Institute, City University of Hong Kong, Shenzhen, China
| | - Xiaoyu Zhou
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Heng Zou
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Wenchong Zhang
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Yan Huang
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Zhi Li
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Tiaoping Qin
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Tao Xu
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Xiaotong Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
2
|
Chang PH, Lee CH, Wu TMH, Yeh KY, Wang HM, Huang WK, Chan SC, Chou WC, Kuan FC, Kuo HC, Kuo YC, Hu CC, Hsieh JCH. Association of early changes of circulating cancer stem-like cells with survival among patients with metastatic breast cancer. Ther Adv Med Oncol 2022; 14:17588359221110182. [PMID: 35860832 PMCID: PMC9290096 DOI: 10.1177/17588359221110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: This study aimed to investigate the role of circulating tumor cells (CTCs) and circulating cancer stem-like cells (cCSCs) before and after one cycle of chemotherapy and assessed the effects of early changes in CTCs and cCSCs on the outcomes of patients with metastatic breast cancer. Methods: Patients with stage IV invasive ductal carcinoma of the breast who received first-line chemotherapy between April 2014 and January 2016 were enrolled. CTCs and cCSCs were measured before the first cycle of chemotherapy (baseline) and on day 21, before the second cycle of chemotherapy commenced; a negative selection strategy and flow cytometry protocol were employed. Results: CTC and cCSC counts declined in 68.8 and 45.5% of patients, respectively. Declines in CTCs and cCSCs following the first chemotherapy cycle were associated with superior chemotherapy responses, longer progression-free survival (PFS), and longer overall survival (OS). An early decline in cCSCs remained an independent prognostic indicator for OS and PFS in multivariate analysis. Conclusions: A cCSC decline after one cycle of chemotherapy for metastatic breast cancer is predictive of a superior chemotherapy response and longer PFS and OS, implying that cCSC dynamic monitoring may be helpful in early prediction of treatment response and prognosis.
Collapse
Affiliation(s)
- Pei-Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City
| | - Chun-Hui Lee
- College of Medicine, Chang Gung University, Taoyuan City
| | - Tyler Min-Hsien Wu
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City
| | - Kun-Yun Yeh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City
| | - Hung-Ming Wang
- College of Medicine, Chang Gung University, Taoyuan City
| | - Wen-Kuan Huang
- College of Medicine, Chang Gung University, Taoyuan City
| | - Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City
| | - Wen-Chi Chou
- College of Medicine, Chang Gung University, Taoyuan City
| | - Feng-Che Kuan
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Puzi City
| | - Hsuan-Chih Kuo
- College of Medicine, Chang Gung University, Taoyuan City
| | - Yung-Chia Kuo
- College of Medicine, Chang Gung University, Taoyuan City
| | - Ching-Chih Hu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City
| | - Jason Chia-Hsun Hsieh
- College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City 333
| |
Collapse
|
3
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther 2021; 6:404. [PMID: 34803167 PMCID: PMC8606574 DOI: 10.1038/s41392-021-00817-8] [Citation(s) in RCA: 474] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have sloughed off the primary tumor and extravasate into and circulate in the blood. Understanding of the metastatic cascade of CTCs has tremendous potential for the identification of targets against cancer metastasis. Detecting these very rare CTCs among the massive blood cells is challenging. However, emerging technologies for CTCs detection have profoundly contributed to deepening investigation into the biology of CTCs and have facilitated their clinical application. Current technologies for the detection of CTCs are summarized herein, together with their advantages and disadvantages. The detection of CTCs is usually dependent on molecular markers, with the epithelial cell adhesion molecule being the most widely used, although molecular markers vary between different types of cancer. Properties associated with epithelial-to-mesenchymal transition and stemness have been identified in CTCs, indicating their increased metastatic capacity. Only a small proportion of CTCs can survive and eventually initiate metastases, suggesting that an interaction and modulation between CTCs and the hostile blood microenvironment is essential for CTC metastasis. Single-cell sequencing of CTCs has been extensively investigated, and has enabled researchers to reveal the genome and transcriptome of CTCs. Herein, we also review the clinical applications of CTCs, especially for monitoring response to cancer treatment and in evaluating prognosis. Hence, CTCs have and will continue to contribute to providing significant insights into metastatic processes and will open new avenues for useful clinical applications.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lesang Shen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhou
- Department of Surgery, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | - Shu Zheng
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiaojiao Zhou
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Bali P, Lozano-Pope I, Pachow C, Obonyo M. Early detection of tumor cells in bone marrow and peripheral blood in a fast‑progressing gastric cancer model. Int J Oncol 2021; 58:388-396. [PMID: 33469673 PMCID: PMC7864146 DOI: 10.3892/ijo.2021.5171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is a major risk factor for the development of gastric cancer. The authors previously demonstrated that in mice deficient in myeloid differentiation primary response 88 (Myd88−/−), infection with Helicobacter felis (H. felis) a close relative of H. pylori, subsequently rapidly progressed to neoplasia. The present study examined circulating tumor cells (CTCs) by measuring the expression of cytokeratins, epithelial-to-mesenchymal transition (EMT)-related markers and cancer stem cell (CSC) markers in bone marrow and peripheral blood from Myd88−/− and wild-type (WT) mice. Cytokeratins CK8/18 were detected as early as 4 months post-infection in Myd88−/− mice. By contrast, cytokeratins were not detected in WT mice even after 7 months post-infection. The expression of Mucin-1 (MUC1) was observed in both bone marrow and peripheral blood at different time points, suggesting its role in gastric cancer metastasis. Snail, Twist and ZEB were expressed at different levels in bone marrow and peripheral blood. The expression of these EMT-related markers suggests the manifestation of cancer metastasis in the early stages of disease development. LGR5, CD44 and CD133 were the most prominent CSC markers detected. The detection of CSC and EMT markers along with cytokeratins does reinforce their use as biomarkers for gastric cancer metastasis. This early detection of markers suggests that CTCs leave primary site even before cancer is well established. Thus, cytokeratins, EMT, and CSCs could be used as biomarkers to detect aggressive forms of gastric cancers. This information may prove to be of significance in stratifying patients for treatment prior to the onset of severe disease-related characteristics.
Collapse
Affiliation(s)
- Prerna Bali
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| | - Ivonne Lozano-Pope
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| | - Collin Pachow
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| | - Marygorret Obonyo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| |
Collapse
|
5
|
Hu D, Liu H, Tian Y, Li Z, Cui X. Sorting Technology for Circulating Tumor Cells Based on Microfluidics. ACS COMBINATORIAL SCIENCE 2020; 22:701-711. [PMID: 33052651 DOI: 10.1021/acscombsci.0c00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTCs) carry reliable clinical information for the diagnosis and treatment of cancer that is a malignant disease with a high mortality rate. However, the amount of CTCs in the blood is quite low. To obtain credible clinical information, an efficient method of extracting CTCs is necessary. Microfluidic technology has proven its effectiveness on CTCs separation in recent years. Here, we present a comprehensive review of CTC sorting methods based on microfluidics. Specifically, we introduce four different microfluidic sorting methods of CTCs and compare their advantages and disadvantages. Finally, we summarize the analysis of CTCs based on microfluidics and present a prospective view of future research.
Collapse
Affiliation(s)
- Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Minist Educ, Key Lab Intelligent Comp Med Image MIIC, Shenyang 110169, Liaoning, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| |
Collapse
|
6
|
Todenhöfer T, Pantel K, Stenzl A, Werner S. Pathophysiology of Tumor Cell Release into the Circulation and Characterization of CTC. Recent Results Cancer Res 2019; 215:3-24. [PMID: 31605221 DOI: 10.1007/978-3-030-26439-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The traditional model of metastatic progression postulates that the ability to form distant metastases is driven by random mutations in cells of the primary tumor.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Varillas JI, Zhang J, Chen K, Barnes II, Liu C, George TJ, Fan ZH. Microfluidic Isolation of Circulating Tumor Cells and Cancer Stem-Like Cells from Patients with Pancreatic Ductal Adenocarcinoma. Theranostics 2019; 9:1417-1425. [PMID: 30867841 PMCID: PMC6401494 DOI: 10.7150/thno.28745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) requires multimodal therapeutic approaches and disease monitoring for effective treatment. Liquid biopsy biomarkers, including circulating tumor cells (CTCs) and cancer stem-like cells (CSCs), hold promise for evaluating treatment response promptly and guiding therapeutic modifications. Methods: From 24 patients with metastatic PDAC (stage IV, M1) undergoing active systemic treatment, we collected 78 blood samples at different time points for CTC and CSC isolation using a microfluidic platform functionalized with antibodies against a CTC biomarker, epithelial cell adhesion molecule (EpCAM), or a CSC biomarker, CD133. These isolated cells were further verified, via fluorescent staining and imaging, using cytokeratin (CK), CD45, and nucleic acid stain 4',6-diamidino-2-phenylindole (DAPI). Results: The majority (84.4%) of patient blood samples were positive for CTCs (EpCAM+CK+CD45-DAPI+) and 70.8% of patient blood samples were positive for CSCs (CD133+CK+CD45-DAPI+), using the highest baseline value of healthy samples as threshold. The CTC subtypes (EpCAM+CK+CD45-DAPI+CD133+ and EpCAM+CK+CD45-DAPI+CD133-) and CSC subtypes (CD133+CK+CD45-DAPI+EpCAM+ and CD133+CK+CD45-DAPI+EpCAM-) were also analyzed using immunochemical methods. In several cases, CSCs exhibited cytokeratin expression that did not express EpCAM, indicating that they will not be detected using EpCAM-based isolation. Conclusion: The microfluidic platform enabled the reliable isolation of CTCs and CSCs from PDAC patient samples, as well as their subtypes. Complementary assessment of both CTCs and CSCs appears advantageous to assess the profile of tumor progressing in some cases. This research has important implications for the application and interpretation of approved methods to detect CTCs.
Collapse
|
8
|
O'Flaherty L, Wikman H, Pantel K. Biology and clinical significance of circulating tumor cell subpopulations in lung cancer. Transl Lung Cancer Res 2017; 6:431-443. [PMID: 28904887 DOI: 10.21037/tlcr.2017.07.03] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By identifying and tracking genetic changes in primary tumors and metastases, patients can be stratified for the most efficient therapeutic regimen by screening for known biomarkers. However, retrieving tissues biopsies is not always feasible due to tumor location or risk to patient. Therefore, a liquid biopsies approach offers an appealing solution to an otherwise invasive procedure. The rapid growth of the liquid biopsy field has been aided by improvements in the sensitivity and specificity of enrichment assays for isolating circulating tumor cells (CTCs) from normal surrounding blood cells. Furthermore, the identification and molecular characterization of CTCs has been shown in numerous studies to be of diagnostic and prognostic relevance in breast, prostate and colon cancer patients. Despite these advancements, and the highly metastatic nature of lung cancer, it remains a challenge to detect CTCs in advanced non-small cell lung cancer (NSCLC). It may be that loss of epithelial features, in favor of a mesenchymal phenotype, and the highly heterogeneous nature of NSCLC CTCs contribute to their evasion from current detection methods. By identifying a broader spectrum of biomarkers that could better differentiate the various NSCLC CTCs subpopulations, it may be possible to not only improve detection rates but also to shed light on which CTC clones are likely to drive metastatic initiation. Here we review the biology of CTCs and describe a number of proteins and genetic targets which could potentially be utilized for the dissemination of heterogenic subpopulations of CTCs in NSCLC.
Collapse
Affiliation(s)
- Linda O'Flaherty
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Zhang X, Hofmann S, Rack B, Harbeck N, Jeschke U, Sixou S. Fluorescence Analysis of Vitamin D Receptor Status of Circulating Tumor Cells (CTCS) in Breast Cancer: From Cell Models to Metastatic Patients. Int J Mol Sci 2017. [PMID: 28632174 PMCID: PMC5486139 DOI: 10.3390/ijms18061318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Vitamin D receptor (VDR) expressed in normal breast tissue and breast tumors has been suggested as a new prognostic biomarker in breast cancer (BC). Besides, increasing evidence supports the view that the detection of circulating tumor cells (CTCs) predicts outcome in early and metastatic BC. Consequently, an evaluation of VDR expression in the CTCs of BC patients may allow optimization of their treatment. As an attempt to profile and subtype the CTCs of metastatic patients, we established an innovative fluorescence technique using nine BC cell lines to visualize, define, and compare their individual VDR status. Afterwards, we tested the CTC presence and VDR expression in blood samples (cytospins) collected from 23 metastatic BC patients. The results demonstrated major differences in the VDR levels among the nine cell lines, and VDR positive CTCs were detected in 46% of CTC-positive patients, with a total of 42 CTCs individually analyzed. Due to the limited number of patients in this study, no correlation between VDR expression and BC subtype classification (according to estrogen receptor (ER), progesterone receptor (PR) and HER2) could be determined, but our data support the view that VDR evaluation is a potential new prognostic biomarker to help in the optimization of therapy management for BC patients.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Simone Hofmann
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Brigitte Rack
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Nadia Harbeck
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Sophie Sixou
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
- Faculty of Pharmacy, University Paul Sabatier Toulouse III, Toulouse cedex 09 31062, France.
| |
Collapse
|
10
|
Werner S, Stenzl A, Pantel K, Todenhöfer T. Expression of Epithelial Mesenchymal Transition and Cancer Stem Cell Markers in Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:205-228. [DOI: 10.1007/978-3-319-55947-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M, Gilles C. Epithelial-mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Dev Dyn 2017; 247:432-450. [PMID: 28407379 DOI: 10.1002/dvdy.24506] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) associated with metastatic progression may contribute to the generation of hybrid phenotypes capable of plasticity. This cellular plasticity would provide tumor cells with an increased potential to adapt to the different microenvironments encountered during metastatic spread. Understanding how EMT may functionally equip circulating tumor cells (CTCs) with an enhanced competence to survive in the bloodstream and niche in the colonized organs has thus become a major cancer research axis. We summarize here clinical data with CTC endpoints involving EMT. We then review the work functionally linking EMT programs to CTC biology and deciphering molecular EMT-driven mechanisms supporting their metastatic competence. Developmental Dynamics 247:432-450, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Emilie Francart
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Justine Lambert
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Aline M Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, and Translational Research Institute Brisbane, and University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Morgane Bourcy
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S 903, University of Reims Champagne-Ardenne, Biopathology Laboratory, CHU of Reims, Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Garg M. Epithelial, mesenchymal and hybrid epithelial/mesenchymal phenotypes and their clinical relevance in cancer metastasis. Expert Rev Mol Med 2017; 19:e3. [PMID: 28322181 DOI: 10.1017/erm.2017.6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer metastasis occurs through local invasion of circulating tumour cells (CTCs), intravasation, transportation to distant sites, and their extravasation followed by colonisation at secondary sites. Epithelial-mesenchymal transition (EMT) is a normal developmental phenomenon, but its aberrant activation confers tumour cells with enhanced cell motility, metastatic properties, resistant to therapies and cancer stem cell (CSC) phenotype in epithelium-derived carcinoma. Experimental studies from various research papers have been reviewed to determine the factors, which interlink cancer stemness and cellular plasticity with EMT. Although existence of CSCs has been linked with EMT, nevertheless, there are controversies with the involvement of type of tumour cells, including cells with E (epithelial) and M (mesenchymal) phenotype alone or hybrid E/M phenotype in different types of cancers. Studies on CTCs with hybrid E/M phenotypes during different stages of cancer metastasis reveal strong association with tumour -initiation potential, cellular plasticity and types of cancer cells. Cells with the hybrid E/M state are strictly controlled by phenotypic stability factors coupled to core EMT decision-making circuits, miR200/ZEB and miR-34/Snail. Understanding the regulatory functions of EMT program in cancer metastasis can help us to characterise the biomarkers of prognostic and therapeutic potential. These biomarkers when targeted may act as metastatic suppressors, inhibit cellular plasticity and stemness ability of tumour cells and can block metastatic growth.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry,University of Lucknow,Lucknow - 226007,UP,India
| |
Collapse
|
13
|
Ming Y, Li Y, Xing H, Luo M, Li Z, Chen J, Mo J, Shi S. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection. Front Pharmacol 2017; 8:35. [PMID: 28203204 PMCID: PMC5285331 DOI: 10.3389/fphar.2017.00035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research.
Collapse
Affiliation(s)
- Yue Ming
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Yuanyuan Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Haiyan Xing
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Minghe Luo
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Sanjun Shi
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University Chongqing, China
| |
Collapse
|
14
|
Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci Rep 2016; 6:39736. [PMID: 28000772 PMCID: PMC5175156 DOI: 10.1038/srep39736] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
The relevance of blood-based assays to monitor minimal residual disease (MRD) in non-metastatic prostate cancer (PCa) remains unclear. Proving that clinically relevant circulating tumor cells (CTCs) can be detected with available technologies could address this. This study aimed to improve CTC detection in non-metastatic PCa patients by combining three independent CTC assays: the CellSearch system, an in vivo CellCollector and the EPISPOT. Peripheral blood samples from high-risk PCa patients were screened for CTCs before and three months after radical prostatectomy (RP). Combining the results of both time points, CTCs were detected in 37%, 54.9% and 58.7% of patients using CellSearch, CellCollector and EPISPOT, respectively. The cumulative positivity rate of the three CTC assays was 81.3% (87/107) with 21.5% (23/107) of patients harboring ≥5 CTCs/7.5 ml blood. Matched pair analysis of 30 blood samples taken before and after surgery indicated a significant decrease in CTCs captured by the CellCollector from 66% before RP to 34% after therapy (p = 0.031). CTC detection by EPISPOT before RP significantly correlated with PSA serum values (p < 0.0001) and clinical tumor stage (p = 0.04), while the other assays showed no significant correlations. In conclusion, CTC-based liquid biopsies have the potential to monitor MRD in patients with non-metastatic prostate cancer.
Collapse
|
15
|
Kölbl AC, Jeschke U, Andergassen U. The Significance of Epithelial-to-Mesenchymal Transition for Circulating Tumor Cells. Int J Mol Sci 2016; 17:E1308. [PMID: 27529216 PMCID: PMC5000705 DOI: 10.3390/ijms17081308] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a process involved in embryonic development, but it also plays a role in remote metastasis formation in tumor diseases. During this process cells lose their epithelial features and adopt characteristics of mesenchymal cells. Thereby single tumor cells, which dissolve from the primary tumor, are enabled to invade the blood vessels and travel throughout the body as so called "circulating tumor cells" (CTCs). After leaving the blood stream the reverse process of EMT, the mesenchymal to epithelial transition (MET) helps the cells to seed in different tissues, thereby generating the bud of metastasis formation. As metastasis is the main reason for tumor-associated death, CTCs and the EMT process are in the focus of research in recent years. This review summarizes what was already found out about the molecular mechanisms driving EMT, the consequences of EMT for tumor cell detection, and suitable markers for the detection of CTCs which underwent EMT. The research work done in this field could open new roads towards combating cancer.
Collapse
Affiliation(s)
- Alexandra C Kölbl
- Department of Gynecology and Obstetrics, LMU Munich, Maistrasse 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynecology and Obstetrics, LMU Munich, Maistrasse 11, 80337 Munich, Germany.
| | - Ulrich Andergassen
- Department of Gynecology and Obstetrics, LMU Munich, Maistrasse 11, 80337 Munich, Germany.
| |
Collapse
|
16
|
Chiotaki R, Polioudaki H, Theodoropoulos PA. Stem cell technology in breast cancer: current status and potential applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2016; 9:17-29. [PMID: 27217783 PMCID: PMC4853137 DOI: 10.2147/sccaa.s72836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer, the leading cause of cancer among females, is supported by the presence of a rare subset of undifferentiated cells within the tumor, identified as breast cancer stem cells (BCSCs). BCSCs underlie the mechanisms of tumor initiation and sustenance and are implicated in the dissemination of the primary tumor to metastatic sites, as they have been found circulating in the blood of breast cancer patients. The discovery of BCSCs has generated a great amount of interest among the scientific community toward their isolation, molecular characterization, and therapeutic targeting. In this review, after summarizing the literature on molecular characterization of BCSCs and methodologies used for their isolation, we will focus on recent data supporting their molecular and functional heterogeneity. Additionally, following a synopsis of the latest approaches for BCSC targeting, we will specifically emphasize on the therapeutic use of naïve or engineered normal stem cells in the treatment of breast cancer and present contradictory findings challenging their safety.
Collapse
Affiliation(s)
- Rena Chiotaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
17
|
Tume L, Paco K, Ubidia-Incio R, Moya J. CD133 in breast cancer cells and in breast cancer stem cells as another target for immunotherapy. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Prognostic Value of Cancer Stem Cells Markers in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:158682. [PMID: 26504780 PMCID: PMC4609334 DOI: 10.1155/2015/158682] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/01/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) has a significant clinical relevance of being associated with a shorter median time to relapse and death and does not respond to endocrine therapy or other available targeted agents. Increased aggressiveness of this tumor, as well as resistance to standard drug therapies, may be associated with the presence of stem cell populations within the tumor. Several stemness markers have been described for the various histological subtypes of breast cancer, such as CD44, CD24, CD133, ALDH1, and ABCG2. The role of these markers in breast cancer is not clear yet and above all there are conflicting opinions about their real prognostic value. To investigate the role of CSCs markers in TNBC cancerogenesis and tumor progression, we selected 160 TNBCs samples on which we detected protein expression of CD44, CD24, CD133, ALDH1, and ABCG2 by immunohistochemistry. Our results highlighted a real prognostic role only for CD44 in TNBCs. All other CSCs markers do not appear to be related to the survival of TNBC patients. In conclusion, despite the fact that the presence of the cancer stem cells in the tumor provides important information on its potential aggressiveness, today their detection by immunohistochemistry is not sufficient to confirm their role in carcinogenesis, because specific markers probably are not yet identified.
Collapse
|